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Abstract
Recent progress regarding the noncanonical Hamiltonian formulation of extendedmagnetohydrody-
namics (XMHD), amodel withHall drift and electron inertia, is summarized. The advantages of the
Hamiltonian approach are invoked to study some general properties of XMHD turbulence, and to
compare them against their idealMHDcounterparts. For instance, the helicityflux transfer rates for
XMHDare computed, and Liouville’s theorem for thismodel is also verified. The latter is used, in
conjunctionwith the absolute equilibrium states, to arrive at the spectra for the invariants, and to
determine the direction of the cascades, e.g., generalizations of thewell-known idealMHD inverse
cascade ofmagnetic helicity. After a similar analysis is conducted for XMHDby inspecting second
order structure functions and absolute equilibrium states, a couple of interesting results emerge.
When cross helicity is taken to be ignorable, the inverse cascade of injectedmagnetic helicity also
occurs in theHallMHD range—this is shown to be consistent with previous results in the literature.
In contrast, in the inertialMHD range, viz at scales smaller than the electron skin depth, all spectral
quantities are expected to undergo direct cascading. The consequences and relevance of our results in
space and astrophysical plasmas are also briefly discussed.

1. Introduction

Inmost areas of fusion, space and astrophysical plasmas, fluidmodels have proven to be highly useful in
capturing the relevant physics [1–4]. Amongst them, the simplest andmostwidely used is ideal
magnetohydrodynamics (MHD). AlthoughMHDhas proven to be very successful in predictingmany
phenomena, it is known to be valid only in certain regimes. There exist a wide class of systems, particularly in
astrophysics and space science, which are collisionless with non-idealMHDeffects becoming important. For
instance, one such notable contribution is theHall effect that becomes non-negligible when the characteristic
frequencies become comparable to, or greater than, the ion cyclotron frequency wci [5]. Another crucial effect
worth highlighting is due to electron inertia, which becomes important when one considers characteristic length
scales that are smaller than the electron skin depth w=d ce pe with wpe denoting the electron plasma frequency.

Thus, it is advantageous to seekfluidmodels containing the above two effects. ExtendedMHD, henceforth
referred to as XMHD, is amodel that is endowedwith both theHall drift and electron inertia [6]. It can be
rigorously derived from two-fluid theory through a series of systematic orderings and expansions, as shown in
Dungey [1], Goedbloed and Poedts [3], Keramidas Charidakos et al [7]. Although it has long since been known
that idealMHDhas both action principle [8] andHamiltonian [9] formulations, theXMHDequivalents proved
to be quite elusive until recently—the formerwas presented inKeramidas Charidakos et al [7], D’Avignon et al
[10] and the latter in Abdelhamid et al [11], Lingam et al [12]. At this stage, it is important and instructive to pose
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two crucial questions.What general benefits do theHamiltonian and action principle (HAP) formulations
accord? Secondly, what are the physical systems and phenomenawhere XMHDhas been successfully employed?

Thefirst question has already been explored extensively, andwe refer the reader to the reviews by Serrin [13],
Morrison [14], Zakharov et al [15], Holm et al [16], Salmon [17], Zakharov et al [18],Morrison [19, 20]. Some of
the chief advantages, apart from their inherentmathematical elegance and simplification, include:

• A systematic and rigorousmeans of constructing equilibria and obtaining sufficient conditions for their
stability [16]. This was recently applied to idealMHD in a series of works by Andreussi et al [21, 22]; see also
Morrison et al [23].

• A clear derivation of reducedmodels without the loss of theHamiltonian nature, and thereby avoiding
‘spurious’ dissipation; for e.g.,Morrison andHazeltine [24], Hazeltine et al [25],Morrison et al [26], Lingam
[27], Keramidas Charidakos et al [28].

• The extraction of important invariants such as themagnetic helicity and its generalizations [16, 29–31]. This is
done bymeans of the particle relabeling symmetry [30] in the action principle approach and via the
degeneracy of the noncanonical Poisson bracket in theHamiltonian formulation [32]. It is also possible to
establish and elucidate topological properties of XMHDbymeans of theHAP approach, as recently shown in
D’Avignon et al [10], Lingam et al [31].

• Adetailed understanding of howmagnetic reconnection operates by taking advantage of the underlying
Hamiltonian structure, such as the aforementioned invariants [33–39].

• Anaturalmeans of arriving at weak turbulence theories, as described in Zakharov et al [18], Zakharov and
Kuznetsov [40], Nazarenko [41]. Thismethodology was applied toHallMHD (HMHD) by Sahraoui et al [42].
The reader is directed to the analysis by Abdelhamid et al [43] that drew extensively upon theHAP approach
(for e.g., to construct nonlinear wave solutions), and thereby arrived at the energy and helicity spectra of
XMHD.We also point out the recent beatification procedure of Viscondi et al [44] as an elegant alternative,
that explicitly relies on theHamiltonian formulation.

• The knowledge of theHAP structures has proven to be highly useful numerically for constructing structure
preserving integrators (variational and symplectic) [45–50]. These integrators have (definitively) out-
performed other conventional choices, as the latter lack the unique conservation laws and geometric
properties of the former.

In addition to these (admittedly representative) benefits, we also observe that theHAP approach has been
tangentially employed in astrophysical phenomena such asHMHDdynamos [51–53] and jets [54]. Thus, it is
quite evident that a thorough understanding of theHAP formalisms for XMHD is quite warranted.However,
this brings us to the second point, concerning the physical relevance and importance of themodel (XMHD)
itself.

Fortunately, there are several instances where XMHDhas proven to be a very useful physicalmodel. From
the perspective of fundamental plasma phenomena, both turbulence and reconnection results have been
radically altered since theHall term (and electron inertia)was taken into account. In the case of the latter field in
particular, it is not an exaggeration to say that thewhole fieldwas revitalized through the inclusion of this one
simple term. The readermay consult the excellent texts by Biskamp [55], Birn and Priest [56] on this subject. In
turbulence, it has been shown that the introduction ofHall drift (and electron inertia) leads to the steepening of
spectra [43, 57–60]. Each of these theoretical consequences has been confirmed through detailed observations of
the Earth’smagnetosphere [61, 62], and the solar wind and corona [63–68]. Lastly, we alsowish to note that
certain fusion phenomena, such as sawtooth crashes [69], have also been explainedwell by utilizing XMHD.

The outline of our paper is as follows. In section 2, we discuss the noncanonical Hamiltonian structure of
XMHD, and some of its salient features.We follow this up by using some of these aspects to gain a better
understanding XMHD turbulence. In section 3, we generalize the results of Banerjee andGaltier [70] on helicity
flux transfer rates to include electron inertia, andwe also briefly raise the issue of the directional nature of the
cascades. Thismatter is addressed inmore detail in section 4, wherewe predict that the inverse cascade of
magnetic helicity operates in theHMHDregime, but is absentwhenwe consider the inertialMHD (IMHD)
range that is valid at sub-electron skin depth scales. Finally, we concludewith a summary of our results and their
implications in section 5.
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2. TheHamiltonian formulation ofXMHD

In the present section, we introduce the equations of the XMHDmodel, and discuss itsHamiltonian structure as
well as the insights that follow as a natural consequence.

2.1. Preliminarymodel considerations
Although the correct formof the equations of XMHDhas been known since the 1950s [1, 6], many different
variants exist in the literature. Of these, it is worth remarking that some of them are incorrect and do not
conserve energy [71].

TheXMHDequations comprise of the continuity equation, themomentum equation and the generalized
Ohm’s law [3, 56]. They are respectively given by
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Here, note that the one-fluid variables r, V and m=  ´-J B0
1 are the totalmass density, the center-of-mass

velocity and the current respectively. E and B denote the electric andmagneticfields, while ps is the pressure of
species ‘s’ and = +p p pi e is the total pressure. The variablesme and e are the electronmass and charge, while
m = m me i is themass ratio. An inspection of (3) reveals that it is farmore complex than the idealMHDOhm’s
law that follows by setting all terms except thefirst two (on the lhs) to zero.

The next step is to render the above equations dimensionless. This is done by normalizing everything in
terms of Alfvénic units, and the reader is directed toAbdelhamid et al [11], Lingam et al [31] for further details.
We also introduce the dynamical variable
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which is well known fromprevious theories that relied upon electron inertia, such asOttaviani and Porcelli [33],
Cafaro et al [34]. After some algebraicmanipulation (2) and (3) can be expressed in a simplermanner as follows.
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In obtaining the above two equations, we observe that a barotropic pressure was implicitly assumed; for a non-
barotropic treatment, we refer the reader toKeramidas Charidakos et al [7], D’Avignon et al [10]. In the above
expressions, note that w= ( )d c Ls ps is the skin depth of species ‘s’normalized to the characteristic length scale
L, and wps is the corresponding plasma frequency. All of these values are in terms of thefiducial units that were
adopted for the purpose of normalization.

2.2. TheHamiltonian structure ofXMHD
Weare now in a position to present theHamiltonian formulation of XMHD.Adetailed derivation of this
structure can be found inD’Avignon et al [10], Abdelhamid et al [11], Lingam et al [12], and a recent overview
was provided in Lingam et al [31].

Firstly, we observe that (1), (5) and (6) can be used to show that the following energy functional is conserved.
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where ÌD 3 [14]. It is worth remarking that there is no di dependence, but there is a de-dependent term,
which stems from the electronfluid velocity. Upon setting d 0e , wewill obtain the famous idealMHD
energy [8].

Frombasic classicalmechanics, we know that a system can be renderedHamiltonian if one has a conserved
‘energy’ and a suitable Poisson bracket. The Poisson bracketmust satisfy the properties of (i) bilinearity, (ii)
antisymmetry, (iii) the Leibniz product rule, and (iv) the Jacobi identity [72]. Even though our Poisson bracket is
infinite-dimensional (and degenerate), itmust still satisfy these properties.
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It is instructive tofirst beginwithHMHD,which is the best known of all the extendedmagnetofluidmodels.
As noted earlier, it has proven to be highly useful in explaining phenomena such asmagnetic reconnection,
dynamos, and turbulence. The correct noncanonical Poisson bracket was provided byYoshida andHameiri
[73], and is given by
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where d dff ≔F F is the functional derivative [14]with respect tof. It ismore transparent towrite the above
equation as

= +{ } { } { } ( )F G F G F G, , , , 8HMHD MHD Hall

where thefirst two lines of (8) constitute the classicMHDbracket { }F G, MHD that was first derived byMorrison
andGreene [9]. The last line of (8), with the factor of di in front, gives rise to theHall contributions in the
Ohm’s law.

Next, let us turn our attention to (3) oncemore. TheHMHDOhm’s law follows by setting everything on the
rhs alone to zero. Instead, supposewe consider a case where the third term,with a factor of en in the
denominator, is set to zero. In our choice of normalized units, this amounts to setting d 0i but not d 0e as
well. Thismay appear counterintuitive, butwe observe that di and demust be perceived as independent variables.
The resultantmodel has sometimes been referred to as IMHD [71, 74], because it encompasses electron inertia
but not theHall term.

Although IMHDmay appear somewhat ad hoc at this stage, it can be derived through a rigorous ordering
procedure as discussed in Lingam et al [31], Kimura andMorrison [71].Moreover, it is particularly useful in
deriving reducedmodels for reconnection [33, 75, 76]. It has also proven to be useful in studying dynamo action
[77], as the IMHDOhm’s law is linear in B. In Lingam et al [12, 31], it was shown that a remarkable equivalence
between theHall and IMHDPoisson brackets exists. This equivalence can be expressed as

º { } { } [ ] ( )( )F G F G d, , 2 ; , 9e
IIMHD HMHD

where the lhs is to be understood as follows. Replace B everywhere in theHMHDbracket (8)with
*   ´ ≔( ) dB VI

e and diwith d2 e, where *B was defined in (4). Owing to the presence of the ‘±’, it is
clear that there are two such transformations which lead to the equivalence. In section 2.3, we shall comment on
the nature of these transformations further.

Finally, let us consider XMHD in its entirety, i.e., where no terms are dropped from theOhm’s law (3). The
noncanonical Poisson bracket for thismodel was derived byAbdelhamid et al [11], and Lingam et al [12] showed
that another beautiful equivalence between theHall andXMHDbrackets existed. Inmathematical terms, it
amounts to

kº -  { } { } [ ] ( )F G F G d, , 2 ; , 10i
XMHD HMHD

where the rhs indicates that the substitutions

* k +  ´ ≔ ( )B B V, 11

and k - d d 2i i in (8) lead to the XMHDbracket. Again, there are two such transformations since k follow
fromdetermining the two roots of the quadratic equation

k k- - = ( )d d 0. 12i e
2 2

Here, observe that setting di= 0 leads us to the inertial-HMHDequivalence discussed above, and also transforms
(11) to

( )I .
Before proceeding further, a comment onwhy these connections between the differentmodels are

remarkable is in order. InHMHD, there is no electron inertia but there is a finiteHall drift. In IMHD, the
situation is exactly reversed, i.e. there is noHall drift but there is electron inertia. Thus, it is not at all intuitively
obvious that the twomodels could share a commonHamiltonian structure, since their effects aremutually
exclusive. Yet, the above relations show that there does exist a deep, and non-trivial, equivalence between the two
models. This equivalence is also shared byXMHD,which has bothHall drift and electron inertia. Here, itmust
be understood that the ‘equivalence’ referred to thus far betweenHMHDand IMHD is only concernedwith
their respective Poisson brackets. The correspondingHamiltonians for these twomodels are not identical, as
they differ by a single term, i.e. the last one in (7).
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Subsequently, we shall explore the different predictions regarding the behavior of turbulent cascades in
sections 4.3 and 4.4.

2.3.On the topological properties of XMHD
Wehave seen earlier that the variable (11) lies at the heart of the equivalence between the differentmodels. To
understandwhy, it is instructive to take a step backwards and consider idealMHD. In any introductory
textbook, the frozen-flux property of idealMHDand the conservation ofmagnetic helicity ò ·x A Bd

D
3 are

presented. Thus, it is natural to ask if one can seek generalizations of these properties to XMHD, since both of
these features are present in two-fluid theory [78, 79] and inHMHD [80].

In idealMHD, the frozen-flux constraint can be expressed as

=· · ( )B S B Sd d , 130 0

where Sd is the area element, and the superscript ‘0’ denotes the values at t=0 [8]. It is also possible to view the
above expression as the statement that themagnetic flux (in idealMHD) is a Lie-dragged 2-form; formore
details, the readermay consult Tur andYanovsky [81].

In XMHD, there are two such generalized frozen-flux constraints, given by

 =   · · ( )S Sd d , 140 0

wherewas defined in (11) and Sd denotes the corresponding area element. This elegant property was first
recognized in Lingam et al [12], later proven in Lingam et al [31] and utilized further inD’Avignon et al [10].

Next, let us consider the helicity. In idealMHD, themagnetic helicity is conserved, but it is no ordinary
invariant. Instead, it is both aCasimir invariant and a topological invariant. Casimir invariants are special
invariants that follow from the degeneracy of the (noncanonical)Poisson bracket, and they are found via

= "{ }F C F, 0 , withCdenoting theCasimir invariant. They play an important role in regulating the phase
space dynamics, as discussed inMorrison [19], and have played an important role in reconnection over the years
[33–35].Magnetic helicity is also a topological invariant since it is closely connectedwith the linking and twisting
offield lines—more precisely, it shares close connectionswith theGauss linking number as discussed inMoreau
[82],Moffatt[83], Berger and Field [84].

Thus, one can obtain the generalized counterparts of themagnetic helicity inXMHDby seeking out the
Casimir invariants that resemble it. There are two such invariants

  ò=  · ( )xd , 15
D

3

where =  ´ , and the lhs is given by (11). It is clear that these generalized helicities have the same form
of themagnetic andfluid helicities (forMHDandHD respectively), and hence onemay expect them to share
similar topological properties. This conjecturewas confirmed in Lingam et al [31], where the authors also
established some unusual connectionswith Chern–Simons theory, a ubiquitous (topological) quantum field
theory that appears in high-energy and condensedmatter physics.

From the preceding discussion, it is clear that the variable  that facilitates the equivalence between the
different extendedmagnetofluidmodels is not arbitrary. It has close connections with the generalized frozen-
fluxes, helicities and Lie-dragged 2-forms all of which have clearmathematical and physical significance. Lastly,
it is also possible tomanipulate (5) and (6) directly to arrive at
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as shown in Lingam et al [31]. Upon inspection, it is clear that the second set of equations in (16) exactly resemble
the induction equation in idealMHD, thereby emphasizing the role of  as the generalization of themagnetic
field. It is, however,more common to refer to it as the generalized (or canonical) vorticity.

Thus, to summarize our discussion up to this point, we have seen that theHamiltonian formulation of
XMHDhas led us to two important conclusions.

• There exists a high degree ofmathematical similarity between the differentmodels, even though they have
contrasting (and sometimes exclusive) physical effects. Thismathematical equivalence between themodels is
rendered very clear whenwritten inHamiltonian form.Hence, the latter approach serves as ameans of
unifying the different XMHDmodels.

• The similarities betweenXMHDand idealMHDcan be understood further bymeans of theHAP
formulations, which lead us to the generalizations of the helicity,flux, and induction equation.

5
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Bearing these advantages inmind, we shall nowproceed to study somepertinent features of XMHD turbulence
in the subsequent sections.

3. Flux transfer rates

In the recent work by Banerjee andGaltier [70], expressions for the dissipation rates forHMHDwere computed.
Their analysis assumed that theHMHD turbulencewas homogeneous, but did not rely on the further
assumption of isotropy. As noted above, an important limitation ofHMHD is that it becomes invalidwhen
electron inertia effects start to dominate, i.e. when one considers length scales comparable to the electron skin
depth. In such an instance, itmakes sense to use XMHD instead, on account of the fact that it is endowedwith
electron inertia effects.

In recent times, there has also been a great deal of interest focused on the solar wind at sub-electron scales,
mostly because of the fact that observations have nowbecome possible in this regime [63, 65, 66, 85, 86]. Hence,
in the present section, we shall generalize the results of Banerjee andGaltier [70] by including electron inertia.

3.1.Meanhelicityflux rates
In 3Dfluid turbulence, it has been known since the famousworks byKolmogorov [87], and subsequent
numerical and experimental tests [88–90], that the energy input at large scalesflows to small dissipative scales.
This phenomenon is often referred to as a direct Kolmogorov–Richardson cascade [88]—a pictorial description
of this phenomenon has been provided infigure 1.

InMHD, the direct cascade of energy and the inverse cascade ofmagnetic helicity [91] have beenwidely
explored, and are thuswell established [90]. In the inertial range, itmust be borne inmind that the dissipation
does not play a role. Hence, it is expected that, in the stationary regime, the sameflux (of the energy or helicity,
for example)flows through eachwave number k. This principle was recently employed to conduct a
complementary study of XMHD turbulence inAbdelhamid et al [43].

In our analysis, we are interested in theflux rate of the generalized helicities (15)within the framework of
XMHD that are injected at some length scale. By following the steps outlined in Banerjee andGaltier [70], we
first introduce the symmetric two-point correlation function

   
 = ¢ =
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· · ( )R R
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, 18

where primed quantities are functions of ¢ = +x x r , unprimed quantities depend on x , and the brackets áñare
a shorthand notation for ensemble averaging.When the turbulence is homogeneous this can be equivalent to the
spatial average. Uponmanipulationwefind

       
     y y

¶ á ¢ + ¢ ñ = á ´ ´ ¢ + ¢ ¢ ´ ¢ ´

+ ¢ ´ ¢ + ´ ¢ +  ¢ + ¢ ¢ ñ
         

         

· · · [( ) ] · [( ) ]
· · · · ( )

V V

V V . 19

t
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Figure 1. Schematics of the standard Richardson–Kolmogorov direct cascade. Energy injected at low k, e.g. via large scale stirring,
cascades through the inertial range and dissipates at small scales (large k ). Upon reversal of the arrows alongwith the driving and
dissipative ranges, themechanismof the inverse cascade is obtained.
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Upon using the above identity in (19), we obtain

   
   

     d d

á ´ ´ ¢ + ¢ ¢ ´ ¢ ´ ñ

= - á¢ ´ ´ ¢ +  ¢ ´ ¢ ´ ñ

= á ´ ¢ + ¢ ´ ¢ ñ = -á ´ ñ

     

     

        

· [( ) ] · [( ) ]
· [( ) ] · [( ) ]

· · ( ) · ( )

V V

V V

V V V , 21

where d ¢ -≔f f f . Likewise, it is possible to show that

   y y y yá¢ ¢ +  ¢ ñ = -á ¢  + ¢ ¢ ñ =       · · · · ( )0. 22

Thus, upon combining everything together, we get

     d d
¶
¶

á ¢ + ¢ ñ = -á ´ ñ +      
⎡
⎣⎢

⎤
⎦⎥· · ( ) · ( )

t
DV

1

2
, 23

wherewe have introduced the phenomenological dampingD that occurs at the sink scale, following the
approach of Banerjee andGaltier [70]. In the limit of infinite kinetic andmagnetic Reynolds numbers, under the
assumption of stationarity, the lhs of the above expression vanishes due to the ruggedness of the helicity
invariants [93]. Hence, the large scale dissipation equals themean generalized helicity flux rate

 h d d= á ´ ñ   ( ) · ( )V , 24

which closely resembles the expression of Banerjee andGaltier [70]. However, itmust be noted that our
expression ismore general as it duly encompasses electron inertial contributions aswell via the definition of .
In theHMHD limit with d 0e , we have verified that our result is in exact agreement with the expression of
Banerjee andGaltier [70].

Although (24) is quite compact, a great deal of information can be extracted from it. For instance, it follows
that the dissipation rates vanishwhen the Beltrami condition  V is attained. These (multi)Beltrami states
are non-trivial, as they are also equilibria of XMHD [43]. This is easy to verify by inspecting the second set of
equations in (16), and substituting the above condition. Thus, this result serves as a consistency check indicating
that the dissipation vanishes when the systemhas settled into this equilibrium (in the limit of infinite Reynolds
numbers).

In Banerjee andGaltier [70] a phenomenological argument for the direction of the cascadeswas presented.
First, let us recall that the generalized helicities become themagnetic and ion canonical helicities inHMHD [80].
Thefirst is essentially a copy of theMHDmagnetic helicity, while the other is a superposition ofMHDcross
helicity and fluid helicity after some rearrangement. In the former, it is argued that the inverse cascade is
expected just as in idealMHD. In contrast, the direction of the cascade for the ion canonical helicity (ofHMHD)
can go either way, as it is dependent on the energy budget of the system. It is assumed to exhibit an inverse
cascade if themagnetic energy is dominant over the kinetic (and thermal) energy.

Therefore, we see that there is an ambiguity regarding the directionality of the cascade for one of the
helicities. The problembecomes farmore acute whenwe include electron inertia effects via XMHD. In that case,
themagnetic helicity is not conserved as there is also a (smaller)fluid helicity contribution. If we apply the above
line of reasoning, wewould expect towitness the direct and inverse cascades of both helicities in XMHD.This is
because of the fact that the two helicities are not fundamentally different, other than the fact that they are
associatedwith different species [12, 31]. Thus, this raises an interesting question: how is it possible to get the
HMHD limit fromXMHD? In otherwords, why is the direct cascade of one helicity, that corresponds to the
magnetic helicity in theHMHD limit, lost?One possible resolution of this paradox is by suggesting that the
existence of direct or inverse cascades depends on the length scalewe are considering. This question is addressed
inmore detail in section 4 that follows.

4.Direction of cascades

4.1. Liouville’s theorem forXMHD
The direction of a cascade can be determined by inspecting the general equilibrium states that the turbulence
would tend to relax to, if not for the continual input of energy [90]. Although turbulence as a phenomenon is far
from equilibrium, absolute equilibria have been used to predict the direction of the spectralflux [90]. Such
equilibria can be obtained from the ideal invariants described in section 2.3. The approach delineated in the
present section is a generalization of the pioneering studies in hydrodynamic [94–96] andMHD [91, 94]
turbulence. It is important to bear inmind the fact that the resultant equilibrium spectra aremerely tools for
predicting direction of cascades, and are far removed from the expected spectra of Kolmogorov type [88, 90, 96].
For the treatment of the latter issue inXMHD, the readermay refer to Abdelhamid et al [43] instead.

However, before applying equilibrium statisticalmechanics to the Fouriermodes of XMHD, it is necessary
to show that their governing equations satisfy Liouville’s theorem, aswasfirst done in hydrodynamics by
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Burgers [97]. It is then possible to apply the conventional assumption of equal a priori probabilities in phase
space ¼( )z z z, , , n1 2 [98], which in turn enables one to express an equilibriumphase space probability density
P P= ¼( )z z z, , , n1 2 as a function of constants ofmotion; for XMHD, they are further discussed in section 4.2.
Liouville’s theoremwas reproven and used for 2D fluids byKraichnan andMontgomery [99], quasi-geostrophy
by Salmon et al [100], incompressibleMHDby Lee [94], andmore recently similar statistical approaches have
been employed in plasmamodels [101], such as two-fluid theory [102] and gyrokinetics [103].

For anN-dimensional dynamical system =˙ ( )z V zi i , for some vector fieldV, with =i N1, 2 ,... , Liouville’s
theorem (e.g. [104]) states that any phase space volume is preserved provided å ¶ ¶ = å ¶ ¶ =ż z V z 0i i i i i i ,
which is true for any canonicalHamiltonian system.However, incompressible XMHD is a noncanonical
Hamiltonian system,which can be shown6 through the use ofDirac brackets [105]. Because Liouville’s theorem
is variable dependent and the natural (Eulerian) variables are noncanonical, onemust check its validity directly.
The idea of Burgers and Lee was to do this in terms of Fourier amplitudes, which play the role of the particle
degrees of freedomof statisticalmechanics. Thus, for XMHDwewrite the system (5) and (6), after assuming
incompressibility, in terms of the coefficients of a Fourier series; i.e., the velocity andmagnetic fields are
expanded as = å( ) ( ) ·F x f t ek

k x
k

i . Then the equations ofmotion for the Fourier amplitudes are given by

* *
å= - ´ ¢ ´ -

´ ¢ ´
+ ¢¢

- ¢ ¢
- ¢ ¢ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟· [ ] [ ] ( )v I

k k
v k v

b k b

k k d
i

1
, 25k

k

k k k
k k k

e
2 2 2

where = ·k kk2 and the gradient termswere eliminated via  =· V 0, and

* *
* *

* *

å= ´ ´ -
´ ´ ¢ ´

+ ¢

+
+ ¢

´ ¢ ¢ ´ + ´ ´ ¢

¢
¢ - ¢

- ¢ ¢

- ¢ ¢ - ¢ ¢


⎛
⎝⎜

⎞
⎠⎟

[ ] [ [ ]]

[ · · ] ( )

b k v b
k b k b

k k v k b k v b k k

d

k d

d

k d

i
1

i

1
. 26

k
k

k k k
k k k

k k k k k k

i

e

e

e

2 2

2

2 2

Notice that *= =· ·k v k b0k k . Technically, our phase space consists of real and complex parts of the vectors
= -v vk k and * *= -b bk k, where the overbar denotes complex conjugation.However, it ismore straightforward

toworkwith their linear combinations * *( )v v b b, , ,k k k k , and the same results are obtained. After some algebra
one arrives at

å å¶
¶

= - =
 · ( )k v
v

v
2i 0, 27

k

k

k kl

l

l,
0

where l indexes the components of vk and v0 denotes the k=0 Fourier component. Even if this component is
present, the sum is still zero since it is odd in k . Similarly, we get

*

*

*
å å¶

¶
= - +

- ´
+

´ =
 ⎛

⎝⎜
⎞
⎠⎟· · ( )k v

b k v
k k

b

b

d d

k d
2 i

i

1
0. 28

k

k

k kl

l

l

i e

e,
0

0
2

0

2 2

Thus, clearly the sumof (27) and (28) vanishes sowe have shown that Liouville’s theoremholds true inXMHD.
Taking the appropriate limits, it is easy to verify that it also holds true forHMHD, electronMHD, and IMHDas
well. Itmust be recognized that several past studies ofHall and electronMHD turbulence implicitly relied upon
the assumption that Liouville’s theoremwas valid, without having verified it explicitly. To the best of our
knowledge, we have verified it for thefirst time for XMHDand its simpler variants.

4.2. Absolute equilibrium states
In principle, one can proceed to calculate a partition function for absolute equilibria by using theHamiltonian
and the two invariants of XMHD, given by (15). However, becausewewish to compare our results with those in
the literature by taking theMHD limit, viz d 0i and d 0e , and because the generalized helicities of (15)
become degenerate in this limit, reducing to themagnetic helicity in both instances with a loss of the cross
helicity, it is convenient to use linear combinations of the helicities (15). Thuswe consider the following two
Casimirs:

* *
 

ò
k k

k k
-
-

= +  ´+ - - +

+ -
≔ ( · · ) ( )A B V VH x d

1

2

1

2
d , 29M e

3 2

6
We shall defer a detailed exposition of subtleties regarding the noncanonical Hamiltonian origin of the presentmeasure and comparison to

an actual canonicalmeasure to a future publication.On a related note, we also wish to correct an erroneous statement inKraichnan and
Montgomery [99]—it was stated therein that 2Dfluidflow is notHamiltonian, but the authors were unaware that it actually is aHamiltonian
dynamical system, albeit in terms of noncanonical variables [19].

8

New J. Phys. 19 (2017) 015007 GMiloshevich et al



*
 

òk k
-
-

= +  ´+ -

+ -

⎜ ⎟⎛
⎝

⎞
⎠≔ · · ( )V B V VH x

d1

2
d

2
, 30C

i3

where (29)was also presented inAbdelhamid et al [11, 43]. The helicities (29) and (30) are natural generalizations
of the cross andmagnetic helicities of idealMHDwhere the second terms in each of these relations can be seen as
‘corrections’ that vanish in theMHD limit. Here, we have used incompressibility—also a common assumption
inmostHMHDstudies [57, 58]—ensuring that the two dynamical fields are solenoidal in nature. In Fourier
series representation the three invariants become

* *
å= +

+

⎛
⎝⎜

⎞
⎠⎟ ( )H v v

b b

k d

1

2 1
, 31

k
k k

k k

l
l l

l l

e,
2 2

* *
å= +

⎛
⎝⎜

⎞
⎠⎟ ( ))

H k d v v
b b

k

i

2
, 32

k
k k

k k
M

l m n
lmn l e m n

m n

, , ,

2
2

* * å å= + +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )H v b b v d k v v

1

2
i . 33

k
k k k k k kC

l
l l l l

m n
i lmn l m n

, ,

Notice that the energy aswell as the helicities are quadratic in v and *b . At this stage, a few important remarks
are in order. Firstly, the statisticalmechanics of a large finite number of k-modes is considered. But, at a later
stage, the implicit continuum limit will be taken. Second, wewish to reiterate the central arguments presented in
Kraichnan andMontgomery [99]. Equilibrium statisticalmechanics of classicalfields usually results in the
ultraviolet (UV) catastrophe. As a result, the analysis that follows is valid only if the system is truncated. This is
done by choosing an appropriate cutoff parameter such that <k kmax . In any realistic system, the dissipation
scale yields a natural cutoff, thereby preventing theUV catastrophe. Alternatively, in certain systems, second
quantization can be duly performed.However, the actualmechanism for preventing condensate formation
(inverse cascade) orUV catastrophe (direct cascade) is not considered in this study as it only pertains to the
inertial range.

The absolute equilibriumdistribution function is constructed as follows:

P a b g= - - - -- -[ ] ≕ [ ] ( )Z H H H Z A u uexp exp 2 , 34M C i j
i j1 1

,

withZ being the partition function.We observe that the above distribution function is divergent in the limit of
large k. But, as we have remarked above, the dissipation range sets a natural cutoff for k, and thereby ensures that
the distribution function does not blowup, since k is bounded. This divergence arises because of the fact thatH is
not in a ‘coercive’ form—a similar featurewas pointed out forHMHD inYoshida andMahajan [106]. Some of
the above issues have been addressed successfully in theMHDcontext by Ito andYoshida [107] and Jordan et al
[108]. Given thatwe have considered only the inertial range, with a cutoff on k, the following discussion does not
necessarily encompass absolute equilibria for the complete phase space.

In the second equality of (34), note that the vector u is chosen to consist of 8 entries corresponding to 4
components (two real, two complex) of vk and *bk .We shall comment on the parametersα,β and γ at a later
stage in our discussion. The reduction in the total number degrees of freedom is due to solenoidal property of
bothfields: * = =· ·k b k v0k k. Using (34)we calculate the average of a quantity F according to

P* *òá ñ = ( )v v b bF Fd d d d , 35
k

k k k k

whichwill be used for all averages in the present section. Because all invariants are quadratic in u the integrations
of (35) are all Gaussian, allowing us to achieve our goal offinding correlations of the form á ñ = -u u A ;i j i j,

1

however, this requires the inversion of the 8 by 8matrix

=

-
-

-
-

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

( )A

a f c

a f c

f a c

f a c

c d b
c d b

c b d
c b d

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, 36

where a≔a , b=b k, g=c , b g+≔ ( )f k d de i
2 and a +≔ ( )d k d1 e

2 2 . The inversematrix fortunately has
the same form as the simplerMHDcase, and is given by
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=
D

- -
- -

- -
- -

-

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

( )A

P X Q Y
P X Q Y
X P Y Q

X P Y Q
Q Y R W

Q Y R W
Y Q W R

Y Q W R

1

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

, 371

where the new coefficients are

- - - -≔ ( ) ≔ ( ) ( )P a d b c d X f b d c band , 382 2 2 2 2 2

- - +≔ ( ) ≔ ( ) ( )Q c c ad bf Y c ab dfand , 392

- - - -≔ ( ) ≔ ( ) ( )R d a f c a W b f a c fand , 402 2 2 2 2 2

D = + - - +≕ ( ) ( ) ( )A fb ad c ab fddet . 412 2 2

ThematrixA has to be positive definite for the procedure towork, i.e., all of the eigenvaluesmust be positive
[91]. The corresponding identities can be rearranged after a fair amount of algebra to arrive at the final set of
positivity conditions

> > < - -∣ ∣ ∣ ∣ ( ∣ ∣)( ∣ ∣) ( )a f d b c a f d b, and . 422

A less strict, albeit useful, set of conditions can be derived as well:

+ > + < + - <
+∣ ∣ ( ) ∣ ∣ ( )ad bf c af db ad bf c c

a d
and and

2
. 432 2

From these inequalities, we see thatD > >P0, 0 and >R 0 as expected, ensuring that the autocorrelations
are positive. Because of the normalized Alfvén scaling, it is clear that >k 1must be valid, as otherwise we are
concerning ourselves with length scales greater than the size of the system. Finally, the spectral quantities can be
duly evaluated.

Wewrite theHamiltonian as the sumof kinetic andmagnetic energies, = +H H HK B, with the spectra of
each given, respectively, by

åp
p

= á ñ =
D

( )E k v v
k P

2
8

, 44k kK
l

l l
2

2

* *åp p
=

+
á ñ =

+ D
( )E

k

k d
b b

k

k d

R2

1

8

1
. 45k kB

e l
l l

e

2

2 2

2

2 2

Similarly, the spectra of the generalizedmagnetic and cross helicities, respectively, are

* *
åp p= á ñ +

á ñ
=

+
D

⎛
⎝⎜

⎞
⎠⎟ ( )E k k d v v

b b

k
k

d k X W
2 8 , 46k k

k k
M

l m n
lmn l e m n

m n e2

, ,

2
2

2 2

* å åp p= á ñ + á ñ =
+
D

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )E k v b d k v v k

Q d kX
2 2 8

2
. 47k k k kC

l
l l

m n
i lmn l m n

i2

,

2

It is easy to obtain the spectra of the original generalized helicities via the relation  k= + ( )H H2 C M , i.e., by

k + ≔ ( ) ( )K E E2 . 48C M

4.3.HMHDcascades
If we consider theHMHD limit as < -k d1 e

1, i.e. the rangewhereHall effects are important, we obtain the
following conditions

a g a
b

g a g a
b

> > < - -⎜ ⎟⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ ( ∣ ∣ ) ∣ ∣ ( )k d

k
k d

k
and and . 49i i

2

In addition, we also have

a bg g a g a bg+ > > >∣ ∣ ∣ ∣ ( )d dand and . 50i i
2 2 2

During the process of computing the last inequality in (49) for k, we also computed the discriminant

 a gb g a gb+ - -≔ ( ∣ ∣ ) ∣ ∣ ( )d d4 . 51i i
2 2 2 2
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Requiring the existence of a k-spectrum ( > 0) leads us to a stricter version of the first inequality in (50):

a g gb> +∣ ∣ ∣ ∣ ( )d . 52i

To see how this inequality is obtained, let us rewrite (51) as

 a gb g a gb g a gb< = - - + - +(( ∣ ∣ ) )( ∣ ∣ ∣ ∣ ) ( )d d d0 2 . 53i i i
2 2 2 2

The second term in the product is clearly positive according to (50). Thus, one requires the first term to be
positive which leads us to (52). In turn, this leads us to stricter requirements on k than the ones of the first two
inequalities in (49). Our bounds are thus given by

 b
a

a bg g
a g

a bg g
a g

a
g

<
+ - -

< <
+ - +

<
∣ ∣ ∣ ∣

∣ ∣
∣ ∣

∣ ∣ ∣ ∣
( )d

d
k

d

d d2 2
. 54i

i

i

i i

2 2 2 2

The lower bound on k is also present in idealMHD, but the upper limit appears to be solely due to the inclusion
of theHall term.Notice that if wewish to extend the range of kmuch further beyond -di

1 it is reasonable to
impose a g ∣ ∣. Therefore, since d 1i is typically valid, the assumption a g gb-  ∣ ∣di

2 2 is also justified. If
we use this, alongwith an expansion in di, the limits can be approximated as

 a b
a g

a g
a g-
-∣ ∣
∣ ∣

( )k
d

55
i

2 2

2 2

so that the parameters can be adjusted to allow for < -k d1 e
1.

In theHall limit the different spectral densities are given by

pa
a g b

a bg g a g b
=

- -
+ - - +

( )
( ) ( )

( )E
k

d k d k
8 , 56K

i i

2 2 2 2

2 2 2 2 2

pa
a g g

a bg g a g b
=

- -
+ - - +( ) ( )

( )E k
k d

d k d k
8 , 57B

i

i i

2
2 2 2 2 2

2 2 2 2 2

p
g b g ba

a bg g a g b
=

- -
+ - - +

( )
( ) ( )

( )E
d d k

d k d k
8 , 58M

i i

i i

2 2 2

2 2 2 2 2

pg
b a gb a bg g
a bg g a g b

=
- - - + -
+ - - +

( ) ( )
( ) ( )

( )E k
d k d d

d k d k
8

2
. 59C

i i i

i i

2
2 2 2 2 2 2

2 2 2 2 2

Wenote that each of these spectra are identical to the previous expressions obtained by Servidio et al [109] (see
their equations (26)–(29)), after undertaking aminor change of variables. This is not surprising as the authors
had derived themusing the same approach, viz by constructing the absolute equilibrium states.We alsowish to
point out an important result that has also been predicted bymany others before—the absence of equipartition
between the kinetic andmagnetic spectra inHMHD [52, 53, 57–60, 109, 110]. This trait is unique toHMHD, as
it is absent both in idealMHDand IMHD;we shall demonstrate the latter in section 4.4.

Notice that the average total energy spectrum = +E E EK B can be computed from (56) and (57), and has
the form

pa
a bg g g b

a bg g a g b
=

+ - - +
+ - - +

( ) ( )
( ) ( )

( )E k
d k d k

d k d k
8

2
, 60i i

i i

2
2 2 2

2 2 2 2 2

which is also equal to the formula provided in Servidio et al [109]. The parametersα,β, and γ are found by

matching the integrated spectral quantities with their actual spatial values, e.g., by using ò E kd
k

k
K

min

max
, wherewe

imagine a continuum limit. Thus, it is obvious that one cannot provide simple expressions for these parameters,
since theywill be complicated transcendental equations in general.

As noted earlier, the dependence of the spectral quantities on kwill reveal the directionality of the cascades.
The direct cascade of some invariant can be expected if the spectral density is peaked at highwavenumbers and
vice-versa. Based on the complexity of the above formulae even forHMHD, it appears as though any definitive
statements are not possible. It is reasonable to expect that the same quantitymay undergo both cascades
depending on the length scale at which the energy is supplied to the system.

The simplest case one can investigate is to consider cases where the cross-helicity vanishes, viz
g=  =E 0 0C . For this casewe have verified that the standardMHD results presented in Frisch et al [91] are

obtained, i.e., the direct cascade of energy and the inverse cascade ofmagnetic helicity. This result is not at all
surprising because themagnetic helicity is an invariant of both ideal andHMHD.Our analysis confirms that, in
the absence of global cross-helicity, whenmagnetic helicity is injected at length scalesmuch larger than the
electron skin depth, it undergoes an inverse cascadewithin the framework ofHMHD.

Let us consider another simple limit, where b = 0. Atfirst glimpse, it does not have such a simple
interpretation.We canmake the picturemore transparent by introducing the definitions
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*
g
a

f
f

f
>≕

∣ ∣
≕ ( )

d
k ksin and

cos

sin
, 61

i

2

where the second equality follows from the second relation in (55). The corresponding spectral quantities in
these new variables are thus given by

*
*

p
a f

f=
-

= -
⎛
⎝⎜

⎞
⎠⎟ ( )E

k
E E

k

k

8

cos 1
and 1 cos , 62K k

k

B K2
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2
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2

togetherwith

*
f f f f= - = - +

⎛
⎝⎜

⎞
⎠⎟ ( )E d E E E

k

k
sin tan and sin 2 cot . 63M i K C K

2
2

2
2

After a careful inspection and evaluation, one can verify that these expressions yield direct cascades of energy and
cross-helicity.

In order to visualize these relations, we have plotted the different spectra infigure 2. It is particularly
noteworthy that themagnetic helicity cascade becomes increasingly complex in the presence of strong cross-
helicity. This is purely due to the additional perturbation coming from theHall term, as the idealMHD range
remains completely in the inverse cascademode.

Hence, we sumup this preliminary analysis by observing that + can undergo both forward and inverse
cascades as predicted by Banerjee andGaltier [70].We have also verified that our XMHDspectra, in theHMHD
limit, are equal to the ones obtained earlier by Servidio et al [109].

4.4. IMHDcascades
Webegin by recalling that IMHD is amodel which lacks theHall drift, but is endowedwith electron inertia
effects [71, 74]. Thus, the existence of the second condition implies that themodelmay become relevant in the
range -k de

1, i.e. at scales smaller than electron skin depth. Although this quantity is small inmany fusion
plasmas, recall that it is highly relevant in astrophysical and space plasmas, such as the Earth’smagnetosphere
and the solar wind.With this choice of k, observe that a»d k de

2 2 holds true.
Following the same procedure as inHMHD,we analyze the necessary inequalities, and find that

a b a g> ∣ ∣ ∣ ∣ ( )k d and . 64e
2

Although d 1e , we also have kd 1e in this case, and hence the condition a b∣ ∣appears to be quite
reasonable.We alsomust inspect a counterpart of the third inequality in (42), which according to the constraints
listed above collapses to

g
a

b< -∣ ∣ ∣ ∣ ( )
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e

e

Upon computation, the spectra become
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Figure 2.Plots of absolute equilibrium states for absolute values of spectral quantities forHallMHD.The parameters chosen are
a = 10, b = 5, di= 0.1. The third parameter is variedwith the solid red line corresponding to g = 0.01with á ñ á ñ »H H 0.03C , the
dashed green line corresponding to g = 0.03with á ñ á ñ »H H 0.09C , and the dotted–dashed blue line corresponding to g = 0.05
with á ñ á ñ »H H 0.16C . The spectral range is chosen to be < < -k d1 i

2.
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An important and pleasing feature is immediately apparent.We see that IMHD restores the energy equipartition
feature of idealMHD [111]. This is along expected lines, since IMHDand idealMHDare very akin to each other.
In fact, it was shownby Lingam et al [74] in 2D that theHamiltonian (Poisson bracket) structure of these two
models is identical under the transformation *B B .

We also see that the generalizedmagnetic and cross helicities vanishwhenβ and γ are set to zero respectively.
Hence, it is instructive to take these two limits and inspect the resultant expressions.When b = 0, the total
energy is

pa

g
=

-a
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d

16
, 69

k e
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and the cross-helicity is
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The other case, with g = 0, corresponds to the state with zero cross-helicity. In this instance, we find that the
spectra are
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In each of these two limiting cases, wefind that all spectral quantities undergo direct cascades in contrast to the
MHDandHMHD limits. This appears to be consistent, to an extent, with previous results in the literature
althoughmost previous studies relied on 2D simulations as opposed to our 3D analysis [112–114].We have
plotted the spectra infigure 3, which confirms our theoretical predictions. Although thewavenumber range
from k to d1 e

2, for IMHD is not applicable everywhere—instead, its presence is likely to be felt only when
>k d1 e. In reality, there is afiniteHMHD range before this limit is attained.
Wenote, in passing, that the inclusion of a strong guide field can induce anisotropic turbulence, and the

existence of both inverse and direct cascades, but this falls outside the scope of our present work.

5.Discussion and conclusion

There has been a great deal of attention in recent times focused on turbulence at ‘small’ scales, i.e., scales smaller
than the electron or proton gyroradius (or skin depth). The twomost notable examples in astrophysics are the
Earth’smagnetosphere and the solar wind, respectively. The recently launchedMagnetosphericMultiscale
(MMS)Mission is known to be capable of probing such scales [62], and observational results in these regimes
have also been recently published [68].We also note that probing such scalesmay also become feasible in the
laboratory, such as theWiPAL [115].

Figure 3.Plots for absolute equilibria states of spectral quantities for inertialMHD. The parameters chosen are a = 10, b = 5,
de= 0.1. The third parameter is variedwith the solid red line corresponding to g = 0.01with á ñ á ñ »H H 0.09C , the dashed green
line to g = 0.03with á ñ á ñ »H H 0.28C and the dotted–dashed blue line to g = 0.05with á ñ á ñ »H H 0.46C . The spectral range is
chosen to be < < -k d1 e

2.
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Thus, in the coming years, it is likely that a thorough understanding of the physics at these scales will be
necessary. To gain such an understanding, it is imperative toworkwithmodels that are applicable at such small
scales. Neither ideal norHMHDare validwhen one approaches length scales on the order of the electron skin
depth. As XMHD is endowedwith both theHall drift and electron inertia, it constitutes a good physicalmodel in
this regime.Of course, wemust caution the reader that it does not capture certain kinetic effects such as Landau
damping, pressure anisotropy, etc and also lacks dissipative effects.

In this paper, we havefirst focused on gaining a basic understanding of the salientmathematical properties
of XMHD.This was done by taking recourse to theHamiltonian formulation, which is endowedwith several
advantages. In particular, we discussed how themutually exclusive effects of electron inertia and theHall current
can be unified into a single framework.We also presented the helicities of XMHD that are generalizations of the
magnetic/fluid helicity. This was done by demonstrating that they are topological invariants of XMHDand can
be determined through theHamiltonian approach.

All of these facts were duly invoked in the subsequent sections, wherewe focused on some aspects onXMHD
turbulence. Firstly, we generalized the results of Banerjee andGaltier [70], where the dissipation rates ofHMHD
were computed by using second order structure functions.We showed that our results, with electron inertia, still
resembled theHMHDcase, and reduced to the latter when the electron skin depthwas vanishingly small.We
also showed that, in the limit of infinite Reynolds number, the dissipation rates vanishedwhen the Beltrami
conditionswere satisfied, thereby confirming earlier predictions.

The central theme of the paper, however, revolved around the issue of the directionality of the cascades of the
helicities and the energy. Unlike idealMHD,where a direct cascade of the energy and the inverse cascade of the
magnetic helicity can be unambiguously predicted, the situation is rendered farmore complex due to theHall
drift and electron inertia.We commenced our analysis by proving Liouville’s theorem for thefirst time for
XMHD,whichwas necessary for constructing the absolute equilibrium states of XMHD. The latter were used to
study the cascades of XMHD in two limiting regimes: (i)where theHall term is important and the electron
inertia terms unimportant, and (ii) vice versa.

In theHall regime, the energy and themagnetic helicity still exhibit direct and inverse cascading,
respectively. However, the ion canonical helicity ò + +  ´( ) · ( )x d dA V B Vd

D i i
3 , which is a conserved

quantity inHMHD, can undergo a cascade in either direction.We also verified that themagnetic and kinetic
energy spectra are characterized by a lack of equipartition, which constitutes a staple and unique feature of
HMHD (that is absent in idealMHD). Each of these results were shown to be consistent with, or identical to,
previous studies; see, for e.g. Servidio et al [109].

When electron inertia effects were taken to be dominant over theHall term (the IMHD regime)we found
that equipartitionwas recovered. In addition, we also found that all of the quantities, viz the energy and the two
helicities, undergo direct cascading in this regime.Hence, we expect that the (generalized)magnetic helicity
undergoes inverse cascading up to a certain length scale (for a given choice of the free parameters), and then
undergoes a reversal, consequently ending up as a direct cascade. A summary of these results can be found in
table 1.

In addition to the aforementioned systems such as the solar wind and Earth’smagnetosphere, our results
may also have significant consequences in other areas. The presence of the inverse cascade ofmagnetic helicity is
intimately linked to the generation ofmagnetic fields via the dynamomechanism [116–118]. The existence of an
inverse cascade has already been investigated in theHall regime byMininni et al [51], Lingam andBhattacharjee
[53],Mininni et al [119]. But, if this feature were to be non-operational at smaller scales, itmay lead to non-
trivial, potentially far reaching, consequences in dynamo theory. Lastly, our analysis is also likely to be of some
relevance in turbulent reconnection, which remains an active and unresolved area of research [120, 121]. Hence,
on account of the aforementioned reasons, we suggest further analyses of this kind are timely andwarranted.

In closing, we describe a couple of important avenues that can be explored bymeans of our formalism. To
beginwith, the 2D version (reducedXMHD) can also be subjected to the same treatment since itsHamiltonian

Table 1.Direction of cascades inMHD,HMHD
and IMHD.

IdealMHD HallMHD InertialMHD

E Direct Direct Direct

EM Inverse Inversea Direct

EC Direct Direct Direct

-K Inverse Inversea Direct

+K Inverse Both Direct

a When ⟨ ⟩ ⟨ ⟩H HC .
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structure and invariants have been thoroughly studied and classified [122]. Alternatively, electron–positron
plasmas, which are produced both via high-intensity lasers in the laboratory [123], and also occur inmany
astrophysical settings [124], have attracted a great deal of interest recently. The dynamical equations for these
plasmas are characterized by the absence of theHall term, and can be derived by adopting a procedure akin to
Dungey [1] and Lüst [6]. It is, therefore, advantageous to utilize theHamiltonian structure for thismodel [125],
to derive the corresponding invariants (such as the generalized helicities), and to carry out an analysis of the
cascades and spectra along the lines of our present work.

In recent times, there has been a great deal of interest on the study of relativistic turbulence, given its
importance in laboratory and astrophysical plasmas.Most of theworks thus far have focused on computational
or phenomenological studies, as seen from the likes of Kumar andNarayan [126], Zhang andYan [127], Inoue
et al [128], Zrake [129]. In contrast, it has recently been shown that relativisticMHDpossesses a noncanonical
Hamiltonian formulation [130]. Thus, it is evident that a study akin to the one presented herein could be
undertaken for relativisticMHDaswell.We conclude by observing that one can combine relativity and two-
fluid effects to arrive at relativistic XMHD,which is also known to have aHamiltonian structure [125]. On
account of themodel’s generality, we suggest that this could be used for constructing the spectra and cascades,
andmost of the results (andmodels) discussed herewould automatically follow as limiting cases.
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