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Abstract 

 

The metriplectic formalism [Morrison, 1984] couples Poisson brackets of the Hamiltonian description with 

metric brackets for describing systems with both Hamiltonian and dissipative components. The construction 

builds in asymptotic convergence to a preselected equilibrium state. Phenomena such as friction, electric 

resistivity, thermal conductivity and collisions in kinetic theories are well represented in this framework. In this 

paper we present an application of the metriplectic formalism of interest for the theory of control: a suitable 

torque is applied to a free rigid body, which is expressed through a metriplectic extension of its “natural” Poisson 

algebra. On practical grounds, the effect is to drive the body to align its angular velocity to rotation about a 

stable principal axis of inertia, while conserving its kinetic energy in the process. On theoretical grounds, this 

example shows how the non-Hamiltonian part of a metriplectic system may include convergence to a limit cycle, 

the first example of a non-zero dimensional attractor in this formalism. The method suggests a way to extend 

metriplectic dynamics to systems with general attractors, e.g. chaotic ones, with the hope of representing bio-

physical, geophysical and ecological models. 
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1 Introduction 

  In this work an extension of the Hamiltonian formalism is considered, one that is able to include “dissipation” 

and the asymptotic convergence to solutions. This is realized by adding to the Poisson bracket a semi-metric 

bracket. The resulting Leibniz algebra governing the evolution is a metriplectic bracket algebra. 

In particular, the class of complete metriplectic systems (CMS) is considered, in which the total energy of the 

system, namely the Hamiltonian H, is conserved, while another functional, referred to as the entropy S, grows 

until its maximum, which corresponds to an asymptotic equilibrium state,  is reached. 

Complete metriplectic systems have been written for many cases in which a Hamiltonian physical system is 

coupled to “microscopic degrees of freedom” causing friction or thermal conduction [Materassi and Tassi, 

2012]; in the case of plasma kinetic theory, “higher order” terms collected in collision integrals are recast in a 

semi-metric guise, so as to render the collisional Poisson-Vlasov system a complete 

metriplectic system [Morrison, 1984]. 

Here we focus on a particular case, already introduced in [Morrison, 1986], in which the Hamiltonian system 

representing a free rigid body is perturbed with an external torque servoτ
r

 suitably designed to modify the angular 

momentum L
r

 without changing the energy of the system. In particular, the action of this torque makes the 

angular velocity ω
r

 converge to a free rotation around one principal axis. This can be mathematically 

accomplished by adding to the Poisson algebra a semi-metric term based on the invariance of 
2L  under the 

action of the Poisson bracket of the Hamiltonian part of the system. As the torque applied must be a suitable 

function of the angular momentum ( )L
rrr

servoservo ττ = , the technological solution imagined is a servo-motor, 

indicated as metriplectic servo-motor (MSM) in what follows. The intriguing aspect is that, due to the energy 

conservation, the MSM would re-direct ω
r

 without any power consumption, as 0servo =⋅ωτ
rr

. 

The paper is organized as follows. 

In § 2 a short review of the metriplectic algebra is presented, and some remarkable examples of CMS are quoted. 

In § 3 the application of the MSM to the free rigid body is described, first using the angular velocity space as the 

phase space of the system, then describing its metriplectic dynamics through the canonical variables ( )p
r

,χ , 

with χ  being Euler angles and p
r

 their canonically conjugate momenta. It is shown that the rotation around a 



 

principal axis of inertia corresponds to an asymptotic equilibrium point in the ω
r

 space, while it is a linearly 

stable orbit in the canonical variables ( )p
r

,χ . 

Conclusions and further development of the present study, both in physical and technological senses, are drawn 

in § 4.  

   

2 Metriplectic systems: a review  

   Complete metriplectic systems are dynamical systems governed by an extension of the usual Poisson brackets 

of the Hamiltonian systems. Typically, one starts with a Hamiltonian system of Hamiltonian ( )zH  and Poisson 

bracket { }.,. , z being the dynamical variables that are coordinates of the phase space (for canonical systems 

( )pqz ,= , the conjugate pair, which is not the most general Hamiltonian case [Morrison, 1998]). Hamiltonian 

dynamics is governed by { }.,.  and ( )zH , such that any observable A has dynamics given by: 

 

( ) ( ) ( ){ }., zHzAzA =&        (1) 

 

In general, this dynamics conserves H, due to the anti-symmetric property of { }.,. , plus a certain number of 

other quantities may be conserved. It may be the case that some quantity S exists, such that it has null Poisson 

bracket with any other function of z: 

 

( ) ( ){ } .0, AzAzS ∀=  

  

Such a quantity, referred to as a Casimir of the Poisson bracket, is necessarily conserved by the dynamics (1) 

independent of the particular Hamiltonian. If some semi-metric Leibniz bracket ( ).,.  is defined 

 

( ) ( ) ( ) ,,0,,,, BAAAABBA ∀≤=        (2) 

 

such that H is zero with any other observable 

 

( ) AHA ∀= 0,        (3) 

 

then the Leibniz bracket dynamics 

 

( ) ( ) ( ){ } ( ) ( )( )zSzAzHzAzA ,, ζ+=&        (4) 

 

will conserve the Hamiltonian because of  (3) and increase the Casimir S because of  (2).  If the metriplectic 

bracket 

 

{ } ( )BABABA ,,, +=  

 

is defined, then, provided the free energy functional SHF ζ+=  is used, the complete metriplectic dynamics 

may be constructed: 

 

( ) ( ) ( ) ;, zFzAzA =&        (5) 

 

this dynamics conserves the Hamiltonian and increases the Casimir 

 

( ) ( ) 0,0 ≥= zSzH &&        (6) 

 



 

and the second condition in (6) is realized as the constant ζ  in SHF ζ+=  is negative. The asymptotic 

equilibria of (5) are the extrema of F, the Casimir S playing the role of a Lyapunov functional. Moreover, thanks 

to ( ) 0≥zS& , such a dynamics is irreversible in the thermodynamic sense. 

Essentially on this basis, the perturbation of a Hamiltonian system with dissipative interactions, draining 

irreversibly its energy to some microscopic degrees of freedom, may give rise to a CMS of the form (5), where H 

represents the total energy, including the thermal energy of the microscopic degrees of freedom, while S is the 

entropy of the closed system made by the formerly Hamiltonian one plus the thermal bath giving rise to friction. 

The functional F is definitely interpreted as free energy, in this case. 

The aforementioned characteristics render CMS ideal for representing systems that are Hamiltonian in the limit 

of no dissipation and no thermal conduction, that relax to asymptotic equilibria due to the interaction of 

“macroscopic”, deterministic degrees of freedom with “microscopic” degrees of freedom (represented via 

thermodynamics). This is the case of mechanical systems with friction, dissipative hydrodynamics and visco-

resistive magnetohydrodynamics: in all those examples, the dynamical variables z are a collection of 

“mechanical” variables (e.g., the position and momentum of a particle, bulk velocity of a fluid/plasma, magnetic 

field) plus variables representing the microscopic degrees of freedom draining irreversibly energy via dissipative 

processes. Another example of CMS is the collisional Vlasov-Poisson equation, in which the Hamiltonian 

system of a kinetic theory of a plasma without collisions is metriplectically extended with the inclusion of the 

collision integral of the Landau-Lenard-Bălescu form: in this case, there are no “macroscopic” and 

“microscopic” degrees of freedom, rather single or multiple particle processes. 

In § 3 of the present paper, a particular application of the CMS is presented, where the Casimir functional S does 

not depend on degrees of freedom other than those of the Hamiltonian system. This tricky interesting example is 

that of a free rigid body. 

 

 

3 The metriplectic servo-motor for the rigid body 

  Consider a rigid body with inertia tensor σ with the three eigenvalues { }321 ,, III . The rigid body may be 

described via a phase space spanned by canonical variables, in particular, the set ( )p
r

,χ  of the three Euler 

angles χ  and their canonical momenta p
r

 (in our notation, only the triplet p
r

 is indicated as a vector, because 

it is a spin-1 representation of the rotation group SO(3), while the collection χ  of the three Euler angles do not 

transform as a vector under SO(3)). In the absence of external torques, the Hamiltonian of the system reduces to 

its kinetic energy only 

 

( ) ( ) ( ),,,
2

1
, 1T

pLpLpH
rrrrr

χσχχ ⋅⋅= −
       (7) 

 

with L
r

 being the angular momentum of the rigid body. The three components of L
r

 form a closed non-

canonical Poisson algebra, given by 

 

{ } k

k

ijji LLL ε−=,        (8) 

 

(summation is intended over repeated indices), i.e. the symplectic realization of the Lie algebra of rotations 

so(3). It is hence possible to reduce the free rigid body Hamiltonian dynamics [Morrison, 1998], originally given 

by (7) and { } i

jj

i
p δχ =, , to a dynamics all expressed in terms of the components of L

r
, with Hamiltonian 

 

( ) LLLH
rrr

⋅⋅= −1T

2

1
σ        (9) 

 

and Poisson algebra (8). The Hamiltonian motion of the free rigid body is determined as 

 



 

( ) ( ) ( ){ }. , LHLALA
rrr

& =        (10) 

Given (8), any function ( )2LC  of the square modulus of L
r

 is a Casimir, since 

 

( ) ( ){ } .0,2 ALALC ∀=
r

 

 

The construction of a CMS out of the Hamiltonian system (9) and (8) is as follows: a certain symmetric semi-

definite tensor ( )L
r

Γ  is constructed such that ( ) 0=⋅Γ
∂
∂

L

HL r

r
; then the symmetric bracket is defined as 

 

( ) ,,
ji

ij

L

B

L

A
BA

∂

∂

∂

∂
Γ=  

 

so that the dynamics 

 

( ) ( ) ( ){ } ( ) ( )( )2,, LCLALHLALA
rrrr

& ζ+=        (11) 

 

represents a CMS. The simplest possible choice for the tensor ( )L
r

Γ  is 

 

( ) ( ) L
k

L
rrrrr

⋅=⊗−=Γ −12   /  σωωωω
ζ

1  

 

(ω
r

 being the angular velocity of the rigid body). This dynamics conserves H and increases C monotonically, 

until the total free energy 

 

( ) ( ) ( )2LCLHLF ζ+=
rr

       (12) 

 

reaches its extremum, 0=
∂

∂

L

F
r : this condition is realized for ( )LLC

rr 2'2ζω −= , being 2'
dL

dCC = , i.e. when the 

angular velocity of the rigid body and its angular momentum L
r

 are aligned. In other words, the dynamics (11) 

drives the rigid body to relax to the condition of rotation along one (stable) principal axis of inertia: 

 

( )eq
2

eqeqeqeq '2  /  LCILI ζω −==
rr

       (13) 

 

(clearly, as eqI  is a positive quantity, the constant ζ  is to be taken negative, as one takes the function ( )2LC  

increasing with 
2L ). 

The dynamics (11) changes the vector L
r

 (without changing the energy ( )LH
r

), so it must be equivalent to the 

application of an external torque. In particular, one may see that the torque encoded in (11) is: 

 

( ) ( ) ( )[ ]. '2 22

servo ωωωτ
rrrrrr

LLLkCL ⋅−=        (14) 

 

This torque must be applied from outside, but still has to depend on the instantaneous motion of the rigid body 

through L
r

 and ω
r

: in order to realize technologically this system one has to use a servo-mechanism, constantly 

reading what the rigid body is precisely doing. Such a mechanism will be referred to as metriplectic servo-motor 

(MSM). Remarkably, as one may see 

 



 

( ) ,0servo =⋅ωτ
rrr

L  

 

the mechanical power of the servo-motor vanishes, so that such a MSM could drive to alignment (13) a rigid 

body of any size with no power at all, as far as the mechanical labor is concerned. Of course, as servoτ
r

 depends 

on the condition of the rigid body, it must take some energy to measure, save and react to this. 

In the phase space of the vectors L
r

 or ω
r

, the reduced phase space, the equilibrium to which the CMS (11) 

tends is a point-like asymptotic equilibrium, namely a condition of entropic death after which the system doesn’t 

evolve any more. This is identical to the examples of CMS quoted in § 2. 

The equations of motion of L
r

 form the MSM 

 

( )
( )( ) ( )( )[ ]. '2 11T2T2

1

LLLLLLLkC

LLL
rrrrrr

rr&r

⋅⋅⋅−⋅⋅+

+⋅×=

−−−

−

σσσ

σ
 

 

It is rather easy to see that when L
r

 lies along an eigen-direction of 
1−σ , i.e. of σ , the foregoing dynamics 

vanishes. In particular, it is also possible to show that, if the eigenvalues of σ are ordered as 321 III >> , only 

the states ( ) ( )T

1 0,0,LL =
r

 and ( ) ( )T

3 ,0,0 LL =
r

 are stable equilibria, while ( ) ( )T

2 0,,0 LL =
r

 is unstable, for 

any real value L. 

An important characteristic of the metriplectic formalism is that the metric part ( ) ( )( )zSzA ,ζ  of the dynamics, 

responsible for “relaxation”, may indeed be designed so to make the system relax to one stable equilibrium 

instead of another. Let us give a practical example here of this mechanism by working with the metric part 

( )( ) ( )( )[ ]LLLLLLLkC
rrrrrr

⋅⋅⋅−⋅⋅ −−− 11T2T2'2 σσσ  of the MSM for the rigid body. In particular: the Casimir 

( )2
LC  can either be designed so to make the system relax to ( ) ( )T

1 0,0,LL =
r

, or to ( ) ( )T

3 ,0,0 LL =
r

. 

In the following Figures 1-6 we have reported the time series ( )tL
r

 and the phase portrait, in the L-space, of the 

MSM with ( )2LC  designed so that ( ) 1.0'2 2 =LkC , for different initial conditions, imitating the proximity of 

presumably equilibrium points, with a rigid body of momenta of inertia equal to 101 =I , 52 =I  and 13 =I  in 

arbitrary units. In the Figures 7-12, instead, the condition on ( )2LC  is changed so that ( ) 1.0'2 2 −=LkC , 

while all the remaining parameters, and initial conditions, are kept the same. We see numerically that, while for 

( ) 1.0'2 2 =LkC  the system relaxes to ( ) ( )T

1 0,0,LL =
r

, setting ( ) 1.0'2 2 −=LkC  the state ( ) ( )T

3 ,0,0 LL =
r

 

turns out to be the global attractor. 

 

 

 



 

  

Figure 1. Time evolution of the three components of L
r

 in the MSM with ( ) 1.0'2 2 =LkC  and with initial conditions 

( ) ( )T
1.0,1.0,10 =L

r
. The system relaxes to ( )1L

r
, see the text. 

 

 

 

  
Figure 2. Phase portrait of the MSM, with initial conditions ( ) ( )T

1.0,1.0,10 =L
r

, as in Figure 1. 

 

 

 

 



 

  

Figure 3. Time evolution of the three components of L
r

 in the MSM with ( ) 1.0'2 2 =LkC  and with initial conditions 

( ) ( )T
1.0,1,1.00 =L

r
. The system relaxes to ( )1L

r
, see the text. 

 

 

 

  
Figure 4. Phase portrait of the MSM, with initial conditions ( ) ( )T

1.0,1,1.00 =L
r

, as in Figure 3. 

 

 



 

  

Figure 5. Time evolution of the three components of L
r

 in the MSM with ( ) 1.0'2 2 =LkC  and with initial conditions 

( ) ( )T
1,1.0,1.00 =L

r
. The system relaxes to ( )1L

r
, see the text. 

 

 

  
Figure 6. Phase portrait of the MSM, with initial conditions ( ) ( )T

1,1.0,1.00 =L
r

, as in Figure 5. 

 

 



 

  

Figure 7. Time evolution of the three components of L
r

 in the MSM with ( ) 1.0'2 2 −=LkC  and with initial conditions 

( ) ( )T
1.0,1.0,10 =L

r
. The system relaxes to ( )3L

r
, see the text. 

 

 

  
Figure 8. Phase portrait of the MSM, with initial conditions ( ) ( )T

1.0,1.0,10 =L
r

, as in Figure 7. 

 



 

  

Figure 9. Time evolution of the three components of L
r

 in the MSM with ( ) 1.0'2 2 −=LkC  and with initial conditions 

( ) ( )T
1.0,1,1.00 =L

r
. The system relaxes to ( )3L

r
, see the text. 

 

 

 

  
Figure 10. Phase portrait of the MSM, with initial conditions ( ) ( )T

1.0,1,1.00 =L
r

, as in Figure 9. 

 

 



 

  

Figure 11. Time evolution of the three components of L
r

 in the MSM with ( ) 1.0'2 2 −=LkC  and with initial conditions 

( ) ( )T
1,1.0,1.00 =L

r
. The system relaxes to ( )3L

r
, see the text. 

 

 

  
Figure 12. Phase portrait of the MSM, with initial conditions ( ) ( )T

1,1.0,1.00 =L
r

, as in Figure 11. 

 

 

Points of asymptotic equilibrium are 0-dimensional attractors, while most interesting dissipative systems (e.g. 

electric circuits, ecological systems, …) show limit cycles and higher dimensional (possibly strange) attractors. 

In the present example of the MSM a limit trajectory already exists in the ( )p
r

,χ  phase space, simply the 1-

dimensional attracting manifold corresponding to the equilibria (13) in the reduced phase space. The remaining 

part of this paper is dedicated to illustrating this point. 



 

The Hamiltonian ODEs governing the motion of the variables ( )p
r

,χ  read: 

 

( ) ( )

( ) ( )








⋅
∂

∂
⋅⋅⋅−=

⋅⋅⋅=

p
A

App

pAA

rr&r

rr
&

χ

χ
σχ

χσχχ

TT

T ,

       (15) 

 

(the triplet χ
r
&  is an SO(3)-vector). In (15) the matrix ( )χA  gives the linear, angle dependent and inertia 

dependent relationship between p
r

 and ω
r

, as ( ) pA
rr

⋅= χω . It can be expressed in terms of the relationship 

( ) χχω
r
&

r
⋅= D  between the angular velocity and the derivatives of Euler angles (see Figure 13): 

 

( )

( ) ( )( ) .

,

1cos0

0cossinsin

0sinsincos

T11

1

313

313

χσχ

χ

χχχ

χχχ

χ

−− ⋅=

















−=

DA

D
 

 

Equations (15) do correspond to the equations of motion of ω
r

 obtained by inserting ω
r

 in (10): so, they have 

all the same solutions as those ones, re-expressed in the canonical variables. 

 

 
Figure 13. The Euler angles, used as Lagrangian variables for the rigid body. 

 

As the MSM is added to this Hamiltonian system, in the space of the ω
r

 vectors asymptotically stable  points 

appear, that are translated into one-dimensional  trajectories in the canonical variables ( )p
r

,χ . These may be 

shown to be limit cycles. Let us consider in particular the angular velocity 

 

,ˆ
2eΩ=∗ω

r
        (16) 

 

corresponding to the rigid body rotating around the 2ê  axis: if the momentum 2I  is either the largest or the 

smallest eigenvalue of σ , this 
∗ω

r
 is an asymptotically stable point in the space of the angular velocities. 



 

Placing (16) into (15), and considering ( ) pA
rr

⋅= χω , we find that the corresponding velocities of the Euler 

angles read: 

 















Ω−=

Ω=

Ω−=

⇒= ∗

.
sin

coscos

,
sin

cos

,sin

1

31
3

1

3
2

31

χ

χχ
χ

χ

χ
χ

χχ

ωω

&

&

&

rr        (17) 

 

A possible, particularly readable, solution of (17), is 

 

( )

( ) ( )
( )













∀=

+Ω=

=

. 0

,0

,
2

3

22

1

tt

tt

t

χ

χχ

π
χ

       (18) 

 

The solution (18) represents a uniform rotation around the node line, that will coincide with the new X axis, 

being ( ) 03 =tχ  at every time. The value of p
r

 corresponding to ∗ω
r

 is the vector ( ) ∗∗−∗ ⋅= ωχ
rr 1Ap , with 

( ) ( )( )0,0, 22
χχ π +Ω=∗

tt , that reads 

 

.

0

0

2

















Ω=∗
Ip

r
        (19) 

 

This ( ) ∗∗−∗ ⋅= ωχ
rr 1Ap  and the aforementioned ( )t∗χ  form a solution of the ODEs (15) in the space of 

canonical variables ( )p
r

,χ , as they correspond to the ∗ω
r

 solving the Hamilton equations in the ω
r

-space. 

What happens to this trajectory when the MSM is at work? When this is so, a new term appears in the ODE for 

p
r

, i.e. some ( )pp

rr
,χ∆  representing the same effect of the metriplectic term ( )ωω

rr
∆  on the rigid body motion, 

now written in the canonical variables ( )p
r

,χ . In order to find the analytical expression of ( )pp

rr
,χ∆ , one 

simply imposes that the ODEs for ω
r

 are the same in the two systems of variables. Under the assumption that 

the ODEs of the angles are not affected by any metric contribution, i.e. ( ) 0, =∆ p
rr

χχ , this reasoning leads to: 

 

pAACp

rr
⋅⋅⋅Γ⋅=∆ − 21'2 σζ ,       (20) 

 

where all the dependencies on ( )p
r

,χ  are omitted. The foregoing term must be added to the Hamiltonian 

contribution in (15), becoming: 

 



 













⋅⋅⋅Γ⋅+

+⋅
∂

∂
⋅⋅⋅−=

⋅⋅=

−

−

.'2    

,

21

TT

1

pAAC

p
A

App

pAD

r

rr&r

rr
&

σζ

χ
σ

χ

       (21)

  

It is possible to see that the curve (18) and (19) in the full canonical phase space of the rigid body solves the total 

(21), because the metriplectic term pAACp

rr
⋅⋅⋅Γ⋅=∆ − 21'2 σζ  can be shown to vanish in the correspondence 

of ( )( )∗∗ pt
r

,χ .  This follows because  the matrix 

 

( )















Ω

=Γ ∗

100

000

001
2

ζ
ω

kr
 

 

has the vector 

 

( )
















Ω=⋅⋅ ∗∗

0

0
2

2

2
IpA

r
χσ  

 

in its kernel. Hence, one may state that, once on this orbit, the rigid body will remain there even in the presence 

of the MSM, the torque of which indeed vanishes along this trajectory. 

As mentioned before, provided that 2I  is either the maximum or the minimum of the eigenvalues of σ , the 

point (16) represents a stable equilibrium point for the Hamiltonian free rigid body, and an asymptotically stable 

point for its counterpart with the MSM. If the canonical variables ( )p
r

,χ  are adopted, the corresponding 

( )( )∗∗ pt
r

,χ  is an attracting limit cycle of the metriplectic system. In order to check this, one expands in 

( )p
r

δδχ ,  around ( )( )∗∗ pt
r

,χ  the equations (21). After this expansion, the perturbations ( )22 , pδδχ  decouple 

from the other ones 

 

,0  , 2

2

2
2 == p

I

p
&& δ

δ
χδ  

 

resulting in a perturbation that will affect the cycle as: 

 

( ) ( ) ( ) ( )

2

2
222

0
  ,000

I

p
ΩΩ

δ
δχχχ ++ aa  

 

(the same cycle, but swept by starting from another point and with another velocity). The other variables evolve 

according to a system of linear ODEs coupled among themselves: 

 



 

( )

( )
( )

( ) ( )

( )















−+

++=

+−+

+−+=
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+−=

−−

−

,2

,2

2

,

,

3

22

2

2

3

133

31

22

2

2

1

3

32

2

2

121

2

21

3
1

13

1
1

31

1

21

1

2
212

3

11

21

pΩII

pp

pΩpΩII

ΩIIIΩIp

pΩ

p

I

ΩII

I

ΩIII

I

II

ΩII

δβ

δδχδ

δδβ

δχβδχδ

δδχχδ

δδχχδ

&

&

&

&

       (22) 

 

where the assumption ( )( )**2 ,' pLkC
r

χβ =  has been made. The study of the system (22) gives the expected 

results, viz. the perturbations of the limit cycle (18) and (19) tend to zero with time as 
21 II −  and 

31 II −  have 

the same sign, i.e. as the body nearly rotates around a principal axis with either maximum or minimum moment 

of inertia. This properly represents how the point-like equilibrium (13) in the reduced phase space turns into an 

attractive limit cycle in the complete canonical phase space. 

 

4 Conclusions 

  In this paper we have briefly reviewed the concept of complete metriplectic systems, the extension of 

Hamiltonian systems possessing asymptotically stable equilibria. Such systems may represent energy-

conserving, entropy increasing dynamics, particularly useful for describing relaxation processes. 

Turning non-Hamiltonian systems into dynamics described by Leibniz bracket algebrae can be usefully applied 

to systems showing finite-dimensional attractors, as limit cycles. This is indeed the case of interesting systems in 

applied physics, space physics and geophysics, biophysics or mathematical ecology. 

Here an example of a complete metriplectic system showing limit cycle attracting orbits is reported: a free rigid 

body to which a suitable external torque is applied, able to modify the angular momentum, and angular velocity, 

without changing the energy. Such a mechanism, referred to as metriplectic servo-motor, may drag the angular 

velocity of a free rotator to align along one of its principal axes of inertia, without dissipation of mechanical 

energy. 

Such a final configuration, obtained via a MSM, is an asymptotically stable, point-like equilibrium in the space 

of angular velocity (or angular momentum), but corresponds to a 1-dimensional limit cycle when the system is 

described via Euler angles and their respective canonically conjugate momenta. 
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