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Because different constraints are imposed, stability conditions for dissipationless fluids and

magnetofluids may take different forms when derived within the Lagrangian, Eulerian (energy-

Casimir), or dynamically accessible frameworks. This is in particular the case when flows are present.

These differences are explored explicitly by working out in detail two magnetohydrodynamic

examples: convection against gravity in a stratified fluid and translationally invariant perturbations of

a rotating magnetized plasma pinch. In this second example, we show in explicit form how to

perform the time-dependent relabeling introduced in Andreussi et al. [Phys. Plasmas 20, 092104

(2013)] that makes it possible to reformulate Eulerian equilibria with flows as Lagrangian equilibria

in the relabeled variables. The procedures detailed in the present article provide a paradigm that can

be applied to more general plasma configurations and in addition extended to more general plasma

descriptions where dissipation is absent. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4964900]

I. INTRODUCTION

The early plasma literature on magnetohydrodynamics

(MHD) is specked with traces of a general underlying struc-

ture: the self-adjointness of the MHD force operator in terms

of the displacement n of the original energy principle, the

Woltjer invariants of helicity and cross helicity and their use

in obtaining Beltrami states, and the representation of the

magnetic and velocity fields in terms of “Clebsch” potentials

being examples. All of these are symptoms of the fact that

MHD is a Hamiltonian field theory, whether expressed in

Lagrangian variables as shown by Newcomb1 or in terms of

Eulerian variables as shown by Morrison and Greene.2

General ramifications of the Hamiltonian nature of MHD

were elucidated in our series of publications,3–6 while in the

present work, we examine explicitly the stability of stratified

plasma and of rotating pinch equilibria within each of the

three Lagrangian, Eulerian, and dynamically accessible

descriptions.

These particular two examples were chosen because

they are at once tractable and significant. They display the

difficulties one faces in ascertaining stability within the three

approaches and provide a means to compare and contrast the

stability results. The paper is designed to serve as a “how-to”

guide for application of the three approaches, providing a

framework for what one might expect, and delineating the

sometimes subtle differences between the approaches. Here

and in our previous papers, the scope was limited to MHD,

but the same Hamiltonian structure exists for all important

dissipation free plasma models, kinetic as well as fluid, and

the story we tell for MHD applies to them as well. (See e.g.,

Ref. 7 for review.) Recently there has been great progress in

understanding the Hamiltonian structure of extended

MHD,8–14 the effect of gyroviscosity,15 and relativistic

magnetofluid models.16,17 In addition, recent work on hybrid

kinetic-fluid models18,19 and gyrokinetics20,21 now also lie

within the purview.

There are many concepts of stability of importance in

plasma physics (see Sec. VI of Ref. 22 for a general discus-

sion)—here we will only be concerned with what could be

referred to as a formal Lyapunov stability, which has

received wide attention in the fluid and plasma literature,

both in the Hamiltonian and non-Hamiltonian contexts (see

e.g., Refs. 23 and 24 and references therein for the latter). In

the Hamiltonian context, the Lyapunov stability we consider

provides at least a sufficient condition for stability, implied

by the positive-definiteness of a quadratic form obtained

from the second variation of an energy-like quantity. This

kind of stability is stronger than spectral or eigenvalue stabil-

ity: for finite-dimensional systems it implies nonlinear stabil-

ity, i.e., stability to infinitesimal perturbations under the

nonlinear evolution of the system. Note, nonlinear stability

should not be confused with finite-amplitude stability that

explores the extent of the basin of stability, a confusion that

oft appears in the plasma literature. For infinite-dimensional

systems like MHD, there are technical issues that need to be

addressed in order to rigorously claim that formal Lyapunov

stability implies nonlinear stability (see e.g., Ref. 25 for an

example of a rigorous nonlinear stability analysis), but the

formal Lyapunov stability of our interest is a most important

ingredient, and it does imply linear stability.

A common practice in the plasma literature, employed

e.g., by Chandresekhar,26 is to manipulate the linear equa-

tions of motion in order to obtain a conserved quadratic form

that implies stability. Although this procedure shows linear

stability, it cannot be used to obtain nonlinear stability and

may give a misleading answer. This is evidenced by the
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Hamiltonian system, which when linearized has both of the

two Hamiltonians for two linear oscillators

H6 ¼ x1ðp2
1 þ q2

1Þ=26x2ðp2
2 þ q2

2Þ=2: (1)

Both signs of (1) are conserved by the linear system, yet

only one arises from the expansion of the nonlinear

Hamiltonian of the system. Nonlinear Hamiltonians that give

rise to linear Hamiltonians of the form of H� can in fact be

unstable (see Ref. 27 for an example), and are prototypes for

systems with negative energy modes. This example shows

why the formal Lyapunov stability, our subject, is stronger

than spectral or eigenvalue stability. To reiterate, throughout

by stability we will mean a formal Lyapunov stability.

The remainder of the paper is organized as follows: in

Sec. II, we review the basic ideas of the three approaches,

giving essential formulas so as to make the paper self-

contained. Of note is the new material of Sec. II D that sum-

marizes various comparisons between the approaches. This

is followed by our convection example of Sec. III and our

pinch example of Sec. IV. These sections are organized in

parallel with Lagrangian, Eulerian (or so-called energy-

Casimr), and dynamically accessible stability treated in

order, followed by a subsection on comparison of the results.

Finally, we conclude in Sec. V.

II. BASICS

In what follows we will consider the stability of MHD

equilibria that are solutions to the following equations:

qeve � rve ¼ �rpe þ Je � Be þ qerUe; (2)

r� ðve � BeÞ ¼ 0; (3)

r � ðqeveÞ ¼ 0; (4)

ve � rse ¼ 0; (5)

for the equilibrium velocity field veðxÞ, magnetic field BeðxÞ,
current density 4pJe ¼ r� Be, density field qeðxÞ, and

entropy/mass field seðxÞ. Here Uðx; tÞ represents an external

gravitational potential. The pressure field is assumed to be

determined by an internal energy function Uðq; sÞ, where

p ¼ q2@U=@q and the temperature is given by T ¼ @U=@s.

For the ideal gas p ¼ cqc expðksÞ, with c; k constants and

qU ¼ p=ðc� 1Þ. MHD has four thermodynamical variables

q; s; p, and T. The assumption of local thermodynamic equi-

librium implies that knowledge of two of these variables at

all points x is sufficient to determine the other two, once the

U appropriate to the fluid under consideration is specified.

For static equilibria with ve � 0, the only equation to

solve is

rpe ¼ Je � Be þ qerUe: (6)

Equation (6) is one equation for several unknown quantities;

consequently, there is freedom to choose profiles such as

those for the current and pressure as we will see in our

examples.

If we neglect the gravity force by removing rUe, Eq.

(6) leads as usual to the Grad-Shafranov equation, e.g., by

noting that Be � rp ¼ 0 implies pressure as a flux function.

However, unlike the barotropic case where p only depends

on q, in general this does not imply that q and s are flux

functions, since their combination in pðq; sÞ could cancel out

their variation on a flux surface. Thus, as far as the static

ideal MHD is concerned, because only p occurs in the equi-

librium equation, density and temperature on a flux function

can vary while the pressure is constant. The MHD static

equilibrium equations give no information/constraints on this

variation.

When gravity is included, Eq. (6) still is only one con-

straining equation for several unknown quantities. In Sec.

III, we consider the stratified equilibria both with and with-

out a magnetic field and we will investigate there the role

played by entropy.

For stationary equilibria, the full set of Eqs. (2)–(5)

must be solved. Because in general there are many possibili-

ties, we will restrict our analysis to the rotating pinch exam-

ple of Sec. IV, where we describe the equilibrium in detail.

A. Lagrangian formulae

The Hamiltonian for MHD in Lagrangian variables is

H q; p½ � ¼
ð

d3a
pipi

2q0

þ q0U s0; q0=Jð Þ
"

þ @qi

@ak

@qi

@a‘
Bk

0B‘0
8pJ þ q0U q; tð Þ

�
; (7)

where ðq; pÞ are the conjugate fields with qða; tÞ
¼ ðq1; q2; q3Þ denoting the position of a fluid element at time

t labeled by a ¼ ða1; a2; a3Þ and pða; tÞ being its momentum

density. In (7) the quantities s0, q0, and B0 are fluid element

attributes that only depend on the label a, and

J :¼ detð@qi=@ajÞ. Also, Ai
j @qj=@ak ¼ J di

k, where Ai
j

denotes elements of the cofactor matrix of @q=@a. In a gen-

eral coordinate system pi ¼ gijðqÞpi where gij is the metric

tensor. This Hamiltonian together with the canonical Poisson

bracket

F;Gf g ¼
ð

d3a
dF

dqi

dG

dpi
� dG

dqi

dF

dpi

� �
; (8)

renders the equations of motion in the form

pi
: ¼ pi;Hf g ¼ � dH

dqi
and _qi ¼ qi;H

� �
¼ dH

dpi
; (9)

where “�” denotes time differentiation at constant label a and

dH=dqi is the usual functional derivative. The results of

these calculations can be found in Appendix A and further

details can be found in Refs. 5 and 22.

In Ref. 5 we introduced the general time-dependent

relabeling transformation a ¼ Aðb; tÞ, with the inverse

b ¼ Bða; tÞ, which gave rise to the new dynamical variables

Pðb; tÞ ¼ J pða; tÞ; Qðb; tÞ ¼ qða; tÞ; (10)

and the new Hamiltonian
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eH ½Q;P� ¼ H �
ð

d3b P � ðV � rbQÞ; (11)

¼
ð

d3b
Pi P

i

2eq0

�PiV
j @Qi

@bj

"

þeq0 U es0; eq0= eJ� �
þ @Qi

@bk

@Qi

@b‘

eBk

0
eB‘

0

8p eJ
#
;

¼ K þ Hf þW; (12)

where K is the kinetic energy, Hf is the fictitious term due to

the relabeling, and W represents the sum of the internal and

magnetic field energies. In the first equality of (12)

Vðb; tÞ :¼ _B �B�1 ¼ _BðAðb; tÞ; tÞ; (13)

which is the label velocity, rb :¼ @=@b, and H is to be writ-

ten in terms of the new variables. In the second equality, we

used d3a ¼ J d3b, with J :¼ detð@ai=@bjÞ; eq0 ¼ J q0;eJ :¼ detð@Qi=@bjÞ ¼ JJ, and eq0= eJ ¼ q0=J , which fol-

lows from mass conservation q0d3a ¼ eq0d3b. The relabeled

entropy is es0ðb; tÞ ¼ s0ðAðb; tÞÞ.
From (9) it is clear that extremization of Hamiltonians

gives equilibrium equations. For the Hamiltonian H½q; p� of

(7) this gives static equilibria, while for eH ½Q;P� of (12) one

obtains stationary equilibria. This was the point of introduc-

ing the relabeling: it allows us to express stationary equilib-

ria in terms of Lagrangian variables, which would ordinarily

be time dependent, as time-independent orbits with the mov-

ing labels.

The equilibrium equations are

0 ¼ @tQe ¼
Peeq0

� Ve � rbQe;

0 ¼ @tPe ¼ �rb � Ve �Peð Þ þ Fe; (14)

where Fe comes from the W part of the Hamiltonian. From

(14) the equilibrium equation follows:

rb � ðeq0 VeVe � rbQeÞ ¼ Fe: (15)

Using b ¼ QeðbÞ ¼ qeðAeðb; tÞ; tÞ ¼ Beða; tÞ and the defini-

tion of V of (13), Vðb; tÞ ¼ _BeðAeðb; tÞ; tÞ ¼ veðbÞ, where

veðbÞ denotes an Eulerian equilibrium state, we obtain upon

setting b ¼ x the usual stationary equilibrium equation

r � ðqeveveÞ ¼ Fe; (16)

where qeðxÞ is the usual equilibrium density. It can be shown

that ve � rse ¼ 0; r � ðqeveÞ ¼ 0, and ve � rBe � Be � rve

þBer � ve ¼ 0, follow from the Lagrange to Euler map.

Further details of this relabeling transformation are given in

Ref. 5, while application to our rotating pinch example of

Sec. IV is worked out in Appendix B.

For stability, we expand as follows:

Q ¼ Qeðb; tÞ þ gðb; tÞ; P ¼ Peðb; tÞ þ pgðb; tÞ; (17)

and calculate the second variation of the Hamiltonian in

terms of the relabeled canonically conjugate variables ðg; pgÞ
giving

d2Hla Ze; g; pg½ � ¼
1

2

ð
d3x

1

qe

jpg � qeve � rgj2 þ g �Ve � g
	 �

;

(18)

which depends on the time independent equilibrium quanti-

ties Ze ¼ ðqe; se; ve;BeÞ, i.e., the operator Ve has no explicit

time dependence. (Again, see in Refs. 5 and 22 for details.)

The functional

d2Wla Ze; g½ � : ¼ 1

2

ð
d3x g �Ve � g

¼ 1

2

ð
d3x qe ve � rveð Þ � g � rgð Þ



�qejve � rgj2� þ d2W g½ �; (19)

is identical to that obtained by Frieman and Rotenberg,28

although obtained here in an alternative and more general

manner.

The energy d2Wla can be transformed in the more famil-

iar expression of Ref. 29

d2Wla Ze; g½ � ¼ 1

2

ð
d3x qe

@pe

@qe

r � gð Þ2 þ r � gð Þ rpe � gð Þ
	

þ jdBj2

4p
þ Je � g � dB�r � qegð Þ g � rUeð Þ

#
;

(20)

where 4pJe ¼ r� Be is the equilibrium current and

dB :¼ r� ðg� BeÞ.
For completeness, we record the first order Eulerian per-

turbations that are induced by the Lagrangian variation writ-

ten in terms of the displacement g

dqla ¼ �r � ðqegÞ; (21)

dvla ¼ pg=qe � g � rve

¼ @g=@tþ ve � rg� g � rve; (22)

dsla ¼ �g � rse; (23)

dBla ¼ �r� ðBe � gÞ; (24)

where dsla can be replaced by the pressure perturbation,

dpla ¼ �cper � g� g � rpe, that is often used.

B. Eulerian formulae

The Hamiltonian for MHD in Eulerian variables is

H Z½ � ¼
Ð

d3x
q
2
jvj2 þ q U s; qð Þþ

jBj2

8p
þ qU

	 �
; (25)

where Z ¼ ðq; s; v;BÞ. When (25) is substituted into the non-

canonical Poisson bracket fF;Ggnc of Ref. 2 one obtains the

Eulerian equations of motion in the form @Z=@t ¼ fZ;Hgnc.

Because the noncanonical Poisson bracket fF;Ggnc is de-

generate, i.e., there exist functionals C such that fF;Cgnc

¼ 0 for all functionals F, Casimir invariants C exist and

equilibria are given by extremization of the energy-Casimir
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functional F ¼ H þ C. For MHD with no symmetry, the

Casimirs are

Cs ¼
ð

d3x qSðsÞ; (26)

and the magnetic and cross helicities

CB ¼
ð

d3x A � B; and Cv ¼
ð

d3x v � B; (27)

respectively. By manipulation of the MHD equations, the

helicities were shown by Woltjer30–33 to be invariants (Cv

requiring the barotropic equation of state) and used by him

to predict plasma states. Woltjer’s ideas pertaining to mag-

netic helicity were adapted by Taylor34,35 to describe the

reversed field configurations. The invariant of (26) and

Woltjer’s helicities were shown to be Casimir invariants in

Ref. 36. (See Refs. 37 and 38 for further discussion.)

An important point to note is that knowledge of the

Casimirs determines this additional physics, but this knowl-

edge must come from physics outside of the ideal model.

Special attention has been given to the equilibrium

states obtained by extremizing the energy subject to the

Woltjer invariants, perhaps because these are the states for

which Casimirs are at hand. (See Refs. 39 and 40 for discus-

sion of the Casimir deficit problem.) However, we will see in

Sec. II C that all MHD equilibria are obtainable from the var-

iational principles with directly constrained variations, the

dynamically accessible variations, rather than using

Lagrange multipliers and helicities, etc.

In the case were translational symmetry is assumed, all

variables are assumed to be independent of a coordinate z
with

B ¼ Bzẑ þrw� ẑ; (28)

M ¼ Mzẑ þrv� ẑ þr!; (29)

where v;!, and w are “potentials,” M ¼ qv; Mz ¼ qvz, and ẑ

is the unit vector in the symmetry direction. The Hamiltonian

then becomes

HTS Zs½ � ¼
ð

d3x
M2

z

2q
þ jrvj2

2q
þ jr!j2

2q
þ !; v½ �

q

"

þ jrwj2

8p
þ B2

z

8p
þ qU þ qU

#
; (30)

where Zs ¼ ðq; s;Mz; v;!;w;BzÞ. With this symmetry

assumption, the set of Casimir is expanded and is sufficient

to obtain a variational principle for the equilibria considered

here. However, because of this symmetry assumption, it is

only possible to obtain the stability results restricted to per-

turbations consistent with this assumption.

In Refs. 3 and 4 the translationally symmetric noncanon-

ical Poisson brackets were obtained for both neutral fluid

and MHD dynamics. For the case of a neutral fluid, which

we consider in Sec. III B for convection, the Poisson bracket

for translationally symmetric flows was given in Ref. 3. This

bracket with the Hamiltonian of (30), where the magnetic

energy terms involving Bz and w are removed, gives the

compressible Euler’s equations for fluid motion. The transla-

tionally symmetric fluid Poisson bracket has the following

Casimir invariants:

C1 ¼
ð

d3x qSðs; vz; ½s; vz�=q;…Þ; (31)

C2 ¼
ð

d3x ðrAðsÞ � rvþ ½!;AðsÞ�Þ=q

¼
ð

d3x AðsÞ ẑ � r � v; (32)

where ½f ; g� ¼ ẑ � rf �rg. The second Casimir applies if vz

depends only on s, which will suit our purpose, i.e., the

energy-Casimir variational principle dF ¼ 0 will give our

desired equilibria.

For the case of MHD it was shown in Refs. 3 and 4 that

the following are the Casimir invariants with translational

symmetry:

Cs¼
ð

d3xqJ ðs;w; ½s;w�=q; ½½s;w�=q;w�=q; ½s; ½s;w�=q�=q; :::Þ;

(33)

CBz
¼
ð

d3x BzHðwÞ; (34)

Cvz ¼
ð

d3x qvzGðwÞ; (35)

and, if the entropy is assumed to be a flux function, i.e.,

½w; s� ¼ 0, then (33) collapses to

Cs ¼
ð

d3x qJ ðwÞ; (36)

and there is the additional cross helicity Casimir

Cv ¼
ð

d3x vzBz F0 wð Þ þ 1

q
rF wð Þ � rvþ !;F wð Þ½ �

q

� �
¼
ð

d3x v � B F0 wð Þ; (37)

where S; A; J ; H; G, and F are arbitrary functions of their

arguments (J distinguished from the Jacobian with the same

symbol by context) with prime denoting differentiation with

respect to argument.

For both the neutral fluid and MHD equilibria that sat-

isfy dF ¼ 0, a sufficient condition for stability follows if the

second variation d2
F can be shown to be positive definite.

For MHD it was shown in Refs. 5 and 6 that d2
F could be

put into the following diagonal form:

d2
F½Ze; dZs� ¼

ð
d3x ½a1jdSj2 þ a2ðdQÞ2 þ a3ðdRzÞ2

þ a4jdR?j2 þ a5ðdwÞ2�; (38)

where the variations ðdS; dR; dQ; dwÞ are linear combina-

tions of ðdv; dB; dq; dwÞ. The coefficients ai for i ¼ 1� 5

depend on space through the equilibrium and were first given

102112-4 Andreussi, Morrison, and Pegoraro Phys. Plasmas 23, 102112 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.183.6.132 On: Thu, 20 Oct

2016 16:48:16



explicitly in Ref. 5 (and corrected in Ref. 6). Note, for these

calculations, the external potential U was omitted. (See Refs.

41 and 42 for related work.)

Upon extremizing over all variables except dw and then

back substituting the resulting algebraic relations, (38)

becomes

d2
F½Ze; dw� ¼

ð
d3x ½b1jrdwj2 þ b2ðdwÞ2þb3jew �rdwj2�;

(39)

where ew ¼ rw=jrwj and

b1 ¼
1�M2

4p

c2
s �M2 c2

s þ c2
a

� �
c2

s �M2 c2
s þ c2

a

� �
þM

4

4pq
jrwj2

; (40)

b2 ¼ r �
@

@w
M2

4p

� �
rw

" #
� @2

@w2
pþ B2

z

8p
þM

2

4p
jrwj2

� �
;

(41)

b3 ¼
1�M2

4p
� b1; (42)

where the poloidal Alfv�en-Mach numberM2 :¼ 4pF 2=q < 1

has been assumed. Here

c2
a ¼ B2=ð4pqÞ and c2

s ¼ @p=@q; (43)

are the Alfv�en and the sound speed, respectively.

Thus, stability in this MHD context rests on whether or

not (39) is definite, and for the neutral fluid equilibria we

treat here, which include a gravity force, the same is true for

the corresponding functional.

C. Dynamically accessible formulae

Extremizing the Hamiltonian of (25) without con-

straints gives trivial equilibria. With energy-Casimir, the

constraints are incorporated essentially by using Lagrange

multipliers. Dynamically accessible variations, as intro-

duced in Ref. 43, restrict the variations to be those generated

by the noncanonical Poisson bracket and in this way assures

that all kinematical constraints are satisfied. The first order

dynamically accessible variations, obtained directly from

the noncanonical Poisson bracket of Ref. 2, are the

following:

dqda ¼ r � ðqg1Þ; (44)

dvda ¼ rg3 þ srg2 þ ðr � vÞ � g1

þB� ðr � g4Þ=q; (45)

dsda ¼ g1 � rs; (46)

dBda ¼ r� ðB� g1Þ; (47)

where the freedom of the variations is embodied in the arbi-

trariness of g1, g2, g3, and g4. Using these in the variation of

the Eulerian Hamiltonian gives

dHda ¼
ð

d3x ½ðv2=2þ ðqUÞq þ UÞdqda þ qv � dvda

þqUs dsda þ B � dBda=4p�;

¼
ð

d3x ½g1 � ðqv� ðr � vÞ � qrv2=2

�qrhþ qTrsþ J� BÞ � g2r � ðqsvÞ
�g3r � ðqvÞ þ g4 � r � ðv� BÞ� ¼ 0; (48)

whence it is seen that the vanishing of the terms multiplying

the independent quantities g1, g2, g3, and g4 gives precisely

the Eulerian equilibrium equations (2)–(5).

Next, stability is assessed by expanding the Hamiltonian

to second order using the dynamically accessible constraints

to this order (see Refs. 5 and 22 for details), yielding the fol-

lowing expression:

d2Hda½Ze; g� ¼
ð

d3x qjdvda � g1 � rvþ v � rg1j
2

þ d2Wla½g1� : (49)

If in (49) dvda were independent and arbitrary, we could use

it to nullify the first term and then upon setting g1 ¼ �g, we

would see that dynamically accessible stability is identical to

Lagrangian stability. However, as we will see in Sec. II D,

this is not always possible.

D. Comparison formulae

In our calculations of stability, we obtained the qua-

dratic energy expressions of (18), (38), and (49), which can

be written in terms of various Eulerian perturbation variables

P :¼ fdq; dv; ds; dBg: (50)

In the case of the Lagrangian energy of (18), the set of pertur-

bations Pla as given by Eqs. (21)–(24) are constrained, while

for the energy-Casimir expression of (38), the perturbations

Pec are entirely unconstrained provided they satisfy the trans-

lation symmetry we have assumed. Similarly the perturba-

tions for the energy expression (49), Pda of (44)–(47), are

constrained. In our previous work of Ref. 5, we showed that

the three energy expressions are equivalent if restricted to the

same perturbations, and we established the inclusions

Pda 	 Pla 	 Pec;

which led to the conclusions

stabec ) stabla ) stabda;

viz., dynamically accessible stability is the most limited

because its perturbations are the most constrained, while

energy-Casimir stability is the most general, when it exists,

for its perturbations are not constrained at all. The choice

between the three approaches should be based on the physics

of the situation, which determines the relevant constraints

that need to be satisfied by the perturbations. Our goal is

to explore further the differences between these kinds of

stability by exploring, in particular, the differences between

Lagrangian and dynamically accessible perturbations.
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From (49), it is clear that if dvda is arbitrary, indepen-

dently of g1, then the first term of this expression can be

made to vanish. This would reduce d2Hda to the energy

expression obtained for Lagrangian stability, making the two

kinds of stability equivalent. Given that there are five com-

ponents of g2, g3 and g4, in addition to g1, one might think

that this is always possible. However, as pointed out in Ref.

5, this is not always possible and whether or not it depends

on the state or equilibrium under consideration. We continue

this discussion here.

Consider first a static equilibrium state that has an

entropy as a flux function and no equilibrium flow. Thus, for

this case, the cross helicity Cv of (27) vanishes. For a dynam-

ically accessible perturbation

dCv ¼
ð

d3x dvda � Be ¼
ð

d3x ðrg3 þ serg2Þ � Be

¼ �
ð

d3x g2 Be � rse ¼ 0; (51)

where the last equality assumes g3 is single-valued and the

vanishing of surface terms, as well as se being a flux func-

tion. The fact that dCv ¼ 0 for this case is not a surprise

since it is a Casimir, but we do see clearly that if s were not a

flux function, then a perturbation dvda could indeed create

cross helicity. Because of the term @g=@t of (22), which can

be chosen arbitrarily, it is clear that dvla can create cross hel-

icity for any equilibrium state, supplying clear evidence that

dvda is not completely general.

Although dvda is not completely general, it was noted in

Ref. 22 that for static equilibria, the first term of (49)

becomes ð
d3x qjdvdaj2; (52)

and this can be made to vanish independent of g1 by choos-

ing g2 ¼ g3 ¼ 0 and g4 ¼ 0. Thus, for static equilibria, the

Lagrangian and dynamically accessible approaches must

give the same necessary and sufficient conditions for stabil-

ity, i.e.

stabla () stabda;

As another example, consider the variation of the circu-

lation integral C ¼
Þ

cv � dx on a fixed closed contour c for an

equilibrium with ve � 0 and Be 6¼ 0. Clearly dvla can gener-

ate any amount of circulation. However, for a dynamically

accessible variation

dC ¼
þ

c

dvda � dx

¼
þ

c

serg2 � dxþ
þ

c

ðr � g4Þ � ðdx� BeÞ=qe; (53)

and we can draw two conclusions: in the case where c is a

closed magnetic field line dx k B and dC becomes

dCB ¼
þ

c

serg2 � dx ¼
þ

c

ðrðseg2Þ � g2rseÞ � dx

¼ �
þ

c

g2rse � dx; (54)

whence we see clearly that if rse is everywhere parallel to

Be, then dCB ¼ 0 and otherwise this is not generally true.

Alternatively, suppose the contour c lies within a level set of

se, for which it need not be true that Be � rse ¼ 0 along c.

For this case

dCs ¼
þ

c

ðr � g4Þ � ðdx� BeÞ=qe; (55)

which in general does not vanish. If a magnetic field line

were to lie within a surface of constant se, then in the general

case, Be � rse ¼ 0 otherwise surfaces of constant se would

be highly irregular, i.e., if Be � rse 6¼ 0, then Be cannot lie

within a level set of se.

We point out that similar arguments can be supplied for

cases where ve 6¼ 0, e.g., variation of the fluid helicity dCx

¼ 2
Ð

d3x x � dvda for an equilibrium with Be � 0 becomes

dCx ¼ 2

ð
d3x xe � ðserg2 þ xe � g1Þ

¼ 2

ð
d3x xe � rg2 se ¼ �2

ð
d3x g2 xe � rse; (56)

which vanishes if xe is perpendicular torse or if the entropy

is everywhere constant.

In summary, the general conclusion is that dvda, unlike

dvla, is not completely arbitrary, and the degree of arbitrari-

ness depends on the equilibrium. We also point out that

although we are here interested in perturbations away from

equilibrium states, for the purpose of assessing stability, the

conditions we have described apply to perturbations away

from any state, equilibrium or not.

Now we turn to our examples. For the remainder of this

paper, we drop the subscript “e” on equilibrium quantities,

so as to avoid clutter.

III. CONVECTION

For this first example, we consider the thermal convec-

tion in static equilibria, both with and without a magnetic

field. This example has been well studied by various

approaches, e.g., heuristic arguments that mix Lagrangian

and Eulerian ideas were given in Ref. 44 for the neutral fluid.

Here our analysis will be done separately in purely

Lagrangian and purely Eulerian terms, and it will illustrate

the role played by entropy in determining stability.

We suppose the equilibrium has stratification in the ŷ-

direction due to gravity, i.e., U ¼ gy, with q and s dependent

only on y. Thus the only equation to be solved for the neutral

fluid is

dp

dy
¼ �q

dU
dy
¼ �qg: (57)

If a magnetic field of the form B ¼ BðyÞx̂ is supposed, then

the equilibrium equation is the following:

dp

dy
¼ � dB

dy

B

4p
� q

dU
dy
¼ JB� qg: (58)

For barotropic fluids, s is constant everywhere and is

eliminated from the theory, i.e., UðqÞ alone. Thus, (57)

102112-6 Andreussi, Morrison, and Pegoraro Phys. Plasmas 23, 102112 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.183.6.132 On: Thu, 20 Oct

2016 16:48:16



(together with UðqÞ) determines completely the thermody-

namics at all points y by integrating

pq

q
dq
dy
¼ �g; (59)

giving qðyÞ and consequently p(y). For this special case, no

further information is required. However, in the general case

where pðq; sÞ, (57) is not sufficient and one needs to know

more about the fluid, since now we have

pq

q
dq
dy
þ ps

q
ds

dy
¼ �g; (60)

which is insufficient because we have only one equation for

the two unknown quantities q and s. Thus, the knowledge of

additional physics is required, which could come from

boundary or initial conditions, solution of some heat or trans-

port equation with constitutive relations, etc.

Next consider the case of MHD where

dp

dy
¼ pq

dq
dy
þ ps

ds

dy
¼ JB� qg: (61)

If gravity is absent, MHD differs from that of the stratified

fluid because only the pressure enters and the thermodynam-

ics of q and s do not explicitly enter the equilibrium equa-

tion. We will consider the case where gravity is present.

Thus, in general, equilibria depend on two kinds of con-

ditions: force balance, as given in our cases of interest by

(57) or (58) and thermodynamics. For latter convenience we

record here several thermodynamic relations

p ¼ q2Uq and T ¼ Us; (62)

c2
s ¼

@p

@q





s
¼ q2Uq

� �
q ¼ q qUð Þqq; (63)

@p

@s





q
¼ �@q

@s





p
c2

s ¼ q2Uqs; (64)

where, without confusion, we use subscripts on U to denote

partial differentiation with the other thermodynamic variable

held constant and the subscript of cs denotes “sound.”

The coefficient of thermal expansion, a, is given by

a ¼ � 1

q
@q
@T





p
; (65)

and for typical fluids

@p

@s





q
¼ a

q
> 0 and

@q
@s





p
< 0: (66)

If the pressure is given by p ¼ cqc expðksÞ, then c2
s ¼ cp=q,

as it is often written.

A. Lagrangian convection

1. Lagrangian convection equilibria

From (9) Lagrangian equilibria must satisfy

_pi ¼ �
dH

dqi
¼ 0 and _qi ¼ dH

dpi
¼ 0; (67)

whence if follows from (7) that pi � 0 and

0 ¼ _pi ¼ �Aj
i

@

@aj

q2
0

J 2
Uq þ

1

2J 2

@qk

@al

@qk

@am
Bl

0Bm
0

 !

þBj
0

@

@aj

1

J
@qi

@al
Bl

0

� �
� q0

@U
@qi

; (68)

which is the Lagrangian variable form of the static Eulerian

equilibrium equation (6). (See e.g., Refs. 1, 22, and 37 for

further details.) Because we are investigating equilibria that

only depend on the variable y and have magnetic fields of

the form B ¼ BðyÞx̂, we only consider the ŷ-component of

(68), which is the Lagrangian variable form of the static

Eulerian equilibrium equation (58).

2. Lagrangian convection stability

The second variation of the energy about this equilib-

rium is the usual expression given in Ref. 29. For static equi-

libria, this is obtained by setting g � n in (20), and we know

that the stability of such configurations is determined by this

second variation of the potential energy. We will manipulate

the energy expressions to facilitate comparison with results

obtained in Sec. III B. Cases with and without B ¼ 0 are

considered.

Case B ¼ 0:

By exploiting the equilibrium equation, we obtain

d2Wla ¼
1

2

ð
d3x

1

q
@p

@q





s

qr � nð Þ2 þ 2 r � nð Þ rq � nð Þ
h	

þ rq � nð Þ2
i
þ 1

q
@p

@s





q

qr � nþr � qnð Þ½ � rs � nð Þ
�
:

In conventional “dW” stability analyses, one would consider

conditions for positivity of the above as a quadratic expres-

sion in terms of n. However, for our present purposes, we

rewrite it in terms of

dqla ¼ �r � ðqnÞ dsla ¼ �rs � n; (69)

which with

1

q
@p

@s






q

rq � nð Þ rs � nð Þ ¼ 1

q
@p

@s





q

rq � nð Þ
rs � nð Þ dslað Þ2;

yields

d2Wla ¼
1

2

ð
d3x

1

q
@p

@q





s

dqlað Þ2 þ 2

q
@p

@s





q
dqladsla

	
� 1

q
@p

@s





q

rq � nð Þ
rs � nð Þ dslað Þ2

�
: (70)

Now, using (64), we can rearrange this equation as

d2Wla ¼
1

2

ð
d3x

c2
s

q
dqla �

@q
@s





p
dsla

� �2
"

þ @q
@s





p

rq � nð Þ
rs � nð Þ �

@q
@s





p

� �
dslað Þ2

�
: (71)
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We will see that (71) is of the same form as that of (98)

of Sec. III B, obtained via the energy-Casimir functional, yet

here the perturbations dq and ds are both constrained to

depend on n according to (69).

Examination of (71) reveals that positivity of the second

term is sufficient for positivity of d2Wla, viz.

rq � n
rs � n <

@q
@s





p
: (72)

Given that the equilibrium only depends on the variable y, in

which the systems are stratified, (72) gives the following suf-

ficient condition for stability

dq=dy

ds=dy
<
@q
@s





p
< 0: (73)

If the equilibrium is stably stratified, i.e., dq=dy < 0, then

ds=dy must be positive, and we would have a threshold

involving the density and entropy scale lengths.

However, let us proceed further. Define

D ¼ @q
@s





p
� dq=dy

ds=dy
¼ @q
@s





p
� dq

ds
; (74)

where in the second term of the second equality, we have

replaced the coordinate y by s, which is possible if ds/dy
does not vanish. Observe in the definition of D of (74), this

second term depends on the equilibrium profiles, while the

first term is of a thermodynamic nature. So far, the sufficient

condition for stability D > 0 does not account for the fact

that dq=dy and ds/dy are not independent but are related

through the equilibrium equation (57). To address this, we

first rewrite the expression for D using

dp

dy
¼ @p

@s





q

ds

dy
þ @p

@q





s

dq
dy
¼ �c2

s

@q
@s





p

ds

dy
þ c2

s

dq
dy
; (75)

resulting in

D ¼ � 1

c2
s

dp=dy

ds=dy
¼ � 1

c2
s

dp

ds
; (76)

where use has been made of (63) and (64). Now inserting

(57) into (76) yields for the B ¼ 0 case, the following

condition:

D ¼ 1

c2
s

qg

ds=dy
> 0; (77)

and because qg > 0, we obtain the compact sufficient condi-

tion for stability

ds

dy
> 0: (78)

We will see that an identical condition is obtained in the

Eulerian energy-Casimir context (see Eq. (101)).

Now, given that ds=dy > 0 we can use (75) to obtain a

condition on dq=dy

c2
s

dq
dy
þ qg ¼ c2

s

@q
@s





p

ds

dy
< 0;

which implies

dq
dy

< �qg

c2
s

< 0: (79)

Upon defining the scale height L�1 ¼ q�1jdq=dyj, (79) is

seen to be equivalent to c2
s > Lg. Thus the system is stable to

convection if the free fall kinetic energy is smaller than twice

the kinetic energy at the sound speed. Or, equivalently, if the

free fall speed through a distance L is smaller than
ffiffiffi
2
p

cs.

The above procedure leading to (78) and (79) was

designed for comparison with Sec. III B. However, the con-

ventional “dW” stability analysis proceeds with an extrem-

ization over n that takes account of any possible stabilization

effect due to the first positive definite term of (71). To this

end we let

nðxÞ ¼ ðnxðyÞ; nyðyÞ; nzðyÞÞeiðkzþ‘xÞ=2þ c:c:; (80)

and rewrite (71) as

d2Wla ¼
1

2

ð1
0

dy � qg2

c2
s

þ g
dq
dy

 !
jnyj2

"

þq c2
s

dny

dy
þ i‘nx þ iknz �

qg

c2
s

ny





 



2
#
: (81)

Given any nyðyÞ, one can choose nx and nz that makes the sec-

ond term vanish. Thus the smallest value of d2Wla is given by

d2Wla ¼ �
1

2

ð1
0

dy
qg2

c2
s

þ g
dq
dy

 !
jnyj2; (82)

which yields (79) as a necessary and sufficient condition for

stability. Thus (79) is in fact a counterpart equivalent to

ds=dy > 0. Another equivalent condition exists in terms of

the temperature

dT

dy
>

gT

qcp

@q
@T






p

; (83)

which follows in a manner similar to (79).

Lastly, for an ideal gas, (79) and (83) become,

respectively,

dq
dy

< �q2g

cp
and

dT

dy
> � g

cp
:

Observe, (73) could be satisfied with ds=dy < 0 and

dq=dy > 0. But, the stability condition ds=dy > 0, which

came from (77), implies dq=dy < 0. Thus it is not possible

to have stability unless the fluid density is stably stratified.

Case B 6¼ 0:

The case with B 6¼ 0 has been studied extensively, e.g.,

in the early works on interchange instability of Refs. 45–51.

For this application, Eq. (20) can be written as follows:

d2Wla ¼
1

2

ð
d3x q c2

s r � nð Þ2 þ r � nð Þ rp � nð Þ
h

þ jdBj2

4p
þ J � n� dBð Þ � g g � ŷð Þr � qnð Þ�; (84)
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where again all equilibrium quantities depend only on y,

which we use together with (80) to rewrite this as

d2Wla ¼
1

2

ð1
0

dy
B2

4p
k2 jnyj2 þ jnxj2
� �

þ
dny

dy
þ i‘nx





 



2
 !"

þq c2
s

dny

dy
þ i‘nx þ iknz





 



2 � g
dq
dy
jnyj2

�2qg ny

dny

dy
þ i‘nx þ iknz

� ��
; (85)

where, following Ref. 49, the displacements ny, i‘nx, and

iknz can be taken to be real-valued. By minimizing this func-

tional, the following necessary and sufficient condition for

the interchange stability of Tserkovnikov,48 can be obtained:

dq
dy

< � qg

c2
s þ c2

a

< 0; (86)

where recall c2
a ¼ B2=ð4pqÞ.

In Ref. 49 Newcomb rearranges (85) and minimizes it in

the limit k ! 0 by choosing inz ! gny=ðkc2
s Þ for arbitrary ny.

With this approach he obtains the more stringent stability

condition of (79), the condition for the case without B.

Newcomb’s singular approach allows displacements that

interchange plasma elements containing long segments along

the magnetic field lines, relieving local fluid pressures. In

Ref. 50, it is shown that this amounts to the plasma being

least stable against these long quasi-interchange displace-

ments because the restoring force due to the magnetic field

tension vanishes.

B. Eulerian convection

1. Eulerian convection equilibria

Case B ¼ 0:

Using the Casimir invariants of (31) and (32), hydrody-

namic equilibria with translational symmetry are obtained as

extrema of the following energy-Casimir functional:

F¼
Ð

d3x
1

2
qjvj2þqU q; sð ÞþqUþqS sð Þ�A sð Þẑ �r� v

	 �
;

(87)

where vz ¼ vzðsÞ. Variation of (87) will automatically yield

equations that are cases of (2)–(5) with Be � 0. Because

vzðsÞ, we have v � rs ¼ 0 and v � rvz ¼ 0. Variation with

respect to v yields

qv? ¼ rA� ẑ; (88)

while variation with respect to q and s, respectively, yield

1

2
jvj2 þ Uþ qUq þ U þ S ¼ 0; (89)

qvzv
0
z þ qUs þ qS0 � A0ẑ � r � v ¼ 0: (90)

For our case of interest with v ¼ 0, we merely set

A � 0, whereupon the first variation

dF ¼
ð

d3x ½ðqUq þ U þ Uþ SÞdqþ qðUs þ S0Þds�; (91)

gives rise to

Uþ qUq þ U þ S ¼ 0; (92)

Us þ S0 ¼ 0; (93)

where for recall for our analyses, we choose U ¼ gy.

Case B 6¼ 0:

For case with equilibrium magnetic field, we choose the

following special case for the Casimir of (33)

Cs ¼
ð

d3x qSðs;wÞ; (94)

which with the Hamiltonian

H ¼
ð

d3x
1

2
qjvj2 þ qU þ jrwj2

8p
þ qgy

	 �
; (95)

gives upon varying F ¼ H þ Cs

dF
dv
¼ qv ¼ 0;

dF
dw
¼ �Dwþ qSw ¼ 0;

dF
ds
¼ qUs þ qSs ¼ 0;

dF
dq
¼ qUq þ U þ gyþ S ¼ 0;

which imply

r qUq þ Uð Þ þ
1

q
r2wrw� Usrs ¼ �g: (96)

Equation (96) gives for our case with stratification in y, the

equilibrium equation (58).

2. Eulerian convection stability

Now we examine d2
F for our two cases and look for

conditions that make this quantity positive definite, condi-

tions that will be sufficient conditions for stability.

Case B ¼ 0:

The second variation is

d2
F ¼

ð
d3x ½ðqUqq þ 2UqÞðdqÞ2 þ 2ðqUqs þ Us þ S0Þdq ds

þqðUss þ S00ÞðdsÞ2� : (97)

By exploiting the equilibrium equations, (97) can be rewrit-

ten as

d2
F ¼

ð
d3x

c2
s

q
dqð Þ2 � 2

@q
@s





p
dq dsþ @q

@s





p

dq
dy

dy

ds
dsð Þ2

	 �
;

(98)

where we used (62) and (64), and the derivative of the equi-

librium equation Us þ S0 ¼ 0 with respect to y
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S00 þ Uss þ Usq
dq
dy

dy

ds
¼ 0: (99)

Next, we use

dqð Þ2 � 2
@q
@s





p
dqds ¼ dq� @q

@s





p
ds

� �2

� @q
@s





p

� �2

dsð Þ2;

(100)

obtaining

d2
F ¼

ð
d3x

c2
s

q
dq� @q

@s





p
ds

� �2
"

þ@q
@s





p

dq=dy

ds=dy
� @q
@s





p

� �
dsð Þ2

�
; (101)

an expression of the form of (71). Thus, as in Sec. III A 2,

stability is again determined by positivity of the quantity D
of (74) and all of the conditions of that section are repro-

duced as sufficient stability conditions.

In Eq. (101), unlike the case of (71), dq and ds are inde-

pendent so a sharper sufficient condition cannot be pursued

by relying on the positivity of the first term, even though in

the d2Wla formulation, this did not materialize. Also, the

approach here gives ds=dy > 0 as a sufficient condition for

stability (or equivalently (79)), while the d2Wla formulation

shows that this condition is both necessary and sufficient

Case B 6¼ 0:

Now consider the second variation of F ¼ H þ Cs with

H given by (95) and Cs given by (94) with

Sðw; sÞ ¼ KðwÞ þ LðsÞ;

which is general enough to describe the equilibria of our

interest as given by (58). This leads to

d2
F ¼

ð
d3x ½ðqUÞqqðdqÞ2 þ 2½ðqUÞqs þ Ls�dq ds

þqðUss þ LssÞðdsÞ2 þ jrdwj2 þ 2Kwdw dq

þqKwwðdwÞ2� : (102)

Rewriting (102) in terms of equilibrium quantities and

manipulating then gives

d2
F ¼

ð
d3x

c2
s

q
dPð Þ2 þ ps

q
D dsð Þ2 þ 2

Jps

qc2
s

ds dw

"

þq Kww �
J2

q2c2
s

 !
dwð Þ2

#
; (103)

where use has been made of the definition of D of (74), the

current density J, defined by

�J ¼ r2w ¼ qKw; (104)

the thermodynamic expressions of (62) and the following,

which is a consequence of the equilibrium equation

Uss þKss ¼ �Usq
dq
ds
; (105)

which implies

Uss þKss �
1

c2
s

p2
s

q2
¼ �Usq

dq
ds
� 1

c2
s

p2
s

q2

¼ � ps

q2

dq
ds
þ ps

c2
s

� �
¼ ps

q2
D : (106)

In addition we have introduced the new variable dP defined

by

dP ¼ dqþ ps

c2
s

ds� J

c2
s

dw: (107)

Next, we collect the terms with ds to obtain

d2
F ¼

ð
d3x

c2
s

q
dPð Þ2 þ jrdwj2þ ps

q
D ds� J

c2
s D

dw
	 �2

"

þq Kww �
J2

q2c2
s

� J2ps

q2c4
s D

" #
dwð Þ2

#
: (108)

If we introduce the variation

dQ ¼ ds� J

c2
s D

dw; (109)

and we use the gradient of (104)

rJ ¼ J

q
rq� qKwwrw; (110)

which for equilibria that depend only on the y coordinate can

be written as

qKww ¼
J

q
dq
dw
� dJ

dw
¼ �q

d J=qð Þ
dw

; (111)

or

qKww ¼
J

q
dq=ds

dw=ds
� dJ=ds

dw=ds
; (112)

then the last term of Eq. (108) can be rewritten as

Kww �
J2

q2c2
s

� J2ps

q2c4
s D
¼ � d J=qð Þ

dw
þ J2

q2c2
s D

dq
ds

: (113)

Then, finally

d2
F ¼

ð
d3x

c2
s

q
dPð Þ2 þ ps

q
D dQð Þ2 þ jrdwj2

"

þq � d J=qð Þ
dw

þ J2

q2c2
s D

dq
ds

 !
dwð Þ2

#
: (114)

From the energy expression of (114) we can immediately

read off the following sufficient conditions for stability:

0 < D ¼ � dq
ds
þ ps

c2
s

� �
; (115)
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0 < � d J=qð Þ=dy

dw=dy
þ J2

q2c2
s D

dq=dy

ds=dy
; (116)

where we recall the form of D of (115) which is equivalent

to that of (74).

In the case with B¼ 0, we had the two free functions, q
and s and one stability inequality. Thus we were able to

obtain separate conditions on the equilibrium profiles of q
and s for stability. In the present case, we again have one

equilibrium equation, but now with three profiles q; s; and B
and two inequalities. Again we should expect to obtain inde-

pendent conditions on the profiles q; s; and B. However,

even the condition of (79), which has a clear physical mean-

ing, is not immediately implementable because cs depends

on y through both q and s. Similarly, the inequalities (115)

and (116) require the profiles for their determination. In

practice one may construct a family of equilibria with pro-

files that depend on one or more parameters and then seek

thresholds in parameter space.

Inequalities (115) and (116) can be written in various

ways. For example, using the equilibrium equation (61)

dp

dy
¼ c2

s

dq
dy
� @q
@s





p

ds

dy

� �
¼ �gq� B2ð Þ0= 8pð Þ; (117)

the inequality D > 0 can be rewritten as

D ¼ � 1

c2
s

dp

ds
¼ gqþ B2ð Þ0=2

c2
s ds=dy

> 0: (118)

Consequently, if dp=dy is negative for stability, we must

have ds=dy > 0 and, conversely, we must have ds=dy < 0 if,

due to B decreasing sufficiently fast with height, we have

dp=dy > 0. This is effectively the threshold against the mag-

netized Rayleigh-Taylor instability. Thus, as for the case

with B ¼ 0; dp=ds < 0 ensures stability. Also note, as in the

B ¼ 0 case, a critical point arises if for some y we have

dp=dy ¼ 0 unless at the same point we also have ds=dy ¼ 0,

in which case one then has to look deeper into the limit.

If dp=dy < 0 and ds=dy > 0, we obtain from (115) an

inequality for dq=dy analogous to the inequality (79), in par-

ticular, dq=dy must be negative because ps=c2
s > 0; however,

this inequality is different from the “Tserkovnikov” inequal-

ity of (86). If dp=dy > 0 and ds=dy < 0, we obtain a reversed

inequality, i.e., dq=dy must be positive.

This implies that in the inequality (116), if D is positive,

the second term is always negative and thus for B> 0 we

obtain the condition

dðJ=qÞ=dy < 0; or dJ=dy < ðJ=qÞðdq=dyÞ: (119)

Consider the two cases of decreasing and increasing mag-

netic fields: for a magnetic field decreasing with height,

J ¼ �dB=dy > 0, so

d ln J=dy < d ln q=dy; (120)

and if dq=dy < 0 we can use the inequality obtained before

for dq=dy and obtain an inequality that involves the second

derivative of the magnetic field and the density profile.

Similarly, if J ¼ �dB=dy < 0

d lnjJj=dy > d ln q=dy; (121)

and if dq=dy > 0 we can use the reverse inequality obtained

before for dq=dy and again obtain an inequality that involves

the second derivative of the magnetic field and the density

profile. These cases above do not exhaust all possibilities. It

is perhaps best to consider families of equilibria and investi-

gate parameter dependencies as mentioned above.

C. Dynamically accessible convection

1. Dynamically accessible convection equilibria

In Sec. II C, we showed how the general dynamically

accessible variations of (44)–(47), when inserted into the first

variation of the Hamiltonian (48), give rise to the general

MHD equilibrium equations of (2)–(5). Thus, equilibria that

are solutions of (58), with or without the magnetic field, are

extremal points of this kind of variation, and we can proceed

to assess the stability by examination of the energy expres-

sion of (49).

2. Dynamically accessible convection stability

For static equilibria, the first term of (49) reduces to the

form of (52). As noted in Sec. II D, this term vanishes if

g3 ¼ g2 ¼ g4 � 0. Thus, choosing g1 proportional to n, the

condition for dynamically accessible stability in the case of

static equilibria is determined by d2Wla, viz., the Lagrangian

energy expression. In both the cases with and without a mag-

netic field, this is the usual “dW” energy, for each case,

respectively, and thus dynamically accessible stability in

both cases is identical to that of the Lagrangian stability.

D. Convection comparisons

Results for the case with equilibria B¼ 0 can be summa-

rized succinctly: the Lagrangian and dynamically accessible

approaches both give the simple necessary and sufficient

condition for stability, ds=dy > 0, or equivalently the

inequality of (79) on dq=dy, while the Eulerian energy-

Casimir approach gives this same result, but only as a suffi-

cient condition for stability and only applicable to the case

with the imposed translational symmetry.

For case of equilibria B 6¼ 0, the situation is more com-

plex, although it again must be true, in light of the general

discussion of Sec. II D, that the Lagrangian and dynamically

accessible approaches must give the same necessary and suf-

ficient condition for stability, viz., that of (86). However, this

necessary and sufficient condition is much simpler than the

inequalities of (115) and (116) obtained by the energy-

Casimir method and, again, these inequalities are only appli-

cable to the case with the imposed translational symmetry

and only give sufficient conditions for stability. Moreover,

the energy-Casimir inequalities depend on an extra deriva-

tive with respect to y of at least one of the equilibrium pro-

files; e.g., (115) contains a derivative of the current J, which

can be eliminated in terms of two derivatives of the pressure

p, but cannot easily be eliminated entirely.

If one inserts the Lagrangian variations of (21)–(22),

adapted to the convection example, into d2
F of (102), then
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dJ/dy is removed. In the context of our convection example,

the relevant connection is provided by dwla ¼ n � rw
¼ nyw

0, with prime denoting y-differentiation. Whence, the

line-bending term of (102) becomes

jrdwj2 ¼ ðn0yw0 þ nyw
00Þ2 ¼ n0yw

02 þ n2
yw
002 þ 2nyn

0
yw
00w0;

(122)

and one finds upon integrating the last term of (122) by parts,

a term proportional to J0. This term cancels the J term of

ðdwÞ2 (the same cancellation was shown to occur in the con-

text of the magnetorotational instability in Ref. 52). As noted

in Sec. II (cf. Refs. 5 and 22) such a correspondence by con-

straining the Eulerian variations in general connects energy-

Casimir and Lagrangian stability.

IV. ROTATING PINCH

Now we investigate the stability of the azimuthally sym-

metric rotating pinch, again within the Lagrangian, Eulerian

energy-Casimir, and dynamically accessible frameworks.

This example is chosen to illustrate two features introduced

in Sec. II associated with the inclusion of an equilibrium

velocity field: the relabeling transformation that removes

time dependence from a Lagrangian state associated with a

stationary Eulerian equilibrium and the origin of the differ-

ence between Lagrangian and dynamically accessible stabil-

ity. As in Sec. III, we begin by discussing the plasma

equilibrium configurations of interest by solving directly the

Eulerian MHD equations (2)–(5) without referring specifi-

cally to any of the three frameworks.

We use cylindrical coordinates ðr;/; zÞ and consider

plasma equilibrium configurations where all equilibrium

quantities (including entropy) depend only on the radial

coordinate r

B ¼ BzðrÞẑ þ B/ðrÞ/̂; (123)

v ¼ vzðrÞẑ þ v/ðrÞ/̂; (124)

q ¼ qðrÞ; s ¼ sðrÞ; (125)

B/ ¼ /̂ � rw� ẑ ¼ � dw rð Þ
dr

: (126)

Equation (125) implies that p ¼ peðrÞ. From Eqs. (2)–(5), we

obtain the generalized Grad-Shafranov equation for the flux

function wðrÞ

1

r

d

dr

1�M2

4p
rB/

� �
� 1

wr

d

dr
pþ B2

z

8p

� �
þ d

dr

M2

4p
B/

� �
¼ 0;

(127)

where

M rð Þ ¼
4pq rð Þv2

/ rð Þ
B2

/ rð Þ

" #1=2

;

is the poloidal Alfv�en Mach number. Note that vzðrÞ does not

appear in (127) and in the following it will be set equal to

zero.

In (127), we need to assign three free functions. We will

assign BzðrÞ;B/ðrÞ, and v/ðrÞ and treat (127) as an equation

for p(r) that can be written as

1

B/

d

dr
pþ B2

z

8p

� �
þ d

dr

B/

4p

� �
þ 1�M2

4p
B/

r
¼ 0: (128)

For the sake of simplicity, we will examine the case of an

isothermal plasma configuration as it makes the relationship

between p and q linear, and also makes M2 linear in p. A

further simplification is obtained by taking the current den-

sity Jz to be uniform. By defining a dimensionless radial vari-

able r in terms of a characteristic length r0, the latter

assumption leads to B/ ¼ B0r and (128) becomes

d

dr2
p̂ þ B̂

2

2

 !
¼ � 1� p̂ rð Þw rð Þ2=2

h i
; (129)

where we have set

pðrÞ ¼ c2
s qðrÞ ¼ p̂ðrÞB2

0=ð4pÞ;
B̂ðrÞ ¼ Bz=B0; and

M2ðrÞ ¼ ð4pp=B2
0Þ ½v2

/=ðrcsÞ2� ¼ p̂ðrÞw2ðrÞ;

with B̂ being the dimensionless magnetic field, p̂ the

dimensionless pressure, wðrÞ ¼ v/=ðrcsÞ the dimensionless

rotation rate, and cs the sound velocity in the isothermal

case.

For a configuration where Bz is uniform and the plasma

rotation is rigid with rotation frequency X, Eq. (129) takes

the elementary form

d p̂ rð Þ
d r2

¼ � 1� p̂ rð Þw2=2

 �

; (130)

where w ¼ Xr0=cs. While a uniform Bz field does not alter

these equilibrium configurations, it will be shown to affect

their stability. Assuming w2=2 < 1, we obtain

p̂ rð Þ ¼ 2

w2
1� 1� w2

2

� �
exp

w2r2

2

� �	 �
; (131)

where p̂ð0Þ ¼ 1; p̂ð�rÞ ¼ 0 for �r2 ¼ �ð2=w2Þlnð1� w2=2Þ.
Equation (131) describes a one-parameter family of equilib-

ria. In the absence of rotation, this configuration reduces to

the standard parabolic pinch with �r ¼ 1 and p̂ðrÞ ¼ 1� r2,

while for w2 ! 2 we have �r ¼ 1 and p̂ðrÞ � 1.

A. Lagrangian pinch

1. Lagrangian pinch equilibria

For the rotating pinch the appropriate Hamiltonian is

that of (7) with U � 0 and, as before, the pinch equilibrium

equations should follow from Eq. (9) adapted to the pinch

geometry. In particular, with the cylindrical coordinate

system with indices i; j 2 fr;/; zg; a ¼ ðar; a/; azÞ; q

¼ ðqr; q/; qzÞ, with jpj2 ¼ gijðqÞ pi pj ¼ pipi, and
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gijðqÞ ¼
1 0 0

0 ðqrÞ�2
0

0 0 1

264
375: (132)

From (132) we obtain

pr ¼ grrpr ¼ pr;

p/ ¼ g//p/ ¼ p/=ðqrÞ2;
pz ¼ gzzpz ¼ pz;

and similarly Br ¼ Br; B/ ¼ B/=ðqrÞ2, and Bz ¼ Bz.

As shown in Appendix A, the equations of motion in

terms of the Lagrangian variables ðqr; q/; qzÞ follow from

Eq. (9), and are

_qi ¼ gij pj

q0

and (133)

_pi ¼ dr
i

p/p/

qrq0

� J @

@qi

q0

J

� �2

Uq

" #

�dr
i

J
qr

B/B/

4p
þ JBj @

@qj

Bi

4p

� �
� J @

@qi

B2

8p

� �
: (134)

Transforming (133) and (134) to Eulerian variables, we first

obtain the intermediate form

q0 _qr ¼ grrpr ¼ pr

q0 _q/ ¼ g//p/ ¼ p/=r2

q0 _qz ¼ gzzpz ¼ pz

(135)

and

_pr ¼
p2

/

r3q0

� J r pþ B2

8p

� �
� r̂ þ J B � rB

4p
� r̂; (136)

_p/ ¼ �rJ r pþ B2

8p

� �
� /̂ þ rJ B � rB

4p
� /̂; (137)

_pz ¼ �J r pþ B2

8p

� �
� ẑ þ J B � rB

4p
� ẑ; (138)

from which, using

_pr ¼ q0

D

Dt
vr q; tð Þ;

_p/ ¼ q0

D

Dt
qrv/ q; tð Þ
� �

;

_pz ¼ q0

D

Dt
vz q; tð Þ;

with D=Dt ¼ @t þ _qi @=@qi and q:ða; tÞ ¼ vðx; tÞ, we recover

the cylindrical components of the Eulerian equation of

motion

q
@v

@t
þ v � rv

� �
¼ �r pþ B2

8p

� �
þ B � rB

4p
: (139)

The rotating pinch equilibrium configuration of this sec-

tion corresponds to

_pr ¼ _pz ¼ _p/ ¼ 0; _qr ¼ _qz ¼ 0; _q/ ¼ X; (140)

with q0ðbrÞ ¼ pðrÞ=c2
s where p(r) is given by (131). Because

q/ ¼ Xtþ a/, we see explicitly that stationary Eulerian equi-

libria correspond to time-dependent Lagrangian trajectories.

Next, we consider the relabeling transformation intro-

duced in Ref. 5 and described in Sec. II

a ¼ Aðb; tÞ $ b ¼ Bða; tÞ;

where a ¼ Aðb; tÞ is given by

ar ¼ br; a/ ¼ b/ � XðbrÞt; az ¼ bz � VzðbrÞt; (141)

and b ¼ Bða; tÞ is given by

br ¼ ar; b/ ¼ a/ þ XðarÞt; bz ¼ az þ VzðarÞt; (142)

with J :¼ j@ai=@bjj ¼ 1, with

Vðb; tÞ :¼ _B �B�1 ¼ _BðAðb; tÞ; tÞ; (143)

given by

Vr ¼ 0; V/ ¼ XðbrÞ; Vz ¼ VzðbrÞ: (144)

By inserting (144) into the transformed Hamiltonian of

(12) (see Appendix B) we obtain the “time-relabeled” equa-

tions of motion corresponding to (133) and (134) (see (B3)

and (B4)). Then in the relabeled variables by explicitly set-

ting @=@t ¼ 0, Qi ¼ bi and by assigning the functions Bi
0 and

q0U as functions of bi consistently with the choices made in

Sec. IV, these equations yield the equilibrium equations in

the relabeled form of (B6)–(B9).

Thus, we have shown that the equilibrium equation of

(129) describes the reference state ðQe;PeÞ that follows

from:

d eH
dP
¼ 0 and

d eH
dQ
¼ 0: (145)

Given that our equilibrium corresponds to the vanishing of

the first variation of the Hamiltonian eH of (12), we can

expand as in (17) to address stability via the energy principle

described in Sec. IV A 2.

2. Lagrangian pinch stability

Now, to address the stability, we expand eH by inserting

(17) (see also Eq. (27) of Ref. 5), where the reference state is

our pinch equilibrium of Sec. IV A 1. This leads to the sec-

ond variation of the Hamiltonian eH written in terms of the

canonically conjugate variables ðg; pgÞ as given by (18) with

d2Wla½g� defined by (19) with (20). Due to the arbitrariness

of pg, we can make the first term of (18) vanish, so that a suf-

ficient stability condition for the configuration (14) is given

by d2Wla½g� > 0. We will proceed further by minimizing

d2Wla for our pinch example.

In order to be able to compare the Lagrangian stability

conditions with those obtained in the Energy-Casimir
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framework, we restrict our analysis to perturbations g that do

not depend on z.

Working out terms of (19) with (20) for our example,

we obtain in cylindrical curvilinear coordinates

qðv/ � rv/Þ � ðg � rgÞ
¼ �ðqv2

/=rÞ ½gr@rgrþðg/=rÞ@/gr � g2
/=r�; (146)

�q jv/ � rgj2 ¼ �qðv/=rÞ2 ½ð@/gr � g/Þ2

þð@/g/ þ grÞ2 þ ð@/gzÞ2�; (147)

q @p=@qðr � gÞ2 ¼ q ðc2
s =r2Þ½@rðrgrÞ þ @/g/�2; (148)

where in (148), the isothermal equation of state q @p=@q
¼ p ¼ qc2

s has been used

ðgr @rpÞr � g ¼ ½ðgr=rÞ @rp� ½@rðrgrÞ þ @/g/�; (149)

jr�ðg�BÞj2=ð4pÞ¼ ðB2
0=4pÞ½ð@rðrgrÞ2þð@/grÞ2�

þðB2
0=4pÞ½@/gz�ðB̂=rÞ

� @rðrgrÞþ@/g/

� �
�2; (150)

J� g � dB ¼ �ðB2
0=2pÞ ½gr@rðrgrÞ � g/@/gr�; (151)

where the restriction that B̂ ¼ Bz=B0 and Jz be independent

of r has been used in accordance with the derivation in Sec.

IV. In the above, we used the notation @r :¼ @=@r, etc.,

which we use throughout the present section.

In the following, we will refer explicitly to the rigid

rotation equilibrium given by (131) and adopt the dimension-

less variables used there. Also, we suppose g 
 expðim/Þ
and consider azimuthally symmetric (m¼ 0) and azimuthally

asymmetric (m 6¼ 0) perturbations separately.

Case m¼ 0:

If @/ ¼ 0 the functional d2Wla depends only on the

radial component gr and its radial derivative

d2Wla½g� ¼p
ð

rdrð�w2p̂ ½gr@rðrgrÞ� þ ðp̂=r2Þ½@rðrgrÞ�2

þðgr=rÞ ð@rp̂Þ½@rðrgrÞ� þ ½@rðrgrÞ�2½1þ ðB̂=rÞ2�
�2gr½@rðrgrÞ�Þ ; (152)

then using the equilibrium (127), this reduces to

d2Wla½g�¼p
ð

rdrð�4gr@rðrgrÞþ½ðp̂þr2þB̂
2Þ=r2�½@rðrgrÞ�2Þ:

(153)

The first term of (153) is a divergence and vanishes by inte-

gration with the proper boundary conditions, while the sec-

ond term is positive definite. Thus we conclude that our

pinch equilibrium is stable to azimuthally symmetric

perturbations.

Case m 6¼ 0:

In this case, besides gr and g/, the functional d2Wla

depends also on gz if B̂ 6¼ 0. We use the orthogonality of the

different m-components and consider the mth component.

The resulting expressions, as obtained from (146)–(151), are

given in Appendix C.

Case Bz¼ 0:

If B̂ ¼ 0, the displacement gz along the symmetry axis

of the perturbation decouples, and minimization with respect

to gz gives gz ¼ 0, provided

m2ð1� w2p̂Þ > 0! w2 < 1: (154)

Combining (C1)–(C5) and using (130), we can write the inte-

grand of the functional d2Wla in the following matrix form:

½ g�/; g�r ; @rðrg�r Þ � � W �
g/

gr

@rðrgrÞ

264
375; (155)

whereW is the 3 � 3 matrix given by

W ¼
m2p̂ 1=r2 imp̂w2 �imp̂=r2

�imp̂w2 m2- 0

imp̂=r2 0 1þ p̂=r2

264
375;

where for convenience we have defined

- :¼ 1� w2p̂ and 1 :¼ 1� w2r2: (156)

Then, to ascertain stability, we use Sylvester’s criterion on

the matrixW. This criterion states that a necessary and suf-

ficient criterion for the positive definiteness of a Hermitian

matrix is that the leading principal minors be positive. The

first principal minor ofW is seen to be positive if

1� w2�r2 > 0; i:e:; w2 < 2ð1� expð�1=2ÞÞ; (157)

while the second principal minor of W is positive if for

m¼ 1 (which is the worst case)

p̂ð1� w2r2Þð1� p̂w2Þ � r2p̂2w4 > 0; (158)

which implies

w2 � 1

r2 þ p̂
<

1

�r2
; (159)

and coincides with the condition given by (157). Finally, the

determinant ofW is positive for the worst case m¼ 1 if

ðr2 þ p̂Þð1� w2r2Þð1� p̂w2Þ
�p̂ð1� p̂w2Þ � p̂r2w4ðr2 þ p̂Þ > 0; (160)

which implies

w2 <
1

r2 þ 2p̂
; (161)

and yields the stronger condition w2 < 1=2.

Alternatively we can first minimize d2Wla with respect

to g/ in order to obtain a quadratic form involving gr and

@rðrgrÞ only, from which we can derive an Euler-Lagrange

equation. Now observe g/ enters d2Wla through a combina-

tion of terms that we rewrite as
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�w2p̂ jmg/ � igrj2 þ
p̂

r2
jmg/ � i@r rgrð Þj2

þw2p̂ jgrj2 �
p̂

r2
j@r rgrð Þj2 : (162)

In the absence of rotation, minimization with respect to g/

would lead to the incompressibility condition. Assuming

w2�r2 < 1, we introduce the new variable eg/ ¼ g/½1
�w2r2�1=2

and rewrite the expression (162) as

p̂

r2
jmeg/ þ iagr � ib@r rgrð Þj2 þ R; (163)

where a ¼ w2r2=ð1� w2r2Þ1=2; b ¼ 1=ð1� w2r2Þ1=2
, and

R¼� p̂

r2
a2jgrj2þb2j@r rgrð Þj2�ab g�r@r rgrð Þþgr@r rg�r

� �� �h i
:

Then minimization with respect to eg/ gives the following

reduced expression for d2 eW la:

d2 eW la ¼ p
ð

rdr m2-� p̂w4r2

1

	 �
jgrj2

�
þ 1� p̂

r2

w2r2

1

� �
j@r rgrð Þj2

þ p̂

r2

w2r2

1
g�r@r rgrð Þ þ gr@r rg�r

� �h i�
; (164)

which we can rewrite as

d2 eW la ¼ p
ð

rdr 1� p̂

r2

w2r2

1

� �
j@r rgrð Þj2

	
þ m2-� p̂w4r2=1� r@r p̂w2=1

� �� �
jgrj2

�
; (165)

where the contribution of the last term of R has been inte-

grated by parts.

It can be directly verified numerically that for jmj ¼ 1,

the coefficient of jgrj2 is positive for w2 � 0:62. Since in this

interval also, the coefficient of j@rðrgrÞj2 is positive, w2

�0:62 provides a less restrictive sufficient stability condition

that falls between the values given by (157) and (161). We

note that an even less restrictive condition could be identified

by solving the Euler-Lagrange equation obtained via varia-

tion of d2 eW la of (165) subject to the constraint of
Ð

rdr jrgrj2.

Such a procedure leads to an eigenvalue equation that can be

searched for the lowest eigenvalue.

Case Bz 6¼ 0:

For B̂ 6¼ 0, the component gz is coupled to the other

components of the displacement, and instead of (155) we

obtain

½ g�/ g�r @rðrg�r Þ g�z � � W �

g/

gr

@rðrgrÞ
gz

266664
377775; (166)

where the matrixW is now the 4 � 4 matrix

m2ðP̂=r2 � p̂w2Þ imp̂w2 �imP̂=r2 �m2B̂=r

�imp̂w2 m2- 0 0

imP̂=r2 0 1þ P̂=r2 �imB̂=r

�m2B̂=r 0 imB̂=r m2-

266664
377775;

where we recall - ¼ 1� p̂w2 and P̂ ¼ p̂ þ B̂
2
. Proceeding

as above using Sylvester’s criterion now leads to m¼ 1 to

the four conditions

0 < p̂ð1� w2r2Þ þ B̂
2
; (167)

0 <
p̂ þ B̂

2

p̂ p̂ þ B̂
2 þ r2

� �� w2; (168)

0 <
p̂ þ B̂

2

p̂ 2 p̂ þ B̂
2

� �
þ r2

h i� w2; (169)

0 < 1� w2ðr2 þ 3p̂ þ B̂
2Þ þ p̂w4½r2 þ 2ðp̂ þ B̂

2Þ� : (170)

Note that the first two conditions give threshold values that

increase with B̂ while the third gives w2 < 1=2 independent

of B̂, i.e., the effect of Bz would appear to be stabilizing or

neutral if we were to neglect the coupling to gz that appears

instead in the fourth condition, where the effect of Bz is

destabilizing (for w2 < 1=2).

The inequality (170) can be better cast in the form

w2b̂
2ð1� 2w2p̂Þ < ð1� w2p̂Þ½1� w2ðr2 þ 2p̂Þ�; (171)

which, since 1� 2w2p̂ is positive for w2 < 1=2 and r < �r ,

can be used to compute the maximum value of B̂ that yields

a sufficient stability condition when w2 < 1=2. This yields

B̂
2
w2 < 1 for w2 ! 0 and B̂

2
< 1=3 for w2 ! 1=2�.

Alternatively we can perform separate minimizations

with respect to gz and g/ by defining the new variables

eeg z ¼ gz½1� w2p̂�1=2;eeg/ ¼ g/ ½1� w2½r2 þ B̂
2
=ð1� w2p̂Þ��1=2 :

Provided w2p̂ < 1 and

w2½r2 þ b̂
2
=ð1� w2p̂Þ� < 1;

i.e., w2½�r2 þ B̂
2� < 1, minimization with respect to these var-

iables gives after integration by parts the following reduced

expression:

d2 eeW la ¼ p
ð

rdr 1þ p̂ þ B̂
2

r2
�

p̂ 1� B̂
2
w2=-

� �2

r2 1� w2 r2 þ B̂
2
=-

� �h i
0B@

1CA
264

� j@r rgrð Þj2 þ m2-� p̂w4r2

1� w2 r2 þ B̂
2
=-

h i0@
�r@r

p̂w2 1� B̂
2
w2=-

h i
1� w2 r2 þ B̂

2
=-

h i
0B@

1CA
1CAjgrj2

375 : (172)
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Note that the minimization with respect to egz can be shown

to have introduced a negative, i.e., destabilizing, contribution

to d2 eeW la. It can be directly verified numerically that for

jmj ¼ 1, the coefficient of jgrj2 is no longer positive for

w2�0:62 if B̂
2
> 0; e.g., for B̂

2 ¼ 1, the coefficient of jgrj2
is positive for w2�0:46 (this value is essentially in agree-

ment with the result that would be obtained from

(167)–(170). Since in this latter interval also, the coefficient

of j@rðrgrÞj2 is positive, w2�0:46 provides a sufficient stabil-

ity condition for B̂
2 ¼ 1. As for the B̂ ¼ 0 case, a less restric-

tive condition could be identified by solving the Euler-

Lagrange equation derived by variation with the normaliza-

tion constraint
Ð

rdr jrgrj2.

B. Eulerian pinch

1. Eulerian pinch equilibria

In Ref. 4, which was reviewed in Sec. II B, both the

equilibrium and the perturbations were assumed to be heli-

cally symmetric. In the present section, we have assumed the

equilibrium to be both translationally symmetric along z and

azimuthally symmetric along /, while we considered pertur-

bations that have only translational symmetry along z.

Then the full configuration is symmetric under translations

along z.

Now we consider the first variation of the energy-

Casimir functional F½Z� ¼ HTS½Z� þ
P

C½Z� (see Sec. II B

and Eq. (1) of Ref. 6) with a translational and rotational sym-

metry, which leads to the equilibrium equation

1

4pr

d

dr
1� 4pF 2

q

 !
r

dw
dr

" #
¼ qTS0 � qJ 0 � BzH0 � qvzG0 � v/B/ þ vzBzð ÞF 0;

(173)

where now a prime denotes differentiation with respect to the

flux function w, and specific equilibrium solutions are defined

by the choice of the Casimir functions F ; H; J ; G, and S as

functions of w. Using the definition of these Casimirs (see

Sec. II B) in terms of the plasma variables, this choice allows

us to bring (173) into the form of (127) and to assign the

dependence on w of the free functions in this equation.

For the isothermal case, the internal energy is U
¼ c2

s lnðq=q0Þ to within a constant and the relevant combina-

tion of Casimirs is

FB/ ¼ qv/; (174)

FBz þ qG ¼ qvz; (175)

HþFvz ¼
Bz

4p
; (176)

J þ vzG ¼ v2
z=2þ v2

/=2þ c2
s lnðq=q0Þ: (177)

The rigid rotating pinch solution that we have chosen,

has Bz constant and is invariant along z, as given by (130), is

obtained by choosing

F ŵ
� �
¼ B0

2pXr0

1� 1� w2

2

� �
exp �w2ŵ
� �	 �

; (178)

GðŵÞ ¼ �Xr0B̂; (179)

H ŵ
� �
¼ B0

4p
B̂; (180)

J ðŵÞ¼�c2
s ½w2ŵ� ln½1�ð1�w2=2Þ expð�w2ŵÞ��; (181)

from which by solving the generalized Grad-Shafranov equa-

tion, we obtain ŵ ¼ �r2=2 (or B/ ¼ B0r) and where, in accor-

dance with (130), the dimensionless variables ŵ ¼ w=ðr0B0Þ;
B̂, and w are used and r is the scaled radius.

2. Eulerian pinch stability

Proceeding as described in Sec. II B, a sufficient stability

condition is obtained by considering the second variation of

F½Z�, viz., Eq. (39).

Starting from (39)–(42), we restrict the coefficients b1,

b2, and b3 to depend only on r, because our pinch equilib-

rium configuration is both azimuthally and translationally

symmetric. For b2 defined by (41), we obtain

b2¼
1

r

d

dr

@

@w
M2

4p

� �
rwr

" #
� @

@w2
pþB2

z

8p
þM

2

4p
B2

/

� �
(182)

and, using

df

dr
¼ @f

@r
þ @f

@w
wr þ

@f

@wr

dwr

dr
; (183)

and q ¼ qðw; wrÞ, as implicitly given by the Bernoulli func-

tional J , b2 becomes

b2 ¼
@

@w
M2

4p
1þ 1

q
@q
@wr

B/

	 � !
dwr

dr

�B/

r

@

@w
M2

4p

� �
� @2

@w2
pþ B2

z

8p

� �
: (184)

Finally, using the equilibrium of (128), we obtain

b2 ¼ �
1

r2

1�M2

4p
þ 1

rB/

d

dr
b1r

dB/

dr

� �
: (185)

Before proceeding, let us consider some special limits.

If the plasma is static, i.e., v/ ¼ 0, we obtain b1 ¼ 1=4p;
b3 ¼ 0, and

b2 ¼ �
1

B/

d

dr

1

B/

d

dr
pþ B2

z

8p

� �" #
: (186)

If Bz¼ 0, we obtain

b1 ¼
1

4p
� 1

4p
M2

1� �M2
; (187)

b3 ¼
1

4p
M2 �M2

1� �M2
; (188)
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where �M2 ¼ v2
/=c2

s is the gas dynamic Mach number, and

b2 ¼
1

rB/

d

dr

M2

4p
B/ �

1

1� �M2
r

dB/

dr

� �" #

� 1

B/

d

dr

1

B/

dp

dr

� �
: (189)

Now we return to our analysis of d2
F of (39) for the

pinch case at hand. ForM2 < 1, a sufficient stability condi-

tion is provided by b1 > 0; b1 þ b3 > 0 and b2 > 0. Since

4pðb1 þ b3Þ ¼ 1�M2ðrÞ ¼ 1� w2p̂, we find that b1 þ b3

> 0 if w< 1 independent of Bz.

Using (130) in Eqs. (40), (41), and (42) we find

4pb3 ¼
w4p̂ 1� w2p̂

� �
r2

1� w2p̂ð Þ 1� w2r2ð Þ � w2B̂
2

(190)

and thus

4pb1 ¼ �4pb3 þ 1�M2

¼ 1� w2p̂
� �

1� w4p̂ r2

1� w2p̂ð Þ 1� w2r2ð Þ � w2B̂
2

" #
:

(191)

Note that @b1=@B̂
2
< 0 and b1 > 0 so 1� w2ðp̂ þ r2

þB̂
2Þ > 0, which reduces (in agreement with the conditions

listed above (172)) to

w2ð�r2 þ B̂
2Þ < 1 :

From 4pr2b2 ¼ �4p b3 þ 4p r db1=dr, we obtain

4pb2¼�
w4p̂ 1�w2p̂

� �
1�w2p̂ð Þ 1�w2r2ð Þ�w2B̂

2

�2
d

dr2
w2p̂þ w4p̂ 1�w2p̂

� �
r2

1�w2p̂ð Þ 1�w2r2ð Þ�w2B̂
2

" #
: (192)

Note that the value of b2 decreases with increasing B̂
2

and

that b2 > 0 implies

w2 <
3þ B̂

2 � 1þ 4B̂
2 þ B̂

4
� �1=2

4þ B̂
2

; (193)

i.e., w2 < 1=2� ð3=8Þ B̂2
for small B̂

2
, and w2 < 1=B̂

2
for

large B̂
2
. To obtain (193), we have exploited the fact that b2

starts to become negative at r2 ¼ 0.

For B̂
2 ¼ 1, we find w2 � 0:31, which is more restric-

tive than the condition w2 � 0:46 found in the Lagrangian

framework below (172). This result is consistent with the

expectation (see Ref. 5) that energy-Casimir stability con-

ditions are more restrictive than the Lagrangian stability

conditions.

The Euler-Lagrange equation associated with the

extrema of (39) subject to the normalization constraint of

constant
Ð

d3x ðdwÞ2 is

r � ½b1 I þ b3 ðI � ewewÞ� � rdw� ðb2 � kÞdw ¼ 0; (194)

where k is the Lagrange multiplier, I is the identity tensor,

and ðI � ewewÞ is the projector on the tangent plane to the

w-surfaces. Writing dw as

dw ¼ dŵðrÞ expðim/Þ; (195)

with m the azimuthal wave number, (194) becomes

1

r

d

dr
r b1

d dŵ rð Þ
dr

	 �
� m2

r2
b1 þ b3ð Þ þ b2 � kð Þ

	 �
dŵ rð Þ ¼ 0:

(196)

Note that b3 becomes irrelevant for stability in the case of

azimuthally symmetric perturbations.

In terms of w, p̂ðrÞ and B̂, and our shorthand - ¼ 1

�w2p̂, (196) takes the form

1

r

d

dr
r - 1� w4p̂ r2

- 1� w2r2ð Þ � w2B̂
2

 !
d dŵ
dr

" #

� -
m2

r2
� k

4p
þ w4p̂ -

- 1� w2r2ð Þ � w2B̂
2

"

þ2
d

d r2
w2p̂ þ w4p̂ -r2

- 1� w2r2ð Þ � w2B̂
2

 !#
dŵ ¼ 0: (197)

Searching for the lowest eigenvalue of the Lagrange multi-

plier k as a function of w in the range

3þ B̂
2 � 1þ 4B̂

2 þ B̂
4

� �1=2

4þ B̂
2

< w2 <
1

�r2 þ B̂
2
; (198)

would yield a more accurate sufficient stability condition

that could be compared with the one obtained by solving the

constrained Euler-Lagrange equation derived from the func-

tional (172). We leave it here and continue on to discuss the

dynamically accessible stability.

C. Dynamically accessible pinch

1. Dynamically accessible pinch equilibria

As discussed in Sec. II C, with the dynamically accessi-

ble approach one considers the constrained variations of Eqs.

(44)–(47). Upon evaluating these expressions on the pinch

equilibrium of this section, expressed by (123)–(126), it is

straightforward to show that dHda of (48) vanishes. For

example, vanishing of the coefficients of g2 and g3 give

immediately that qðrÞsðrÞv/ðrÞ and rqðrÞv/ðrÞ are constant.

Evaluation of the coefficients of g1 and g4 are more tedious,

but must vanish since we have shown in general that (48)

gives all equilibria.

2. Dynamically accessible pinch stability

Given that dHda ¼ 0, we can proceed to examine d2Hda

of (49) with the variations of (44)–(47) evaluated on our

rotating pinch equilibrium. Rather than starting from scratch,

we will appeal to our results already obtained in Ref. 5.

For a translationally symmetric equilibrium along the

z-direction, the stability condition derived from dynamically
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accessible variations may or may not coincide with that

obtained in terms of the Lagrangian variations.5,53 Starting

from Eq. (103) of Ref. 5 with h ¼ ez, k¼ 1, the crucial quan-

tity for translationally symmetric equilibria is

C ¼
h2B � ðv � rg1Þi
hqv? � rg1zi

" #
; (199)

where h i ¼
Ð
wd2x=jrwj denotes the surface integral over a

flux surface. If the expression of (199) vanishes, the two

kinds of stability coincide.

The first stabilizing term in d2Hda of 49, which can be

eliminated in d2Hla by minimizing over Lagrangian varia-

tions, here becomes

D ¼
ð

d3x qjXj2; (200)

where

X : ¼ rg3 þ
r
q
rg2 þ v� r� g1ð Þ

þ2 v � rð Þg1 þ
1

q
B� r� g4ð Þ; (201)

and this term is minimum for

Xmin ¼ ðN1=qÞBþ N2 ez; (202)

where N ¼ A
�1C, i.e.

N1

N2

" #
¼ hjBj2=qi hBzi

hBzi 1

" #�1
C1

C2

" #
: (203)

For our rotating pinch example, we obtain

A ¼ 4ph
ðB0ðr2 þ b2ÞÞ=q b

b 1=B0

" #
; (204)

where 6h is the height of the plasma column in the 6z-

directions; ideally h!1 but it cancels and does not appear

in the result. Finally

C ¼ h2B � ðv � rg1Þi
hqv? � rg1zi

	 �
¼ rVB0hg1ri

0

	 �
: (205)

It can be noted on general grounds that hg1ri vanishes

identically for perturbations that average to zero after inte-

gration over the azimuthal angle (i.e., that do not contain an

m¼ 0 component). Since in Sec. IV A 2, we have shown that

for our rotating pinch example azimuthally symmetric per-

turbations of our rotating pinch equilibrium are stable to

Lagrangian perturbations, thus the restriction to dynamically

accessible perturbations does not modify the stability condi-

tion. However, for general equilibria this is not true.

D. Pinch comparisons

Let us now summarize and compare our three stability

approaches for the rotating pinch equilibria. In order to

compare the Lagrangian and the dynamically accessible sta-

bility conditions with those obtained in the energy-Casimir

framework, it is necessary to restrict our analysis to perturba-

tions g that do not depend on z. This excludes “sausage” or

kink type instabilities. The results of the stability analysis for

such perturbations can be expressed as stability bounds on

the normalized rotation frequency w. These bounds are mod-

ified by the presence of an equilibrium magnetic field along

the symmetry direction, Bz, that couples the component gz to

the other components of the displacement leading in general

to stricter bounds.

For the equilibrium under examination, the Lagrangian

and the dynamically accessible approaches lead to equivalent

conditions. Although the constraints obeyed by the dynami-

cally accessible perturbations in the presence of flows lead to

an additional stabilizing term that cannot be made to vanish

for azimuthally symmetric perturbations, this term does not

modify the stability analysis since azimuthally symmetric

perturbations are found to be stable even within the

Lagrangian framework. For more general equilibria than the

ones considered here, this need not be the case.

The minimization of d2Wla of (19) for our pinch case

reduced to the study of the 3� 3 matrix of (155) (the 4� 4

matrix for Bz 6¼ 0 of (166)) for jmj ¼ 1 perturbations. Two

different methods can be used: a necessary and sufficient

condition for the positivity of this matrix is provided by the

Sylvester criterion which yields w2 < 1=2 for Bz¼ 0 and

w2B2
z < 1 for Bz 6¼ 0 and w2 ! 0. A partial minimization

procedure with respect to g/ (to gz and g/ for Bz 6¼ 0) leads

to less restrictive conditions: w2�0:62 for Bz¼ 0 and w2

�0:46 choosing, e.g., B2
z ¼ 1.

Extremization of the energy-Casimir functional over all

variables except dw leads to sufficient stability bounds on w2

that, similar to the Lagrangian case, become stricter as B2
z

increases. As predicted in Ref. 5 and recalled in Sec. II, these

bounds are in general more restrictive than those found within

the Lagrangian framework, as shown, for e.g., by considering

again B2
z ¼ 1, in which case we find w2�0:31. Sharper stabil-

ity conditions could be obtained by solving the Euler-Lagrange

equation associated with this reduced energy-Casimir func-

tional subject to a normalization constraint on dw.

V. CONCLUSIONS

To summarize, we have investigated the MHD stability

in the Lagrangian, Eulerian, and dynamically accessible

approaches. In Sec. II, we reviewed the general properties, in

particular, the time-dependent relabeling idea introduced in

Ref. 5 that gives Eulerian stationary equilibria as a static

state in terms of a relabeled Lagrangian variable. New details

on the general comparison of the three approaches were

given in Sec. II D. Then we proceeded to our two examples,

the convection problem of Sec. III and the rotating pinch of

Sec. IV, with comparison of the stability results for the three

methods given in Secs. IV D and III D, respectively. Of note,

is the explicit incorporation of the time-dependent relabeling

for the rotating pinch, which to our knowledge is the first

time this has been done.
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As noted previously, the methods described here for the

three approaches are of general utility—they apply to all

important plasma models, kinetic as well as fluid, when dis-

sipation is neglected. In fact, some time ago in Refs. 27 and

43, the approaches were compared for the Vlasov and

guiding-center kinetic equations (see also Refs. 54–57),

including a dynamically accessibly calculation in this kinetic

context akin to the one done here and in Refs. 5 and 53 for

MHD. Given the large amount of recent progress on

extended magnetofluid models,8–13,15–17 hybrid kinetic-fluid

models,18,19 and gyrokinetics20,21 a great many stability cal-

culations like the ones of this paper are now possible. For

example, the techniques that have been used in the context

of Hamiltonian reconnection58–60 can be further adapted to

explore this effect in more general models.
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APPENDIX A: LAGRANGIAN EQUATIONS OF MOTION
AND ROTATING PINCH EQUILIBRIA

In order to obtain the MHD equations of motion from

the Hamiltonian of (7), as described in Sec. II A, we split H
into two terms H ¼ HF þ HB where HF is the sum of the

fluid kinetic and internal energies, and HB is the magnetic

field energy given by

HB ¼
ð

d3a
@qi

@aj

@qi

@ak

Bj
0Bk

0

8pJ : (A1)

The functional derivative of HF is given by (see Ref. 22 for

details)

dHF

dqi
¼ pn pm

2q0

@gnm

@qi
þ @

@am

q0

J

� �2

Uq
@J
@qj

;m

" #
: (A2)

Using

@J
@qi

;m

¼ Am
i ¼ �ijk�

mnl 1

2

@qj

@an

@qk

@al
(A3)

and

@Am
i

@am
¼ @

@am
�ijk�

mnl 1

2

@qj

@an

@qk

@al
¼ 0; (A4)

we can rewrite Eq. (A2) as

dHF

dqi
¼ pn pm

2q0

@gnm

@qi
þ A m

i

@

@am

q0

J

� �2

Uq

" #
: (A5)

Similarly for (A1) we obtain

dHB

dqi
¼ @glm

@qi

@ql

@aj

@qm

@ak

Bj
0Bk

0

8pJ �
@

@aj
gim

@qm

@ak

Bj
0Bk

0

4pJ

 !

þ @

@at
glm

@ql

@aj

@qm

@ak

Bj
0Bk

0

8pJ 2

@J
@qi

;t

 !
; (A6)

and the Lagrangian equations of motion are given by

_pi ¼ �
dH

dqi
¼ � dHF

dqi
� dHB

dqi
; (A7)

with (A2) and (A6), and

_qi ¼ � dH

dpi
¼ pi

q0

¼ gij pj

q0

: (A8)

Note that the first terms of (A2) and (A6) give the effect of

non-Cartesian coordinates.

To obtain from (A7) and (A8) the Eulerian form of the

equations of motion it is convenient to recall that the cofac-

tor matrix Ai
k satisfies the identity

di
jJ ¼

@qk

@aj
Ai

k

and consequently

@

@qk
¼ @ai

@qk

@

@ai
¼ A i

k

J
@

@ai
;

where @=@qk becomes r in the Eulerian description. Using

p ¼ q2Uq, the second term of (A5) becomes the pressure

force, and using the flux conservation expression

Bi ¼ @qi

@ak

Bk
0

J ; (A9)

the last two terms of (A6) become

�JBj @

@qj

Bi

4p

� �
þ J @

@qi

B2

8p

� �
; (A10)

where we used the divergence equation @Bj
0=@aj ¼ 0.

To facilitate our calculation of the rotating pinch equi-

librium (cf. Appendix B), consider the cylindrical pinch

geometry where the metric is given by (132). Evidently

@gnm

@qi
¼ �dn

/ dm
/ dr

i

2

qrð Þ3
; (A11)

and consequently

pn pm

2q0

@gnm

@qi
¼ �dr

i

p/p/

qrq0

; (A12)

and the first term of Eq. (A6) is

dr
i

g//

qr

@q/

@aj

@q/

@ak

Bj
0Bk

0

4pJ ¼ dr
i

J
qr

B/B/

4p
: (A13)

Expressions (A12) and (A13) are of use for our equilibrium

calculation.
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APPENDIX B: RELABELING TRANSFORMATION FOR
THE PINCH

The canonical transformation induced by the time-

dependent relabeling is generated by the functional

F½q;P; t� ¼
ð

d3a

ð
d3b q �P dða�Aðb; tÞÞ;

and yields (see Eq. (9) of Ref. 5) the new Hamiltonian of

(11) according to

eH Q;P½ � ¼ H þ @F

@t
;

with Vðb; tÞ ! V/ðb; tÞ ¼ brXðbrÞ for the relabeling defined

by Eq. (141).

With an integration by parts involving the time deriva-

tives of the delta functions, we obtain

@F

@t
¼
ð

d3b

ð
darda/dazd ar �A

rð Þd a/ �A
/ð Þd az �A

zð Þ

� @tA
r @

@ar
q �Pð Þ þ @tA

/ @

@a/
q �Pð Þ

	
þ@tA

z @

@az
q �Pð Þ

�
;

where @t denotes time derivative at a constant label b. Using

QðBða; tÞ; tÞ ¼ qða; tÞ, the first term in the bracket �½ �
above becomes

@tA
r @

@ar
q �Pð Þ ¼ Pr@tA

r @Qr

@bi

@Bi

@ar

þP/@tA
r @Q/

@bi

@Bi

@ar
þPz@tA

r @Qz

@bi

@Bi

@ar
:

(B1)

Similar expressions follow for the other two terms.

Collecting all the terms proportional to Pr, we obtain

@tA
r @B

i

@ar
þ @tA

/ @B
i

@a/
þ @tA

z @B
i

@az

	 �
Pr

@

@bi
Qr

¼ �Pr � _B
i @

@bi
Qr; (B2)

where we used the identity

_B
i þ @B

i

@ar
@tA

r þ @B
i

@a/
@tA

/ þ @B
i

@az
@tA

z ¼ 0:

Finally, employing (13)

Vr ¼ _B
r
; V/ ¼ _B

/
; Vz ¼ _B

z
;

we obtain @F=@t ¼ �
Ð

d3b ½ðV � rbQÞrPr� :
With this additional term in the Hamiltonian (12), (133)

and (134) become

@tQ
i ¼ d eH

dPi
¼ gij Pjeq0

� Vk @Qi

@bk
; (B3)

and

@tPi ¼�
d eH
dQi
¼ dr

i

P/P/

Qreq0

� eJ @

@Qi

eq0eJ
� �2

Uq

" #

� dr
i

eJ
Qr

eB/ eB/

4p
þ eJ eBj @

@Qj

eBi

4p

� �

�eJ @

@Qi

eB2

8p

 !
� @

@bk
VkPi

� �
: (B4)

By assuming

eBr

0ðb; tÞ ¼ 0; eBz

0ðb; tÞ ¼ 0;

and

eB/
0 ðb; tÞ ¼ JB/

0 ðAðb; tÞÞ ¼ B0br;

relabeled equilibria are obtained by setting @tQ
i ¼ 0; @tPi

¼ 0, and Qi ¼ bi in Eqs. (B3) and (B4), which yields

Pr ¼ eq0Vr; P/ ¼ ðbrÞ2eq0V/; Pz ¼ eq0Vz; (B5)

and

0 ¼P/P/

breq0

� @

@br
eq2

0Uq

� �
�
eB/

0
eB0/

4pbr
� @

@br

eB/
0
eB0/

8p

 !

� @

@bk
VkPr

� �
; (B6)

0 ¼ � @

@b/
eq2

0Uq

� �
� @

@bk
VkP/

� �
; (B7)

0 ¼ � @

@bz
eq2

0Uq

� �
� @

@bk
VkPz

� �
; (B8)

where we used the fact that eJ ¼ 1.

If we consider only equilibria with both axial and trans-

lational symmetries, i.e., @=@b/ ¼ 0 and @=@bz, then by

substituting (B5) into (B7) and (B8), we obtain

@

@br

P/Preq0

� �
¼ 0 and

@

@br

PzPreq0

� �
¼ 0; (B9)

which have the trivial solution Pr ¼ 0. If we assume a uni-

form temperature eT 0 and an initial density field eq0 ¼ eq0ðbrÞ,
such that the pressure pðeq0Þ ¼ eq2

0UqðeT 0; eq0Þ is the one

given in (131), Eq. (B6) can be solved for P/ and,

consequently, written in terms of the relabeling velocity

V/ ¼ P/=ððbrÞ2eq0Þ in agreement with Sec. IV.

APPENDIX C: PINCH DETAILS

Here we record some formulas needed for the stability

development of Sec. IV A 2. We use � to denote the com-

plex conjugate and c:c: to denote the complex conjugate of

the preceding term. From Eqs. (146)–(151) we obtain for

the mth component of these equations, the following five

terms:
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q½ðv/ � rv/Þ � ðg � rgÞ � jðv/ � rgÞj2�jmj
! �w2p̂ ½ ðg�r @rgr þ c:cÞ=2� i 3m= ðg�/gr � c:c:Þ=2

þm2ðjg/j2 þ jgrj2 þ jgzj2Þ�; (C1)

pjðr � gÞ2jjmj ! ðp̂=r2Þ½ j@rðrgrÞj2 þ m2jg/j2

�i m½g�/@rðrgrÞ � c:c:� �; (C2)

½ðgr@rpÞðr�gÞ�jmj ! ½ðg�r=rÞð@rp̂Þ½@rðrgrÞþ img/�þc:c: �=2;

(C3)

jr � ðg� BÞj2jmj ! jð@rðrgrÞj2 þ m2ðjgrj2 þ jg2
z Þ�

þðB̂2
=r2Þ ½ jð@rðrgrÞj2 þ m2jg/j2

�i mðg/@rðrg�r Þ � c:c:Þ �
þðB̂=rÞ ½ i mðg�z@rðrgrÞ � c:c:Þ
�m2 ðg�z g/ þ c:c:Þ�; (C4)

J� g � dB! �½g�r@rðrgrÞ þ c:c:þ i mðg�/gr � c:c:Þ� :
(C5)
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