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Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically
accessible stability—Examples with translation symmetry
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Because different constraints are imposed, stability conditions for dissipationless fluids and
magnetofluids may take different forms when derived within the Lagrangian, Eulerian (energy-
Casimir), or dynamically accessible frameworks. This is in particular the case when flows are present.
These differences are explored explicitly by working out in detail two magnetohydrodynamic
examples: convection against gravity in a stratified fluid and translationally invariant perturbations of
a rotating magnetized plasma pinch. In this second example, we show in explicit form how to
perform the time-dependent relabeling introduced in Andreussi e al. [Phys. Plasmas 20, 092104
(2013)] that makes it possible to reformulate Eulerian equilibria with flows as Lagrangian equilibria
in the relabeled variables. The procedures detailed in the present article provide a paradigm that can
be applied to more general plasma configurations and in addition extended to more general plasma
descriptions where dissipation is absent. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4964900]

I. INTRODUCTION

The early plasma literature on magnetohydrodynamics
(MHD) is specked with traces of a general underlying struc-
ture: the self-adjointness of the MHD force operator in terms
of the displacement & of the original energy principle, the
Woltjer invariants of helicity and cross helicity and their use
in obtaining Beltrami states, and the representation of the
magnetic and velocity fields in terms of “Clebsch” potentials
being examples. All of these are symptoms of the fact that
MHD is a Hamiltonian field theory, whether expressed in
Lagrangian variables as shown by Newcomb' or in terms of
Eulerian variables as shown by Morrison and Greene.?
General ramifications of the Hamiltonian nature of MHD
were elucidated in our series of publications,®® while in the
present work, we examine explicitly the stability of stratified
plasma and of rotating pinch equilibria within each of the
three Lagrangian, Eulerian, and dynamically accessible
descriptions.

These particular two examples were chosen because
they are at once tractable and significant. They display the
difficulties one faces in ascertaining stability within the three
approaches and provide a means to compare and contrast the
stability results. The paper is designed to serve as a “how-to”
guide for application of the three approaches, providing a
framework for what one might expect, and delineating the
sometimes subtle differences between the approaches. Here
and in our previous papers, the scope was limited to MHD,
but the same Hamiltonian structure exists for all important
dissipation free plasma models, kinetic as well as fluid, and
the story we tell for MHD applies to them as well. (See e.g.,
Ref. 7 for review.) Recently there has been great progress in
understanding the Hamiltonian structure of extended
MHD,*'* the effect of gyroviscosity,'> and relativistic
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magnetofluid models.'®'” In addition, recent work on hybrid
kinetic-fluid models'®'® and gyrokinetics®**' now also lie
within the purview.

There are many concepts of stability of importance in
plasma physics (see Sec. VI of Ref. 22 for a general discus-
sion)—here we will only be concerned with what could be
referred to as a formal Lyapunov stability, which has
received wide attention in the fluid and plasma literature,
both in the Hamiltonian and non-Hamiltonian contexts (see
e.g., Refs. 23 and 24 and references therein for the latter). In
the Hamiltonian context, the Lyapunov stability we consider
provides at least a sufficient condition for stability, implied
by the positive-definiteness of a quadratic form obtained
from the second variation of an energy-like quantity. This
kind of stability is stronger than spectral or eigenvalue stabil-
ity: for finite-dimensional systems it implies nonlinear stabil-
ity, i.e., stability to infinitesimal perturbations under the
nonlinear evolution of the system. Note, nonlinear stability
should not be confused with finite-amplitude stability that
explores the extent of the basin of stability, a confusion that
oft appears in the plasma literature. For infinite-dimensional
systems like MHD, there are technical issues that need to be
addressed in order to rigorously claim that formal Lyapunov
stability implies nonlinear stability (see e.g., Ref. 25 for an
example of a rigorous nonlinear stability analysis), but the
formal Lyapunov stability of our interest is a most important
ingredient, and it does imply linear stability.

A common practice in the plasma literature, employed
e.g., by Chandresekhar,?® is to manipulate the linear equa-
tions of motion in order to obtain a conserved quadratic form
that implies stability. Although this procedure shows linear
stability, it cannot be used to obtain nonlinear stability and
may give a misleading answer. This is evidenced by the

Published by AIP Publishing.
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Hamiltonian system, which when linearized has both of the
two Hamiltonians for two linear oscillators

He = o1(p; + q7) /2% w2(p3 + 43) /2 (1)

Both signs of (1) are conserved by the linear system, yet
only one arises from the expansion of the nonlinear
Hamiltonian of the system. Nonlinear Hamiltonians that give
rise to linear Hamiltonians of the form of H_ can in fact be
unstable (see Ref. 27 for an example), and are prototypes for
systems with negative energy modes. This example shows
why the formal Lyapunov stability, our subject, is stronger
than spectral or eigenvalue stability. To reiterate, throughout
by stability we will mean a formal Lyapunov stability.

The remainder of the paper is organized as follows: in
Sec. II, we review the basic ideas of the three approaches,
giving essential formulas so as to make the paper self-
contained. Of note is the new material of Sec. II D that sum-
marizes various comparisons between the approaches. This
is followed by our convection example of Sec. III and our
pinch example of Sec. IV. These sections are organized in
parallel with Lagrangian, Eulerian (or so-called energy-
Casimr), and dynamically accessible stability treated in
order, followed by a subsection on comparison of the results.
Finally, we conclude in Sec. V.

Il. BASICS

In what follows we will consider the stability of MHD
equilibria that are solutions to the following equations:

PeVe - VVe = =Vp, +J. X B, + p,VO,, 2)
V x (v, xB,) =0, 3)

V- (pve) =0, 4)

v, - Vs, =0, (5)

for the equilibrium velocity field v,(x), magnetic field B, (x),
current density 4nJ, =V x B,, density field p,(x), and
entropy/mass field s,(x). Here ®(x, ) represents an external
gravitational potential. The pressure field is assumed to be
determined by an internal energy function U(p,s), where
p = p?0U/0p and the temperature is given by T = U /0s.
For the ideal gas p = cp”exp(/s), with ¢,/ constants and
pU =p/(y —1). MHD has four thermodynamical variables
p,s,p, and T. The assumption of local thermodynamic equi-
librium implies that knowledge of two of these variables at
all points x is sufficient to determine the other two, once the
U appropriate to the fluid under consideration is specified.

For static equilibria with v, = 0, the only equation to
solve is

Vp.=J. x B, + p,VO,. 6)

Equation (6) is one equation for several unknown quantities;
consequently, there is freedom to choose profiles such as
those for the current and pressure as we will see in our
examples.

If we neglect the gravity force by removing V®,, Eq.
(6) leads as usual to the Grad-Shafranov equation, e.g., by
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noting that B, - Vp = 0 implies pressure as a flux function.
However, unlike the barotropic case where p only depends
on p, in general this does not imply that p and s are flux
functions, since their combination in p(p, s) could cancel out
their variation on a flux surface. Thus, as far as the static
ideal MHD is concerned, because only p occurs in the equi-
librium equation, density and temperature on a flux function
can vary while the pressure is constant. The MHD static
equilibrium equations give no information/constraints on this
variation.

When gravity is included, Eq. (6) still is only one con-
straining equation for several unknown quantities. In Sec.
III, we consider the stratified equilibria both with and with-
out a magnetic field and we will investigate there the role
played by entropy.

For stationary equilibria, the full set of Egs. (2)-(5)
must be solved. Because in general there are many possibili-
ties, we will restrict our analysis to the rotating pinch exam-
ple of Sec. IV, where we describe the equilibrium in detail.

A. Lagrangian formulae

The Hamiltonian for MHD in Lagrangian variables is

TEiﬂfi
U
2, + poU (50, po/ T )

Hlq,n] = Jd3a

dq; Oq' BEBY
9 5al sng T POP@]; ™

where (q,m) are the conjugate fields with g¢(a,r)
= (¢',4%,¢%) denoting the position of a fluid element at time
t labeled by a = (a',a?,a*) and n(a, ) being its momentum
density. In (7) the quantities sg, po, and By are fluid element
attributes that only depend on the label a, and
J :=det(0q'/0d). Also, A} ¢’ | 0a* = J&, where A;
denotes elements of the cofactor matrix of d¢/da. In a gen-
eral coordinate system 7' = g¥(q) ; where g” is the metric
tensor. This Hamiltonian together with the canonical Poisson
bracket

OF 6G  6G OF
F = |Pa =2 =
roh=|ea(fi-e). ®
renders the equations of motion in the form
. OH . : OH
i — - H = — — ! = ! H = —

where “-” denotes time differentiation at constant label a and
0H/Sq' is the usual functional derivative. The results of
these calculations can be found in Appendix A and further
details can be found in Refs. 5 and 22.

In Ref. 5 we introduced the general time-dependent
relabeling transformation a = (b, ), with the inverse
b = B(a, t), which gave rise to the new dynamical variables

H(b,7) = Jn(a, 1), Q(b,7) =q(a,), (10)

and the new Hamiltonian
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:Jfb

70U (50.70/7 ) +

IT; IT 00!
2

2%, bl

.~k ~{
00;00' BB,
96 07 87 |’
— K+ H+ W, (12)

where K is the kinetic energy, His the fictitious term due to
the relabeling, and W represents the sum of the internal and
magnetic field energies. In the first equality of (12)

V(b, 1) =BoB :‘B(m(bvt%t% (13)

which is the label velocity, V,, := 9/0b, and H is to be writ-
ten in terms of the new variables. In the second equality, we
used d’a=Jd%, with J:=det(da'/Ob), Dy =T po,
J = det(00Q"/oV) = T3, and py/T = py/T, which fol-
lows from mass conservation pyd*a = pyd>b. The relabeled
entropy is so(b, 7) = so(A(b, 1)).

From (9) it is clear that extremization of Hamiltonians
gives equilibrium equations. For the Hamiltonian H|q, n] of
(7) this gives static equilibria, while for H[Q, II] of (12) one
obtains stationary equilibria. This was the point of introduc-
ing the relabeling: it allows us to express stationary equilib-
ria in terms of Lagrangian variables, which would ordinarily
be time dependent, as time-independent orbits with the mov-
ing labels.

The equilibrium equations are

I1,
0= ath - = — Vp : vnga
Po
0= a[ng - _Vb . (Ve & ne) + Fe> (14)

where F, comes from the W part of the Hamiltonian. From
(14) the equilibrium equation follows:

V- (5o VoVe - V,5Q,) = F. (15)

Using b = Q,(b) = q,(Uc(b,1),7) = B, (a, ) and the defini-
tion of V of (13), V(b,?) = B,(A.(b,1),t) = v.(b), where
v.(b) denotes an Eulerian equilibrium state, we obtain upon
setting b = x the usual stationary equilibrium equation

V- (peveve) = F€7 (16)

where p,(x) is the usual equilibrium density. It can be shown
that v, - Vs, =0, V- (p,v.) =0, and v, - VB, — B, - Vv,
+B.V v, =0, follow from the Lagrange to Euler map.
Further details of this relabeling transformation are given in
Ref. 5, while application to our rotating pinch example of
Sec. IV is worked out in Appendix B.

For stability, we expand as follows:

Q=0Q,(b,t) +n(b,t), IM=TIL(b,t)+m,(b,1), (17)

and calculate the second variation of the Hamiltonian in
terms of the relabeled canonically conjugate variables (1, &,
giving
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1 1
52Hla[ze;”ani1] = EJCPX l:p_ |7'C,] — PeVe r v"lz + n- %e “ny,

(18)

which depends on the time independent equilibrium quanti-
ties Z, = (p,, Se, Ve, B.), i.€., the operator B, has no explicit
time dependence. (Again, see in Refs. 5 and 22 for details.)
The functional

1
FWilziin =5 | e B

1
= Eszx [pe(ve “Vve) - (- Vn)
—pelVe - V'] + 3*W[n), (19)

is identical to that obtained by Frieman and Rotenberg,?
although obtained here in an alternative and more general
manner.

The energy 6°Wi, can be transformed in the more famil-
iar expression of Ref. 29

1 Ope
S WialZesn] = EJd3x {pe a[p) (V0> +(V -n)(Vpe )
[oB[* P .
+ i +Jexn-0B =V (pm)(n-VO,)|,

(20)

where 4nJ, =V x B,
0B :=V x (§ x B,).

For completeness, we record the first order Eulerian per-
turbations that are induced by the Lagrangian variation writ-
ten in terms of the displacement n

is the equilibrium current and

opra ==V - (pon); @21

ovia = my/p, — 1 Ve
=0n/0t+ v, -V —n-Vv,, (22)
OSa = —1 - Ve, (23)
OB, = =V x (B, x 1), (24)

where ds), can be replaced by the pressure perturbation,
opa = —yp.V - 1 — i - Vp,, that is often used.

B. Eulerian formulae
The Hamiltonian for MHD in Eulerian variables is

2

H|Z] = [d*x §|v|2 +pU(s, p)+%+ p®|, (25)
where Z = (p, s, v, B). When (25) is substituted into the non-
canonical Poisson bracket {F,G} . of Ref. 2 one obtains the
Eulerian equations of motion in the form 0Z/0t = {Z,H},,..
Because the noncanonical Poisson bracket {F,G},  is de-
generate, i.e., there exist functionals C such that {F,C},.
= 0 for all functionals F, Casimir invariants C exist and
equilibria are given by extremization of the energy-Casimir
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functional § = H + C. For MHD with no symmetry, the
Casimirs are

C = Jd*xp S(s), (26)
and the magnetic and cross helicities
CB:Jd3xA~B, and CU:Jd3xv-B, (27)

respectively. By manipulation of the MHD equations, the
helicities were shown by Woltjer’®=? to be invariants (C,
requiring the barotropic equation of state) and used by him
to predict plasma states. Woltjer’s ideas pertaining to mag-
netic helicity were adapted by Taylor’** to describe the
reversed field configurations. The invariant of (26) and
Woltjer’s helicities were shown to be Casimir invariants in
Ref. 36. (See Refs. 37 and 38 for further discussion.)

An important point to note is that knowledge of the
Casimirs determines this additional physics, but this knowl-
edge must come from physics outside of the ideal model.

Special attention has been given to the equilibrium
states obtained by extremizing the energy subject to the
Woltjer invariants, perhaps because these are the states for
which Casimirs are at hand. (See Refs. 39 and 40 for discus-
sion of the Casimir deficit problem.) However, we will see in
Sec. II C that all MHD equilibria are obtainable from the var-
iational principles with directly constrained variations, the
dynamically accessible variations, rather than using
Lagrange multipliers and helicities, etc.

In the case were translational symmetry is assumed, all
variables are assumed to be independent of a coordinate z
with

B=B.2+Vy x1, (28)
M=M,z2+Vyxz+VY, (29)

where y, Y, and y are “potentials,” M = pv, M, = pv,, and Z
is the unit vector in the symmetry direction. The Hamiltonian
then becomes

VY[* [,
Hrs JCP =+ +—=
2= 20 2p 2p p
\Y%
AL i L5 +pU+pcD (30)
8n 8n
where Z; = (p,s,M.,y, Y,¥,B.). With this symmetry

assumption, the set of Casimir is expanded and is sufficient
to obtain a variational principle for the equilibria considered
here. However, because of this symmetry assumption, it is
only possible to obtain the stability results restricted to per-
turbations consistent with this assumption.

In Refs. 3 and 4 the translationally symmetric noncanon-
ical Poisson brackets were obtained for both neutral fluid
and MHD dynamics. For the case of a neutral fluid, which
we consider in Sec. III B for convection, the Poisson bracket
for translationally symmetric flows was given in Ref. 3. This
bracket with the Hamiltonian of (30), where the magnetic
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energy terms involving B, and i are removed, gives the
compressible Euler’s equations for fluid motion. The transla-

tionally symmetric fluid Poisson bracket has the following
Casimir invariants:

Ci :Jd3x pS(s, v, [s,0:]/p,...), (31)
Cy = |d’x (VA(s) - Vi + [, As)])/p

dx A(s)z -V x v, (32)

— —
Y

where [f, g] = Z - Vf x Vg. The second Casimir applies if v,
depends only on s, which will suit our purpose, i.e., the
energy-Casimir variational principle 0§ = 0 will give our
desired equilibria.

For the case of MHD it was shown in Refs. 3 and 4 that
the following are the Casimir invariants with translational
symmetry:

Cv—Jd%pJ( sl pslls, vl /oWl /o, s, [s /ol ps o),
(33)

Cp. = Jd3xBZH(!//), (34)

C,. = Jd% pv-G(), (35)

and, if the entropy is assumed to be a flux function, i.e.,
[, s] = 0, then (33) collapses to

Cs = jd3xpj(¢/), (36)

and there is the additional cross helicity Casimir

(X, F (l//)])

o

- J Pxv-BF (), @37

C, = Jd3x (UZBZF'(I,D) + %VF(!//) -Vy+

where S, A, J, H, G, and F are arbitrary functions of their
arguments (7 distinguished from the Jacobian with the same
symbol by context) with prime denoting differentiation with
respect to argument.

For both the neutral fluid and MHD equilibria that sat-
isfy 0§ = 0, a sufficient condition for stability follows if the
second variation 0*§ can be shown to be positive definite.
For MHD it was shown in Refs. 5 and 6 that 528' could be
put into the following diagonal form:

A Jd% [@1|0SP + a2(5Q)? + a(0R.)?
+a4|0R | + as (o)’ (38)

where the variations (0S,JR, 00, 0y) are linear combina-
tions of (ov,0B,0p,dy). The coefficients a; for i =1—15
depend on space through the equilibrium and were first given
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explicitly in Ref. 5 (and corrected in Ref. 6). Note, for these
calculations, the external potential ® was omitted. (See Refs.
41 and 42 for related work.)

Upon extremizing over all variables except oy and then
back substituting the resulting algebraic relations, (38)
becomes

P (e 0] = jd3x B VUL + ba(60) +bsley x Vou[,

(39)
where ey, = Vi /|Vy/| and
g2 2 A2 (2 o2
by 1 4/\/1 2 — M (c? +/c\2)4 7 (40)
n 2
Csz, —MZ(C§+C3) +m|v1//|
b Mv 82( B> M 2)
by =V [w(g Vlﬁ] Tt p+g+E|VW| ;
(4D
A2
b=, “2)
4n

where the poloidal Alfvén-Mach number M? := 4nF?/p < 1
has been assumed. Here

c2=B*/(4np) and ¢ = 3dp/dp, (43)

are the Alfvén and the sound speed, respectively.

Thus, stability in this MHD context rests on whether or
not (39) is definite, and for the neutral fluid equilibria we
treat here, which include a gravity force, the same is true for
the corresponding functional.

C. Dynamically accessible formulae

Extremizing the Hamiltonian of (25) without con-
straints gives trivial equilibria. With energy-Casimir, the
constraints are incorporated essentially by using Lagrange
multipliers. Dynamically accessible variations, as intro-
duced in Ref. 43, restrict the variations to be those generated
by the noncanonical Poisson bracket and in this way assures
that all kinematical constraints are satisfied. The first order
dynamically accessible variations, obtained directly from
the noncanonical Poisson bracket of Ref. 2, are the
following:

0paa =V - (p81), (44)
O0vaa = Vg3 + Vg + (V xv) x g4
+B x (Vxg)/p, (45)
0sda = 81 - Vs, (46)
0Bga =V x (B xg)), 47)

where the freedom of the variations is embodied in the arbi-
trariness of g;, g, g3, and g,. Using these in the variation of
the Eulerian Hamiltonian gives

Phys. Plasmas 23, 102112 (2016)

OHgy = JdSX (/2 + (pU), + ®)0pgq + pV - OVaa
+pU; 0842 + B - 0Bya /47,
B J dx[g, - (pv x (V x v) = pV?/2

—pVh+pTVs+J xB) — gV - (psv)
—23V - (pv) +g, -V x (vxB)] =0, (48)

whence it is seen that the vanishing of the terms multiplying
the independent quantities g,, g», g3, and g, gives precisely
the Eulerian equilibrium equations (2)—(5).

Next, stability is assessed by expanding the Hamiltonian
to second order using the dynamically accessible constraints
to this order (see Refs. 5 and 22 for details), yielding the fol-
lowing expression:

FHulZisg) = [xplova g - Vo v- Ve
+52W1a[g1] . (49)

If in (49) dvq4, were independent and arbitrary, we could use
it to nullify the first term and then upon setting g, = —1, we
would see that dynamically accessible stability is identical to
Lagrangian stability. However, as we will see in Sec. IID,
this is not always possible.

D. Comparison formulae

In our calculations of stability, we obtained the qua-
dratic energy expressions of (18), (38), and (49), which can
be written in terms of various Eulerian perturbation variables

B := {dp, ov, s, 6B}. (50)

In the case of the Lagrangian energy of (18), the set of pertur-
bations ‘B, as given by Egs. (21)—(24) are constrained, while
for the energy-Casimir expression of (38), the perturbations
B, are entirely unconstrained provided they satisfy the trans-
lation symmetry we have assumed. Similarly the perturba-
tions for the energy expression (49), By, of (44)—(47), are
constrained. In our previous work of Ref. 5, we showed that
the three energy expressions are equivalent if restricted to the
same perturbations, and we established the inclusions

g/Bda - sBla - gBecv
which led to the conclusions
stab,. = stab), = staby,,

viz., dynamically accessible stability is the most limited
because its perturbations are the most constrained, while
energy-Casimir stability is the most general, when it exists,
for its perturbations are not constrained at all. The choice
between the three approaches should be based on the physics
of the situation, which determines the relevant constraints
that need to be satisfied by the perturbations. Our goal is
to explore further the differences between these kinds of
stability by exploring, in particular, the differences between
Lagrangian and dynamically accessible perturbations.
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From (49), it is clear that if dvg, is arbitrary, indepen-
dently of g,, then the first term of this expression can be
made to vanish. This would reduce §’Hg, to the energy
expression obtained for Lagrangian stability, making the two
kinds of stability equivalent. Given that there are five com-
ponents of g,, g3 and g,, in addition to g,;, one might think
that this is always possible. However, as pointed out in Ref.
5, this is not always possible and whether or not it depends
on the state or equilibrium under consideration. We continue
this discussion here.

Consider first a static equilibrium state that has an
entropy as a flux function and no equilibrium flow. Thus, for
this case, the cross helicity C, of (27) vanishes. For a dynam-
ically accessible perturbation

oC, = Jd3x OVga - B, = Jd3x (Vgs +5.Vga) B,
:—Jd3xg2Be-Vse:0, (51)

where the last equality assumes g3 is single-valued and the
vanishing of surface terms, as well as s, being a flux func-
tion. The fact that 6C, = 0 for this case is not a surprise
since it is a Casimir, but we do see clearly that if s were not a
flux function, then a perturbation dvg, could indeed create
cross helicity. Because of the term 9/t of (22), which can
be chosen arbitrarily, it is clear that dvy, can create cross hel-
icity for any equilibrium state, supplying clear evidence that
OV4a is not completely general.

Although vy, is not completely general, it was noted in
Ref. 22 that for static equilibria, the first term of (49)
becomes

Jd3xp|5vda|2, (52)

and this can be made to vanish independent of g, by choos-
ing g = g3 =0 and g, = 0. Thus, for static equilibria, the
Lagrangian and dynamically accessible approaches must
give the same necessary and sufficient conditions for stabil-
ity, i.e.

staby, <= stabgy,,

As another example, consider the variation of the circu-
lation integral I' = SECV - dx on a fixed closed contour ¢ for an
equilibrium with v, = 0 and B, # 0. Clearly dv;, can gener-
ate any amount of circulation. However, for a dynamically
accessible variation

oI = Ei; OVyga - dx

= i;sngz . dx—i—ff (Vxg,) (dxxB,)/p,, (53)

and we can draw two conclusions: in the case where ¢ is a
closed magnetic field line dx || B and 6" becomes

ol = ﬁ;seng rdx = % (V(seg2) — £2Vse) - dx

_ _{) Vs, - dx, (54)
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whence we see clearly that if Vs, is everywhere parallel to
B,, then 6’3 = 0 and otherwise this is not generally true.
Alternatively, suppose the contour c lies within a level set of
., for which it need not be true that B, - Vs, = 0 along c.
For this case

oT, = jﬂ (V x g,) - (dx x B.)/p,, (55)

which in general does not vanish. If a magnetic field line
were to lie within a surface of constant s,, then in the general
case, B, - Vs, = 0 otherwise surfaces of constant s, would
be highly irregular, i.e., if B, - Vs, # 0, then B, cannot lie
within a level set of s,.

We point out that similar arguments can be supplied for
cases where v, # 0, e.g., variation of the fluid helicity 6C,,
=2 f dx - dvy, for an equilibrium with B, = 0 becomes

oC, = 2Jd3xwe (Vg + 0, x g;)
= 2Jd3xwe Vg5, = —2Jd3xg2 . - Vs., (56)

which vanishes if @, is perpendicular to Vs, or if the entropy
is everywhere constant.

In summary, the general conclusion is that dvg,, unlike
Ovla, is not completely arbitrary, and the degree of arbitrari-
ness depends on the equilibrium. We also point out that
although we are here interested in perturbations away from
equilibrium states, for the purpose of assessing stability, the
conditions we have described apply to perturbations away
from any state, equilibrium or not.

Now we turn to our examples. For the remainder of this
paper, we drop the subscript “e” on equilibrium quantities,
so as to avoid clutter.

lll. CONVECTION

For this first example, we consider the thermal convec-
tion in static equilibria, both with and without a magnetic
field. This example has been well studied by various
approaches, e.g., heuristic arguments that mix Lagrangian
and Eulerian ideas were given in Ref. 44 for the neutral fluid.
Here our analysis will be done separately in purely
Lagrangian and purely Eulerian terms, and it will illustrate
the role played by entropy in determining stability.

We suppose the equilibrium has stratification in the y-
direction due to gravity, i.e., ® = gy, with p and s dependent
only on y. Thus the only equation to be solved for the neutral
fluid is
dp do
o Pa e (57)
If a magnetic field of the form B = B(y)x is supposed, then
the equilibrium equation is the following:

dB B dd

Ty

d
@ _ —JB — pg. (58)
dy
For barotropic fluids, s is constant everywhere and is
eliminated from the theory, i.e., U(p) alone. Thus, (57)
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(together with U(p)) determines completely the thermody-
namics at all points y by integrating

ppdp _

-8, (59)
p dy §

giving p(y) and consequently p(y). For this special case, no
further information is required. However, in the general case
where p(p,s), (57) is not sufficient and one needs to know
more about the fluid, since now we have

ppdp  psds _
pdy pdy

which is insufficient because we have only one equation for
the two unknown quantities p and s. Thus, the knowledge of
additional physics is required, which could come from
boundary or initial conditions, solution of some heat or trans-
port equation with constitutive relations, etc.
Next consider the case of MHD where
dp dp

ds
w_ ., 2P == —JB — pg. 61
dy Py dyﬂ?s dy Pg (61)

=& (60)

If gravity is absent, MHD differs from that of the stratified
fluid because only the pressure enters and the thermodynam-
ics of p and s do not explicitly enter the equilibrium equa-
tion. We will consider the case where gravity is present.

Thus, in general, equilibria depend on two kinds of con-
ditions: force balance, as given in our cases of interest by
(57) or (58) and thermodynamics. For latter convenience we
record here several thermodynamic relations

p=p*U, and T=U;, (62)
d
G =5,],= (0*0), = p(e0),, (63)
) b)
3_i P - _(9_? 1;Cg - pZUpS’ 64

where, without confusion, we use subscripts on U to denote
partial differentiation with the other thermodynamic variable
held constant and the subscript of ¢, denotes “sound.”

The coefficient of thermal expansion, «, is given by

10p
=——— 65
o 20T |y (65)
and for typical fluids
Pl _%20 and @’ <0. (66)
Oslp p Os Ip

If the pressure is given by p = cp” exp(Zs), then ¢Z = yp/p,
as it is often written.

A. Lagrangian convection

1. Lagrangian convection equilibria

From (9) Lagrangian equilibria must satisfy

H ; H
7'7:,-:—5—.:0 and 4’25—:0, (67)
oq' om;
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whence if follows from (7) that 7; = 0 and

; z 1 K dap
0=1m; = Ala<'00U_|_ aq aq/»Ble>

ed \ g2 T 2% 0l dam 00
0 (1 0q; od
J ! pl
B0 50 <7 dd Bo) ~ P05 %)

which is the Lagrangian variable form of the static Eulerian
equilibrium equation (6). (See e.g., Refs. 1, 22, and 37 for
further details.) Because we are investigating equilibria that
only depend on the variable y and have magnetic fields of
the form B = B(y)X, we only consider the y-component of
(68), which is the Lagrangian variable form of the static
Eulerian equilibrium equation (58).

2. Lagrangian convection stability

The second variation of the energy about this equilib-
rium is the usual expression given in Ref. 29. For static equi-
libria, this is obtained by setting # = £ in (20), and we know
that the stability of such configurations is determined by this
second variation of the potential energy. We will manipulate
the energy expressions to facilitate comparison with results
obtained in Sec. III B. Cases with and without B = 0 are
considered.

Case B = 0:

By exploiting the equilibrium equation, we obtain

1 1
52W]a = EJd3x |:—8—p

Sonl 6V -er +2v -9

+(Vp-&)] +%\pw LE+V - (p8)](Vs- &)

In conventional “dW” stability analyses, one would consider
conditions for positivity of the above as a quadratic expres-
sion in terms of & However, for our present purposes, we
rewrite it in terms of

0pa ==V - (p) 0s1a=—Vs-¢, (69)
which with
19p _1opy (Vp-9) 2
2 s p(VP E)(Vs- &) = 005 |y (Vs &) (Js1a)",
yields

1 190p 20p
Wi == | &x |=Z=| (0p1,)* + === | 9p,0s1a
It 2J X |:pap S( pla) +,0 85 ’ﬂ P12 0512

1 ap (Vp ) 6) (5 13)2:| )

pOslp (Vs- &)

(70)

Now, using (64), we can rearrange this equation as

ap 2
<5pla - a ‘1755'13)

2252 o]

1 2
52W1a = —Jd3x C—A
2 p

Os



102112-8 Andreussi, Morrison, and Pegoraro

We will see that (71) is of the same form as that of (98)
of Sec. III B, obtained via the energy-Casimir functional, yet
here the perturbations dp and ds are both constrained to
depend on & according to (69).

Examination of (71) reveals that positivity of the second
term is sufficient for positivity of 6°Wi,, viz.

Vp-§<8_p
Vs-& " Oslp

(72)

Given that the equilibrium only depends on the variable y, in
which the systems are stratified, (72) gives the following suf-
ficient condition for stability

dp/dy _0Op
ds/dy < s p <0 (73)

If the equilibrium is stably stratified, i.e., dp/dy < 0, then
ds/dy must be positive, and we would have a threshold
involving the density and entropy scale lengths.

However, let us proceed further. Define

_Op| _dp/dy _0Op| _dp
Oslp ds/dy Oslp ds’

(74)

where in the second term of the second equality, we have
replaced the coordinate y by s, which is possible if ds/dy
does not vanish. Observe in the definition of A of (74), this
second term depends on the equilibrium profiles, while the
first term is of a thermodynamic nature. So far, the sufficient
condition for stability A > 0 does not account for the fact
that dp/dy and ds/dy are not independent but are related
through the equilibrium equation (57). To address this, we
first rewrite the expression for A using

d_0p| ds op

ds dp _ ,0p| ds ,dp
dy Oslpdy Op

=—ci—| — —, (75
sdy s pderCS dy 75

resulting in

Ldp/dy  1dp

= -Gt = 76
cZ ds/dy czds’ (76)

where use has been made of (63) and (64). Now inserting
(57) into (76) yields for the B =0 case, the following
condition:

1 pg
- 0
cZds/dy e

(77)

and because pg > 0, we obtain the compact sufficient condi-
tion for stability

ds
—>0. 78
dy (78)
We will see that an identical condition is obtained in the
Eulerian energy-Casimir context (see Eq. (101)).

Now, given that ds/dy > 0 we can use (75) to obtain a

condition on dp/dy

.%ap & o,
s Ipdy

dp
2 _
(/S dy + pg
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which implies

dy < — 2 <0. (79)
Upon defining the scale height L~ = p~!|dp/dy|, (79) is
seen to be equivalent to cf, > Lg. Thus the system is stable to
convection if the free fall kinetic energy is smaller than twice
the kinetic energy at the sound speed. Or, equivalently, if the
free fall speed through a distance L is smaller than v/2c;.

The above procedure leading to (78) and (79) was
designed for comparison with Sec. III B. However, the con-
ventional “OW” stability analysis proceeds with an extrem-
ization over ¢ that takes account of any possible stabilization
effect due to the first positive definite term of (71). To this
end we let

E(x) = (&), &), &))@ 2+ ce.,  (80)

and rewrite (71) as

1> pg® | dp\,. »
SWa==| ay|—[22+g¢=L )¢
la ZJO y[ <c2 +gdy 1

N

pg. |’
> ] 81)

Given any &,(y), one can choose &, and £. that makes the sec-
ond term vanish. Thus the smallest value of 6°W, is given by

1> (pg® | dp\,. .
W =—=| dy[Z2-+¢= , 82
| ZL y(é_g +gdy & (82)

Dy it +ixe, - 28
dy ! o2

N

+p cf

which yields (79) as a necessary and sufficient condition for
stability. Thus (79) is in fact a counterpart equivalent to
ds/dy > 0. Another equivalent condition exists in terms of
the temperature

dT  gT Op
— >, 83
dy = pc, T |, (83)

which follows in a manner similar to (79).
Lastly, for an ideal gas, (79) and (83) become,
respectively,

dp _ p%8 4 4T g
dy P dy ¢

Observe, (73) could be satisfied with ds/dy < 0 and
dp/dy > 0. But, the stability condition ds/dy > 0, which
came from (77), implies dp/dy < 0. Thus it is not possible
to have stability unless the fluid density is stably stratified.

Case B # 0:

The case with B # 0 has been studied extensively, e.g.,
in the early works on interchange instability of Refs. 45-51.
For this application, Eq. (20) can be written as follows:

= | [p v+ (v avp-9

|0B|* .
+?+J (Ex6B) —g(n-y)V-(p8)], (84
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where again all equilibrium quantities depend only on Yy,
which we use together with (80) to rewrite this as

2 _1 > BZ 2 2 2 éy
=3 | @5 2162 +16?) + y—f—lﬁg\

2
dc dp
2175y . _ “r 2
+pc; dy + ilE, g dy 1]
dé
—2pg &y <d—yy +ile, + ik@ﬂ ; (85)

where, following Ref. 49, the displacements ¢,, if¢,, and
ik, can be taken to be real-valued. By minimizing this func-
tional, the following necessary and sufficient condition for
the interchange stability of Tserkovnikov,*® can be obtained:

dp _ pg
dy 2 +c2

<0, (86)

where recall ¢2 = B /(4np).

In Ref. 49 Newcomb rearranges (85) and minimizes it in
the limit k — 0 by choosing i&, — g&,/(kc?) for arbitrary &,.
With this approach he obtains the more stringent stability
condition of (79), the condition for the case without B.
Newcomb’s singular approach allows displacements that
interchange plasma elements containing long segments along
the magnetic field lines, relieving local fluid pressures. In
Ref. 50, it is shown that this amounts to the plasma being
least stable against these long quasi-interchange displace-
ments because the restoring force due to the magnetic field
tension vanishes.

B. Eulerian convection
1. Eulerian convection equilibria

Case B = 0:

Using the Casimir invariants of (31) and (32), hydrody-
namic equilibria with translational symmetry are obtained as
extrema of the following energy-Casimir functional:

§=[dx %p|v|2 +pU(p,s) + p®@+ pS(s)—A(s)z -V x V] ,
(87)

where v, = v.(s). Variation of (87) will automatically yield
equations that are cases of (2)—(5) with B, = 0. Because
v,(s), we have v-Vs =0 and v- Vo, = 0. Variation with
respect to v yields

pv, =VAx1, (33)

while variation with respect to p and s, respectively, yield
1
5\v|2+c1>+pUp+U+$:o, (89)
pv,0. + pUs + pS' — A'2 -V x v =0. (90)

For our case of interest with v =0, we merely set
A = 0, whereupon the first variation
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5 = Jd3x [(pU, + U+ @+ 8)3p + p(U, + 8)3s], ©O1)

gives rise to
O+ pU,+U+S5=0, (92)
U+ 8 =0, (93)

where for recall for our analyses, we choose ® = gy.

Case B # 0:

For case with equilibrium magnetic field, we choose the
following special case for the Casimir of (33)

Cs = Jd3XpS(S, l//)v (94)

which with the Hamiltonian

V|

H:J { p|v|> + pU + = .

+pgy|, 95)

gives upon varying § = H + C;

oy

0,
Sv ==

0
i =—-AYy+pSy =0,

o
g—pU + pSs =0,

5~.
5—§=pUp+U+gy+S=0,

which imply
1
V(pU, +U) + ;v%p Yy — U, Vs = —g. (96)

Equation (96) gives for our case with stratification in y, the
equilibrium equation (58).

2. Eulerian convection stability

Now we examine (328' for our two cases and look for
conditions that make this quantity positive definite, condi-

tions that will be sufficient conditions for stability.
Case B = 0:
The second variation is

5 = Jd3x (pU,p +2U,)(5p)? + 2(pU, + U, + 8)3p 3s
+p(Uss + S8")(3s)7] - 97)

By exploiting the equilibrium equations, (97) can be rewrit-
ten as

o5 = [ p[@p) 2| spa+ d_pd_y@s)z}

as pdyds

(98)
where we used (62) and (64), and the derivative of the equi-
librium equation U + &’ = 0 with respect to y
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dpd
pay _

8"+ Uy + Uy, L= = 99
- Use - Usp o (99)

Next, we use

. 9p - op 2 (op 2
(dp) 26s ‘pépés- op s ‘pés 25 |y (6s)°,

(100)
obtaining
2 2
PF = Jd3x & [<5p —@‘ 5s>
P Os Ip
Op| (dp/dy Op 2
+8s p(ds/dy Os Ip (0s)7) (101)

an expression of the form of (71). Thus, as in Sec. III A 2,
stability is again determined by positivity of the quantity A
of (74) and all of the conditions of that section are repro-
duced as sufficient stability conditions.

In Eq. (101), unlike the case of (71), dp and Js are inde-
pendent so a sharper sufficient condition cannot be pursued
by relying on the positivity of the first term, even though in
the 52W1a formulation, this did not materialize. Also, the
approach here gives ds/dy > 0 as a sufficient condition for
stability (or equivalently (79)), while the 6°W), formulation
shows that this condition is both necessary and sufficient

Case B #£ 0:

Now consider the second variation of § = H + C; with
H given by (95) and C; given by (94) with

S, s) = K(¥) + L(s),

which is general enough to describe the equilibria of our
interest as given by (58). This leads to

5 = | ((00),,(00)" +20(60),, + Lop s
+0(Uss + Lys)(35)> 4 |VOW|* + 2K, 04 p
+pKyy ()7

Rewriting (102) in terms of equilibrium quantities and
manipulating then gives

(102)

Jp

L 65 Sy

A

2
’F = Jd3x [% ((3P)2 —l—%A(és)z +2

J? )
+p (KW - p262> (oY) ] )

where use has been made of the definition of A of (74), the
current density J, defined by

—J = VZ(/j = plcl//)

(103)

(104)

the thermodynamic expressions of (62) and the following,
which is a consequence of the equilibrium equation

d
U+ Ky = —U,, 2P

Sp%a (105)

Phys. Plasmas 23, 102112 (2016)
which implies

dp 1p}
Yds 2 p?

ps (dp | ps Ds
= B (SR B P A
P> (d.9+c§) p?

1 p?
Uss + ’Css - _2[)_32 =
c2p

(106)

In addition we have introduced the new variable 0P defined
by

5 o J
P = op + D365 - = oy (107)
CS CS
Next, we collect the terms with ds to obtain
2 31 spp 2, Ps J 717
p p ;A
J? szs 2
——— (0 . 108
If we introduce the variation
00 —(3s—i oY (109)
o AT
and we use the gradient of (104)
J
VJ = ;Vp — pKyy VY, (110)

which for equilibria that depend only on the y coordinate can
be written as

Jdp dJ d(J/p)
Ky =—"7—-7=— ) (111)
PRy ody Ay p dy
or
Jdp/ds dJ/ds
=— — 112
PR = ds ~ apjds’ (112)
then the last term of Eq. (108) can be rewritten as
JE TP d(J/p)  J* dp
o — — = — —. 113
Ko p2c2 P2 ctA dy + p>c2A ds (113)
Then, finally
2
55 = [ S0P+ 2 A0 + [Vouf
dijp) | P dp\ .
— — 114
+p< i +p2c§Ads (oy) (114)

From the energy expression of (114) we can immediately
read off the following sufficient conditions for stability:

0<A:—(dp+ps>,

115
ds ¢2 (115)
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a(J d J* dp/d
0< _dU/p)/dy p/y7 (116)
dy/dy  p*cAds/dy

where we recall the form of A of (115) which is equivalent
to that of (74).

In the case with B =0, we had the two free functions, p
and s and one stability inequality. Thus we were able to
obtain separate conditions on the equilibrium profiles of p
and s for stability. In the present case, we again have one
equilibrium equation, but now with three profiles p, s, and B
and two inequalities. Again we should expect to obtain inde-
pendent conditions on the profiles p,s, and B. However,
even the condition of (79), which has a clear physical mean-
ing, is not immediately implementable because c; depends
on y through both p and s. Similarly, the inequalities (115)
and (116) require the profiles for their determination. In
practice one may construct a family of equilibria with pro-
files that depend on one or more parameters and then seek
thresholds in parameter space.

Inequalities (115) and (116) can be written in various
ways. For example, using the equilibrium equation (61)

dp _ 2(dp _0p
dy *\dy O0Os

dS _ _ 2/
pd_y) gp— (B2 /(8n),  (117)

the inequality A > 0 can be rewritten as

_ ldp_ep B2
~2ds  ckds/dy ’

(118)
Consequently, if dp/dy is negative for stability, we must
have ds/dy > 0 and, conversely, we must have ds/dy < 0 if,
due to B decreasing sufficiently fast with height, we have
dp/dy > 0. This is effectively the threshold against the mag-
netized Rayleigh-Taylor instability. Thus, as for the case
with B = 0, dp/ds < 0 ensures stability. Also note, as in the
B =0 case, a critical point arises if for some y we have
dp/dy = 0 unless at the same point we also have ds/dy = 0,
in which case one then has to look deeper into the limit.

If dp/dy < 0 and ds/dy > 0, we obtain from (115) an
inequality for dp/dy analogous to the inequality (79), in par-
ticular, dp/dy must be negative because py/c? > 0; however,
this inequality is different from the “Tserkovnikov” inequal-
ity of (86). If dp/dy > 0 and ds/dy < 0, we obtain a reversed
inequality, i.e., dp/dy must be positive.

This implies that in the inequality (116), if A is positive,
the second term is always negative and thus for B >0 we
obtain the condition

d(J/p)/dy <0, or dJ/dy<(J/p)(dp/dy).

Consider the two cases of decreasing and increasing mag-
netic fields: for a magnetic field decreasing with height,
J = —dB/dy > 0, so

(119)

dInJ/dy < dlnp/dy, (120)

and if dp/dy < 0 we can use the inequality obtained before
for dp/dy and obtain an inequality that involves the second
derivative of the magnetic field and the density profile.
Similarly, if J = —dB/dy < 0
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dn|J|/dy > dlnp/dy, (121)

and if dp/dy > 0 we can use the reverse inequality obtained
before for dp/dy and again obtain an inequality that involves
the second derivative of the magnetic field and the density
profile. These cases above do not exhaust all possibilities. It
is perhaps best to consider families of equilibria and investi-
gate parameter dependencies as mentioned above.

C. Dynamically accessible convection
1. Dynamically accessible convection equilibria

In Sec. IC, we showed how the general dynamically
accessible variations of (44)—(47), when inserted into the first
variation of the Hamiltonian (48), give rise to the general
MHD equilibrium equations of (2)—(5). Thus, equilibria that
are solutions of (58), with or without the magnetic field, are
extremal points of this kind of variation, and we can proceed
to assess the stability by examination of the energy expres-
sion of (49).

2. Dynamically accessible convection stability

For static equilibria, the first term of (49) reduces to the
form of (52). As noted in Sec. IID, this term vanishes if
83 = g2 = g4, = 0. Thus, choosing g, proportional to &, the
condition for dynamically accessible stability in the case of
static equilibria is determined by §*W),, viz., the Lagrangian
energy expression. In both the cases with and without a mag-
netic field, this is the usual “0W” energy, for each case,
respectively, and thus dynamically accessible stability in
both cases is identical to that of the Lagrangian stability.

D. Convection comparisons

Results for the case with equilibria B =0 can be summa-
rized succinctly: the Lagrangian and dynamically accessible
approaches both give the simple necessary and sufficient
condition for stability, ds/dy >0, or equivalently the
inequality of (79) on dp/dy, while the Eulerian energy-
Casimir approach gives this same result, but only as a suffi-
cient condition for stability and only applicable to the case
with the imposed translational symmetry.

For case of equilibria B # 0, the situation is more com-
plex, although it again must be true, in light of the general
discussion of Sec. II D, that the Lagrangian and dynamically
accessible approaches must give the same necessary and suf-
ficient condition for stability, viz., that of (86). However, this
necessary and sufficient condition is much simpler than the
inequalities of (115) and (116) obtained by the energy-
Casimir method and, again, these inequalities are only appli-
cable to the case with the imposed translational symmetry
and only give sufficient conditions for stability. Moreover,
the energy-Casimir inequalities depend on an extra deriva-
tive with respect to y of at least one of the equilibrium pro-
files; e.g., (115) contains a derivative of the current J, which
can be eliminated in terms of two derivatives of the pressure
p, but cannot easily be eliminated entirely.

If one inserts the Lagrangian variations of (21)—(22),
adapted to the convection example, into 523 of (102), then
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dJ/dy is removed. In the context of our convection example,
the relevant connection is provided by oy, =¢-Vy
= @W, with prime denoting y-differentiation. Whence, the
line-bending term of (102) becomes

— (&Y + G = SR+ YR 288
(122)

Voy?

and one finds upon integrating the last term of (122) by parts,
a term proportional to J'. This term cancels the J term of
(51#)2 (the same cancellation was shown to occur in the con-
text of the magnetorotational instability in Ref. 52). As noted
in Sec. II (cf. Refs. 5 and 22) such a correspondence by con-
straining the Eulerian variations in general connects energy-
Casimir and Lagrangian stability.

IV. ROTATING PINCH

Now we investigate the stability of the azimuthally sym-
metric rotating pinch, again within the Lagrangian, Eulerian
energy-Casimir, and dynamically accessible frameworks.
This example is chosen to illustrate two features introduced
in Sec. II associated with the inclusion of an equilibrium
velocity field: the relabeling transformation that removes
time dependence from a Lagrangian state associated with a
stationary Eulerian equilibrium and the origin of the differ-
ence between Lagrangian and dynamically accessible stabil-
ity. As in Sec. III, we begin by discussing the plasma
equilibrium configurations of interest by solving directly the
Eulerian MHD equations (2)—(5) without referring specifi-
cally to any of the three frameworks.

We use cylindrical coordinates (r,¢,z) and consider
plasma equilibrium configurations where all equilibrium
quantities (including entropy) depend only on the radial
coordinate r

B =B.(r)z + By(r), (123)
V:vz(r)i—&-v(b(r)ab, (124)
p=p(r), s=s(r), (125)
By=¢ Vi xi= —d‘flg") (126)

Equation (125) implies that p = p,(r). From Egs. (2)—(5), we
obtain the generalized Grad-Shafranov equation for the flux
function v (r)

1d (1-M ) 1d ( B2> <M2 )
rdr ( 47 "By _WI + +di By %
(127)

where

1/2
Anp(r)v? (r
i = 2030
B3(r)
is the poloidal Alfvén Mach number. Note that v,(r) does not
appear in (127) and in the following it will be set equal to
Zero.
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In (127), we need to assign three free functions. We will
assign B.(r),Bg(r), and vy (r) and treat (127) as an equation
for p(r) that can be written as

1 d( +B§>+d <B¢>+1—MZB¢
By dr P 8n dr 4n r

For the sake of simplicity, we will examine the case of an
isothermal plasma configuration as it makes the relationship
between p and p linear, and also makes M? linear in p. A
further simplification is obtained by taking the current den-
sity J, to be uniform. By defining a dimensionless radial vari-
able r in terms of a characteristic length ry, the latter
assumption leads to By = Bor and (128) becomes

< (ﬁ %) = —[1-p)wir?/2).

where we have set

=0. (128

(129)

p(r) = cip(r) = p(r) By/ (4m),
B(r) = B./By, and

M2 (r) = (4mp/BG) [0/ (re,)*] = p(r) w(r),
with B being the dimensionless magnetic field, p the
dimensionless pressure, w(r) = v,/ (rc,) the dimensionless
rotation rate, and ¢, the sound velocity in the isothermal
case.

For a configuration where B, is uniform and the plasma
rotation is rigid with rotation frequency Q, Eq. (129) takes
the elementary form

POy,

(130)

where w = Qr(/c,. While a uniform B, field does not alter
these equilibrium configurations, it will be shown to affect
their stability. Assuming w?/2 < 1, we obtain

1= [1- (=5 (7))

where p(0) =1, p(F) =0 for 7> = —(2/w?)In(1 — w?/2).
Equation (131) describes a one-parameter family of equilib-
ria. In the absence of rotation, this configuration reduces to
the standard parabolic pinch with 7 = 1 and p(r) = 1 — 12,
while for w? — 2 we have 7 = oo and p(r) = 1.

(131)

A. Lagrangian pinch
1. Lagrangian pinch equilibria

For the rotating pinch the appropriate Hamiltonian is
that of (7) with @ = 0 and, as before, the pinch equilibrium
equations should follow from Eq. (9) adapted to the pinch
geometry. In particular, with the cylindrical coordinate
system with indices i,j€ {r,¢,z},a= (a",a® @), q
= (¢',4%, "), with |z|* = ¢¥(q) 7 7; = n'm;, and
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1 0 0
gi@=10 (¢) 0 (132)
0 0 1
From (132) we obtain
n=¢"n=m,
n? = gy =/ (q)’,

TCZ = gzznz = nz;

and similarly B" = B,, B® = B¢/(q")2, and B = B..

As shown in Appendix A, the equations of motion in
terms of the Lagrangian variables (¢",¢?,¢?) follow from
Eq. (9), and are

g =gl
Po

Ty 9 | /po\?
apo  Of KJ) g

, BBy .0 <Bi) 0 (B2>
% v am T a0 \an) " ag \&a) (139

Transforming (133) and (134) to Eulerian variables, we first
obtain the intermediate form

and (133)

poqr =g"'n =mn,

pod? = ¢y = my/1? (135)
quZ = gzznz =T
and
o B> B-VB
ﬁ,.3—¢Jv(p+—>.f+.7 F, (136)
r2po 8n 4n
. B\ - B-VB -
n¢:—rjv<p+§) o +rJ py - ¢, (137)
B? B-VB
ﬁz——jv<p+—)~i+ VB . (138)
8 4

from which, using
. D
T, = pOEUI‘((L I)7
, D,
Ty = pOD_t (q U¢(q7 t))7
. D
n; = P()EU:((L t)a
with D/Dt = 0, + ¢' 3/0q' and q.(a, ) = v(x, ), we recover

the cylindrical components of the Eulerian equation of
motion

v B2> B-VB
P(E+V~VV)V([7+§ + P
The rotating pinch equilibrium configuration of this sec-

tion corresponds to

(139)
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q'=¢=0, ¢*=Q,  (140)
with po(b") = p(r)/c? where p(r) is given by (131). Because
q? = Qt + a®, we see explicitly that stationary Eulerian equi-
libria correspond to time-dependent Lagrangian trajectories.

Next, we consider the relabeling transformation intro-
duced in Ref. 5 and described in Sec. II

a=A(b,1) < b=B(a,r),

where a = (b, 7) is given by

d=b, a®=b"—Qb), a=b -V (141)
and b = B(a, ) is given by
b =d, b*=a®+Qd), V¥=d+V(d) (142
with 3 := [0a’ /Ob/| = 1, with
V(b,7) :=B o B =B(Ab,1),1), (143)
given by
Vi=0, V*=Q(b"), VI=V(). (144)

By inserting (144) into the transformed Hamiltonian of
(12) (see Appendix B) we obtain the “time-relabeled” equa-
tions of motion corresponding to (133) and (134) (see (B3)
and (B4)). Then in the relabeled variables by explicitly set-
ting /0t = 0, Q' = b' and by assigning the functions B}, and
poU as functions of b’ consistently with the choices made in
Sec. 1V, these equations yield the equilibrium equations in
the relabeled form of (B6)—(B9).

Thus, we have shown that the equilibrium equation of
(129) describes the reference state (Q,,Il.) that follows
from:

5—H =0 and 5—H =0.

ST 50 (145)

Given that our equilibrium corresponds to the vanishing of
the first variation of the Hamiltonian H of (12), we can
expand as in (17) to address stability via the energy principle
described in Sec. IV A 2.

2. Lagrangian pinch stability

Now, to address the stability, we expand H by inserting
(17) (see also Eq. (27) of Ref. 5), where the reference state is
our pinch equilibrium of Sec. IV A 1. This leads to the sec-
ond variation of the Hamiltonian H written in terms of the
canonically conjugate variables (i, 7,) as given by (18) with
52W1a[n] defined by (19) with (20). Due to the arbitrariness
of m,, we can make the first term of (18) vanish, so that a suf-
ficient stability condition for the configuration (14) is given
by &*Wi[n] > 0. We will proceed further by minimizing
8*W), for our pinch example.

In order to be able to compare the Lagrangian stability
conditions with those obtained in the Energy-Casimir
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framework, we restrict our analysis to perturbations # that do
not depend on z.

Working out terms of (19) with (20) for our example,
we obtain in cylindrical curvilinear coordinates

p(Ve-Vvy) - (n-Vn)

—(pug /1) (0,00, +(ng /1) 0n, — n3 /1], (146)

—p Vg - VP = —p(ve/r)* [(Opn, — ny)’
+@gny + )" + (007, (147)
pOp/op(V -n)* = p (2 [r1)[0:(rn,) + Ogny)’,  (148)

where in (148), the isothermal equation of state pdp/dp
= p = pc? has been used

(n Op)V - = [(n./7) O] [0:(rn,) + Ogny),  (149)
IV x (i x B)|*/(4n) = (B3 /4m) (0 (rn,)” + (Ogn,)?]
+(BG/4m) [On. — (B/r)
< (Op(rm,) + 0gny) I, (150)
J x U oB = _(B(2)/27T) [’7;<ar(”’1r) - ’7¢8¢’7;]7 (151)

where the restriction that B = B./By and J. be independent
of r has been used in accordance with the derivation in Sec.
IV. In the above, we used the notation 9, := 9/dr, etc.,
which we use throughout the present section.

In the following, we will refer explicitly to the rigid
rotation equilibrium given by (131) and adopt the dimension-
less variables used there. Also, we suppose 1§ ~ exp(imd)
and consider azimuthally symmetric (m = 0) and azimuthally
asymmetric (m # 0) perturbations separately.

Case m=0:

If 0y =0 the functional 8*Wy, depends only on the
radial component 7, and its radial derivative

5%%JMZRJW”PW%P% ()] + (/) 00, )

+(n,/7) (0:D)[0,(rm, )] + [0: (rm, )P[1 + (B/r)]
~21,(0:(rn,))) (152)

then using the equilibrium (127), this reduces to

Wl = [ (~an, () +((p +72+ 81710, ).
(153)

The first term of (153) is a divergence and vanishes by inte-
gration with the proper boundary conditions, while the sec-
ond term is positive definite. Thus we conclude that our
pinch equilibrium is stable to azimuthally symmetric
perturbations.

Case m # 0:

In this case, besides 1, and n,, the functional Wi,
depends also on 7. if B # 0. We use the orthogonality of the
different m-components and consider the mth component.
The resulting expressions, as obtained from (146)—(151), are
given in Appendix C.
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Casp B.=0:

If B =0, the displacement 7, along the symmetry axis
of the perturbation decouples, and minimization with respect
to 1, gives 1, = 0, provided

m*(1 —w?p) >0 —w? < 1. (154)
Combining (C1)—(C5) and using (130), we can write the inte-
grand of the functional 6°W}, in the following matrix form:

Mg
(s mys O (rm))] - W | e |, (155)
a"(rnr)
where W is the 3 x 3 matrix given by
m*pc/rr impw?  —imp/r?
W= | —impw? m’o 0 ,
imp /r? 0 1+p/r?
where for convenience we have defined
w:=1—-w?p and ¢c:=1—w’? (156)

Then, to ascertain stability, we use Sylvester’s criterion on
the matrix Y. This criterion states that a necessary and suf-
ficient criterion for the positive definiteness of a Hermitian
matrix is that the leading principal minors be positive. The
first principal minor of W is seen to be positive if

w? < 2(1 —exp(—1/2)),

1—w?/* >0, ie., (157)

while the second principal minor of W is positive if for
m =1 (which is the worst case)

p(1—w?r?)(1 = pw?) — rp*w* > 0, (158)
which implies
WSS < (159)

and coincides with the condition given by (157). Finally, the
determinant of W is positive for the worst case m =1 if

(” + A)(l—W')( — pw?)
—p(1 —pw?) —pr*w* (P +p) >0, (160)
which implies
1
2
<m, (161)

and yields the stronger condition w? < 1/2.

Alternatively we can first minimize d*W,, with respect
to 77, in order to obtain a quadratic form involving 7, and
0,(rn,) only, from which we can derive an Euler-Lagrange
equation. Now observe 7, enters 0*W), through a combina-
tion of terms that we rewrite as
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—WPIm%—m,\ +Z 2 |’”77¢ i0, (rn,)|*

+w?p |, |* — r_2 |6,»(r17,<)| . (162)
In the absence of rotation, minimization with respect to 1,
would lead to the incompressibility condition. Assuming
w?r? <1, we introduce the new variable 7, =14l
—w?r?| 12 and rewrite the expression (162) as

f—z It + icm, — ip0, (rn, ) + R, (163)

2220 =1/(1 —w*?)'/?, and

where o = w?r? /(1 —w
R=—5 (o, P+ 810, (rn) P =B (m; 0, () 1,0 (1) )

Then minimization with respect to 174) gives the following
reduced expression for W,

~ 4.0
W, = TCJI‘dI { {m @ _pwgr } n,|?
5200
p wr >
(-5 aen

)
+f—2% (105 () + .0 (e } (164)

which we can rewrite as

Wi, = nerr [( » W >|8 (rnr)|
l"
+(m2w —pwhr?/c— 1‘8,.(13w2/g)) |17,.|2} . (165)

where the contribution of the last term of R has been inte-
grated by parts.

It can be directly verified numerically that for |m| = 1,
the coefficient of |,|* is positive for w? < 0.62. Since in this
interval also, the coefficient of |9,(rn,)|* is positive, w?
=0.62 provides a less restrictive sufficient stability condition
that falls between the values given by (157) and (161). We
note that an even less restrictive condition could be identified
by solving the Euler-Lagrange equation obtained via varia-
tion of 6°W), of (165) subject to the constraint of [ rar |rr/r|2.
Such a procedure leads to an eigenvalue equation that can be
searched for the lowest eigenvalue.

Case B, # 0:

For B # 0, the component 7, is coupled to the other
components of the displacement, and instead of (155) we
obtain

o (rny) mi]-w-

(g

where the matrix WV is now the 4 x 4 matrix
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m>(I1/r2 — pw?)  impw?  —imI1/r* —m*B/r
—impw? m’w@ 0 0
imI1/r? 0 1+ 11/r2 —imB/r
—m*Br 0 imB [r m*w

A 2~ A 52 .
where we recall @ = 1 — pw? and II = p + B". Proceeding
as above using Sylvester’s criterion now leads to m=1 to
the four conditions

0<p(l —w??) +B", (167)

2

5+ B
0<—7F +2 w2 (168)

13([3 B +r2)

N +BZ

0< P w2 (169)
ﬁ[2(]’3 +B ) —|—r2}

0<1—w2(2+3p+B°) +pw2 +2(p + B°)]. (170)

Note that the first two conditions give threshold values that
increase with B while the third gives w? < 1 /2 independent
of B, i.e., the effect of B. would appear to be stabilizing or
neutral if we were to neglect the coupling to 7. that appears
instead in the fourth condition, where the effect of B, is
destabilizing (for w? < 1/2).

The inequality (170) can be better cast in the form

w2h (1 —2wp) < (1 —w?p)[1 —w?( +2p)],  (171)
which, since 1 — 2w2ﬁ is positive for w? <1 /2 and r <,
can be used to compute the maximum Value of B that yields
a sufﬁc1ent stability condmon when w? < 1/2. This yields
B*W? < 1forw? — Oand B~ < 1/3 forw? — 1/2°.

Alternatively we can perform separate minimizations
with respect to 77, and 14 by defining the new variables

N = n.l1 —wp]'?,

o=y (L= w2+ B /(1 —wp)]]" /2.

Provided w?p < 1 and

w2 4+ 5/ (1 — wp)] < 1,

. _ 52 e .

ie., w? [r2 +B ] < 1, minimization with respect to these var-
iables gives after integration by parts the following reduced
expression:

2
_ A B2 5 52 2
(SZWI —nerr 1+p+B — p(l—B i /w)
a= 2 -
! 1*2[1—w2(r2+B2/w)}
pwhr?

X |8,.(rn,,)|2 + [ Mo — >
1 —wz{r2 +B /w}

ﬁwz{l —Ezwz/w}

nJ*| - (172)

—r0,

1 —w? {rz —HE?z/w}
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Note that the minimization with respect to 77, can be shown

to have introduced a negative, i.e., destabilizing, contribution

to *Wp,. It can be directly verified numerically that for

lm| = 1, the coefficient of |5, |*
) 52 .

w?<0.62 if B” > 0; e.g., for B~ = 1, the coefficient of \11,|2

is positive for w?=<0.46 (this value is essentially in agree-

ment with the result that would be obtained from
(167)—(170). Since in this latter interval also, the coefficient

of |8, (rn,)|* is positive, w?=<0.46 provides a sufficient stabil-

is no longer positive for

ity condition for BZ = 1.Asforthe B =0 case, a less restric-
tive condition could be identified by solving the Euler-
Lagrange equation derived by variation with the normaliza-

tion constraint [ rdr [rn, @

B. Eulerian pinch
1. Eulerian pinch equilibria

In Ref. 4, which was reviewed in Sec. II B, both the
equilibrium and the perturbations were assumed to be heli-
cally symmetric. In the present section, we have assumed the
equilibrium to be both translationally symmetric along z and
azimuthally symmetric along ¢, while we considered pertur-
bations that have only translational symmetry along z.
Then the full configuration is symmetric under translations
along z.

Now we consider the first variation of the energy-
Casimir functional §[Z] = Hrg[Z] 4+ C[Z] (see Sec. IIB
and Eq. (1) of Ref. 6) with a translational and rotational sym-
metry, which leads to the equilibrium equation

1d 1_4nf2 dy
4nr dr p dl

= pTS, - pjl - BZHI - PUzg, -

(U¢B¢ + UZBZ)}—/,
(173)

where now a prime denotes differentiation with respect to the
flux function y, and specific equilibrium solutions are defined
by the choice of the Casimir functions F, ‘H, J, G, and S as
functions of . Using the definition of these Casimirs (see
Sec. II B) in terms of the plasma variables, this choice allows
us to bring (173) into the form of (127) and to assign the
dependence on y of the free functions in this equation.

For the isothermal case, the internal energy is U
= c?In(p/p,) to within a constant and the relevant combina-
tion of Casimirs is

FBy = pvg, (174)
FB. + pG = pu., (175)
B.
H+ Fv, = —, (176)
4n
T +0:G =17 /2+ v} /2 + c;In(p/py). 177

The rigid rotating pinch solution that we have chosen,
has B, constant and is invariant along z, as given by (130), is
obtained by choosing
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F()) = 20 [1 - <1 - W—2> exp(—wzfp)} (178)
27Qrg 2 ’

G(h) = —QroB, (179)

H(P) = (180)

JI(W) = —cf[wzfp —In[1—(1 —w2/2) exp(—w2y)]], (181)

from which by solving the generalized Grad-Shafranov equa-

tion, we obtain lp =—r 2/2 (or By = Byr) and where in accor-

dance with (130), the dimensionless variables / = //(roBo),
B and w are used and r is the scaled radius.

2. Eulerian pinch stability

Proceeding as described in Sec. II B, a sufficient stability
condition is obtained by considering the second variation of
&1Z], viz., Eq. (39).

Starting from (39)—(42), we restrict the coefficients by,
b,, and b3 to depend only on r, because our pinch equilib-
rium configuration is both azimuthally and translationally
symmetric. For b, defined by (41), we obtain

1d8M2> a<B§M22>12

and, using

df 8f of
ar o oY

of dy,
o, dr’

(183)

and p = p(Y, ¥,), as implicitly given by the Bernoulli func-

tional 7, b, becomes
o (M? 1 9p dy,
=755 (H [1 WY YR B¢D dr

By 0 <M2> & ( B?)
_Ze = - = . 184
r oy o* P8 (159
Finally, using the equilibrium of (128), we obtain
11-M> 14 dB,
by = —t—— | bir——|. 185
T2 an iB¢dr< v dr) (183)

Before proceeding, let us consider some special limits.
If the plasma is static, i.e., vy =0, we obtain b; = 1/4m,

b3 = 0, and
b*f1 |1 d( +BZZ> (186)
2T By dr |Bgdr Prga) |
If B, =0, we obtain
1 1 2
by — M_z, (187)
dn 4Am|_ M
1 2
by = LMM (188)
4n1 — M
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where M* = vé /c? is the gas dynamic Mach number, and
1 d|M? 1 dB
PO o P
rBydr | 4n 1— M~ dr
1 d/1dp
B(/) dr B¢ dr '

Now we return to our analysis of 8’ of (39) for the
pinch case at hand. For M? < 1, a sufficient stability condi-
tion is provided by by > 0, by + b3 > 0 and b, > 0. Since
4n(by +b3) =1 — M*(r) = 1 —w?p, we find that b; + b;

> 0 if w < 1 independent of B..
Using (130) in Egs. (40), (41), and (42) we find

(189)

wip (1 — wzﬁ)r2

4ntby = = (190)
1 —w2p)(1 — w22) — w2B
( p
and thus
4nb, = —4nbs + 1 — M?
4n 2
=(1—wp)|1— Lp |-
(1 —w2p) (1 —w2r2) —w2B
(191)

Note that 9b/0B° <0 and by >0 so 1—w(p+r
+B”) > 0, which reduces (in agreement with the conditions
listed above (172)) to

w (72 +32) <1.
From 4nr?b, = —4nbsy + 4nrdb, /dr, we obtain

wip (1—wp)
(1—w2p)(1—w2r2) —W2§2

47'Eb2 = —

w*p (1 — wzﬁ)r2

d
25 1w+

1. 192
dr? (l—wzﬁ)(l—wzrz)—sz2

Note that the value of b, decreases with increasing B and
that b, > 0 implies

, 3+8° -1 148’ 189"

wo < )
4+B

, (193)

e, w?<1/2— (3/8)1§2 for small Bz, and w? < 1/1.‘?2 for
large B™. To obtain (193), we have exploited the fact that b,
starts to become negative at 7> = 0.

For B™ = 1, we find w? <0.31, which is more restric-
tive than the condition w? < 0.46 found in the Lagrangian
framework below (172). This result is consistent with the
expectation (see Ref. 5) that energy-Casimir stability con-
ditions are more restrictive than the Lagrangian stability
conditions.

The Euler-Lagrange equation associated with the

extrema of (39) subject to the normalization constraint of
constant [ d®x (3y)” is

V- bil+by(I—eyey)] VoY — (by— )¢ =0, (194)
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where / is the Lagrange multiplier, / is the identity tensor,
and (I —eyey) is the projector on the tangent plane to the
W-surfaces. Writing oy as

oY = oY (r) exp(ime),

with m the azimuthal wave number, (194) becomes

(195)

0 r 2 N
%% {"bldéjr( )] - {’1”_2 (b1 + b3) + (b — 2) |80 (r) = 0.
(196)

Note that b3 becomes irrelevant for stability in the case of
azimuthally symmetric perturbations.

In terms of w, p(r) and B, and our shorthand @ = 1
—w?p, (196) takes the form

1d w*p 2 d(SlAﬁ
—— |ro|l— =
rdr @ (1 —w2r2) —w2B~) dr

wip @

@(1 — w2r2) — w2B

2 4n 2

d w*p wr? .
+2— [ w?p + — || oy =0. (197)
dr? ( w(l —w2r?) — w2B2>]

Searching for the lowest eigenvalue of the Lagrange multi-
plier / as a function of w in the range

348~ (1 148>+ 89"

4+ B

2

<w' < (198)

P2+ B
would yield a more accurate sufficient stability condition
that could be compared with the one obtained by solving the
constrained Euler-Lagrange equation derived from the func-
tional (172). We leave it here and continue on to discuss the
dynamically accessible stability.

C. Dynamically accessible pinch
1. Dynamically accessible pinch equilibria

As discussed in Sec. II C, with the dynamically accessi-
ble approach one considers the constrained variations of Egs.
(44)—(47). Upon evaluating these expressions on the pinch
equilibrium of this section, expressed by (123)—(126), it is
straightforward to show that dHy, of (48) vanishes. For
example, vanishing of the coefficients of g, and g3 give
immediately that p(r)s(r)ve(r) and rp(r)vg(r) are constant.
Evaluation of the coefficients of g, and g, are more tedious,
but must vanish since we have shown in general that (48)
gives all equilibria.

2. Dynamically accessible pinch stability

Given that 0Hg, = 0, we can proceed to examine 5*Hg,
of (49) with the variations of (44)—(47) evaluated on our
rotating pinch equilibrium. Rather than starting from scratch,
we will appeal to our results already obtained in Ref. 5.

For a translationally symmetric equilibrium along the
z-direction, the stability condition derived from dynamically
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accessible variations may or may not coincide with that
obtained in terms of the Lagrangian variations.””> Starting
from Eq. (103) of Ref. 5 with h = e, k=1, the crucial quan-
tity for translationally symmetric equilibria is

- l<2B.<v~Vgl>>], (199)
(pvy - Vgi2)

where () = fwdzx/ V| denotes the surface integral over a
flux surface. If the expression of (199) vanishes, the two
kinds of stability coincide.

The first stabilizing term in 52Hda of 49, which can be
eliminated in 0*H,, by minimizing over Lagrangian varia-
tions, here becomes

A= Jd3xp|X|2, (200)
where
X:=Vg; —&-%ng—l—v x (V x g)
1
+2(v-V)g, +;B x (V X g4), (201)
and this term is minimum for
Xmin = (E1/p) B + Bz e, (202)
where Z = AT i.e.
= B| By [T
) (B.) 1 I
For our rotating pinch example, we obtain
Bo(r? + b? b
A = 4| Bl +89)/p 7 (204)
b 1/By

where =/ is the height of the plasma column in the =*:z-
directions; ideally 7 — oo but it cancels and does not appear
in the result. Finally

r— [<2B'(V'Vg1)>} _ [’”V30<81r>].

(pv. - Vgiz) 0 (209

It can be noted on general grounds that (g,) vanishes
identically for perturbations that average to zero after inte-
gration over the azimuthal angle (i.e., that do not contain an
m = (0 component). Since in Sec. IV A 2, we have shown that
for our rotating pinch example azimuthally symmetric per-
turbations of our rotating pinch equilibrium are stable to
Lagrangian perturbations, thus the restriction to dynamically
accessible perturbations does not modify the stability condi-
tion. However, for general equilibria this is not true.

D. Pinch comparisons

Let us now summarize and compare our three stability
approaches for the rotating pinch equilibria. In order to
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compare the Lagrangian and the dynamically accessible sta-
bility conditions with those obtained in the energy-Casimir
framework, it is necessary to restrict our analysis to perturba-
tions i that do not depend on z. This excludes “sausage” or
kink type instabilities. The results of the stability analysis for
such perturbations can be expressed as stability bounds on
the normalized rotation frequency w. These bounds are mod-
ified by the presence of an equilibrium magnetic field along
the symmetry direction, B,, that couples the component 7, to
the other components of the displacement leading in general
to stricter bounds.

For the equilibrium under examination, the Lagrangian
and the dynamically accessible approaches lead to equivalent
conditions. Although the constraints obeyed by the dynami-
cally accessible perturbations in the presence of flows lead to
an additional stabilizing term that cannot be made to vanish
for azimuthally symmetric perturbations, this term does not
modify the stability analysis since azimuthally symmetric
perturbations are found to be stable even within the
Lagrangian framework. For more general equilibria than the
ones considered here, this need not be the case.

The minimization of *Wj, of (19) for our pinch case
reduced to the study of the 3 x 3 matrix of (155) (the 4 x 4
matrix for B, # 0 of (166)) for |m| = 1 perturbations. Two
different methods can be used: a necessary and sufficient
condition for the positivity of this matrix is provided by the
Sylvester criterion which yields w? < 1/2 for B.=0 and
w?B? < 1 for B, #0 and w? — 0. A partial minimization
procedure with respect to 1, (to 1. and 14 for B, # 0) leads
to less restrictive conditions: w?*<0.62 for B.=0 and w?
<0.46 choosing, e.g., B> = 1.

Extremization of the energy-Casimir functional over all
variables except oy leads to sufficient stability bounds on w”
that, similar to the Lagrangian case, become stricter as 32
increases. As predicted in Ref. 5 and recalled in Sec. II, these
bounds are in general more restrictive than those found within
the Lagrangian framework, as shown, for e.g., by considering
again B> = 1, in which case we find w?=<0.31. Sharper stabil-
ity conditions could be obtained by solving the Euler-Lagrange
equation associated with this reduced energy-Casimir func-
tional subject to a normalization constraint on o).

V. CONCLUSIONS

To summarize, we have investigated the MHD stability
in the Lagrangian, Eulerian, and dynamically accessible
approaches. In Sec. II, we reviewed the general properties, in
particular, the time-dependent relabeling idea introduced in
Ref. 5 that gives Eulerian stationary equilibria as a static
state in terms of a relabeled Lagrangian variable. New details
on the general comparison of the three approaches were
given in Sec. II D. Then we proceeded to our two examples,
the convection problem of Sec. III and the rotating pinch of
Sec. IV, with comparison of the stability results for the three
methods given in Secs. IV D and III D, respectively. Of note,
is the explicit incorporation of the time-dependent relabeling
for the rotating pinch, which to our knowledge is the first
time this has been done.
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As noted previously, the methods described here for the
three approaches are of general utility—they apply to all
important plasma models, kinetic as well as fluid, when dis-
sipation is neglected. In fact, some time ago in Refs. 27 and
43, the approaches were compared for the Vlasov and
guiding-center kinetic equations (see also Refs. 54-57),
including a dynamically accessibly calculation in this kinetic
context akin to the one done here and in Refs. 5 and 53 for
MHD. Given the large amount of recent progress on
extended magnetofluid models,*"*">~'7 hybrid kinetic-fluid
models,'®' and gyrokinetics?>*' a great many stability cal-
culations like the ones of this paper are now possible. For
example, the techniques that have been used in the context
of Hamiltonian reconnection®®®" can be further adapted to
explore this effect in more general models.
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APPENDIX A: LAGRANGIAN EQUATIONS OF MOTION
AND ROTATING PINCH EQUILIBRIA

In order to obtain the MHD equations of motion from
the Hamiltonian of (7), as described in Sec. IT A, we split H
into two terms H = Hp + Hg where Hp is the sum of the
fluid kinetic and internal energies, and Hp is the magnetic
field energy given by

HB = Jd3a

The functional derivative of H is given by (see Ref. 22 for
details)

0q; Oq' BYBf
Odl Oa* 81T

(AD)

OHp  m, my, Og™ 1o} 0o 2 oJ
— = —+— | (= — . A2
3¢ 2py dq ' dan l(J) " O (A2
Using
8‘7 _oAm _ . mnl 1 aq] 8qk
oy~ = 300 oal (a3)
and
o0AT 0 o 1 0q 0¢* _
9~ 0 N 200 0 (A
we can rewrite Eq. (A2) as
OHp  m, m, 0g"™ 0 Po 2
— = —+A"— | [ = . A
oq’ 2py Oq A oam [(J) U (A9)

Similarly for (A1) we obtain
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8im W 47Tj

SHp _ Ogindq' Oq" BYBY 0
d¢  Oq Odl Oa* 81T  Odl

aq" 363'6>

d dq' dq™ BLBY 0T
— — . A6
+8a’ (glmaafaak8nj2aq’,t ) (A6)
and the Lagrangian equations of motion are given by
H OH H
e —SH__ .F—é—%”, (A7)
oq oqt  0q
with (A2) and (A6), and
A OH é LT
G=—5-=—=g'2 (A8)

_5_7fi_Po_ Po

Note that the first terms of (A2) and (A6) give the effect of
non-Cartesian coordinates.

To obtain from (A7) and (A8) the Eulerian form of the
equations of motion it is convenient to recall that the cofac-
tor matrix A} satisfies the identity

:aqk ;
dal "k

0T
and consequently

o da' 0 B Al 8
dg¢  Ogkdai T dal’
where 9/9g* becomes V in the Eulerian description. Using

p= szp, the second term of (A5) becomes the pressure
force, and using the flux conservation expression

. Oq' BY
i azk70’ (A9)
the last two terms of (A6) become
8 (B B Bz)
—-JB — | — — = Al
J oq/ <4n> Jr"7(’“)61’ <8n ’ (A10)

where we used the divergence equation 836 /0d = 0.

To facilitate our calculation of the rotating pinch equi-
librium (cf. Appendix B), consider the cylindrical pinch
geometry where the metric is given by (132). Evidently

agﬂﬂl N . 2
—— =0 0 —— All
aql oY Vi (qr)} ) ( )
and consequently
n‘tm 8 o a ¢
ﬂg_ = _5; w’ (A12)
2py Oq’ q"Po
and the first term of Eq. (A6) is
(200 09" 00" BBy _ 5 TB°By s

g 0dl Od* 4T 'q 4n

Expressions (A12) and (A13) are of use for our equilibrium
calculation.
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APPENDIX B: RELABELING TRANSFORMATION FOR
THE PINCH

The canonical transformation induced by the time-
dependent relabeling is generated by the functional

Flq, 11,7 = Jd3ajd3b q-T6(a—A(b,7)),

and yields (see Eq. (9) of Ref. 5) the new Hamiltonian of
(11) according to

OF
o’
= b"Q(b") for the relabeling defined

H[Q,II| = H +

with V(b, 1) — V?(b,1)
by Eq. (141).

With an integration by parts involving the time deriva-
tives of the delta functions, we obtain

oF

1P AN\ ¢4
o A)S(a& — W)

Jd3b J da’da®da’d(a” — W )é(a? —
0
a (q H) + 0,

.0
+OU %(q.n)},

. 0

where 0, denotes time derivative at a constant label b. Using
Q(B(a,r),t) = q(a,r), the first term in the bracket x[ |
above becomes

L0 00 0%
O (q-T) = T2 =25
ey 007 0%
R T VL T
(B1)

Similar expressions follow for the other two terms.
Collecting all the terms proportional to IT,, we obtain

OB’ OB’ 0B’
r 9P D@ —
oA o + OA a¢+6,ll o IT, ab,Q
— 1, B —Q , (B2)

ob

where we used the identity

i 0% 0B 0B

. . p
B + 8 — oA + 8¢8f91 +8 O = 0.
Finally, employing (13)
=g v =%’ v =%
we obtain OF /0t = — [d®b [(V - V,Q),IL].

With this additional term in the Hamiltonian (12), (133)
and (134) become
oH T, 90

P = — ol 1 _ B
an 51—11 8 'pvo v 8bk’ ( 3)
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and

~ o~ ~¢ ~
. J BgB® i 0 (B,»)
_5er B o5 30

~2
-0 (B d 4
—]8—Qi (8—n> o (VAIT,). (B4)

By assuming

~r

BO(bat) :Oa BNg(b»t) :07

and
~¢ ~ »
By (b, 1) = 3B (A(b, 1)) = Bob',

relabeled equilibria are obtained by setting 9,0’ = 0, 9,I1;
=0, and Q' = b’ in Egs. (B3) and (B4), which yields
I, =p,V", Ty= 1) pV? TL =75V, (B5)

and

n'n, 9 (ﬁéU)
= p

_ByByy D (BOBM)

b, Ob Amb” Ob \ 8m

- % (v1,.), (B6)
0=— a%ﬁ (ﬁgUp) S5 (vknd)) (B7)
0= f% (ﬁgUp) 8‘; (VMIL), (BS)

where we used the fact that J = 1.

If we consider only equilibria with both axial and trans-
lational symmetries, i.e., J/ Ob® =0 and 0/0b*, then by
substituting (B5) into (B7) and (BS8), we obtain

0 (II,11, o (IL.II,
— ) = — = B
b’< 70 ) 0 and b"( 70 ) 0, (B9)

which have the trivial solution I, = 0. If we assume a uni-
form temperature T and an initial densny field p, = po(0"),
such that the pressure p(po) = poU, (To, o) is the one
given in (131), Eq. (B6) can be solved for Il and,
consequently, written in terms of the relabeling velocity
V® =T1,/(())*p,) in agreement with Sec. IV.

APPENDIX C: PINCH DETAILS

Here we record some formulas needed for the stability
development of Sec. IVA2. We use * to denote the com-
plex conjugate and c.c. to denote the complex conjugate of
the preceding term. From Egs. (146)—(151) we obtain for
the mth component of these equations, the following five
terms:
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pl(ve - VVg) - (n- V) = (v - V)],
— —w’p [ () O, + c.c)/2 — i3m/ (nyn, —c.c.)/2

+m(Ingl* + n.” + n.1)], (C1)
IV )21 = B0, (rm, )P + mP |y
—im[y 0 (rn,) — c.c]], (C2)

[(1:0:p) (V- m)]yy = [0 /1) (8:P) [0, (rm, ) + immg] +c.c.] /2,

(C3)
IV x (1 % B[} — (0 (rn, )P+ m (|, > + )]
+B /) 110 (rm, )P+ nP
—im(n40,(rn;) — c.c.)]
—i—(é/l) [im(n;0,(rn,) — c.c.)
—m® (ning + c.c.)], (C4)
Jxn- 0B — —[n0,(rn,) +c.c. +im(nyn, — c.c.)].
(C5)
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