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Abstract
Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal,
low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian
mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study,
is modified so that the energy changes monotonically while preserving the Casimir invariants in
the artificial dynamics. An equilibrium of the system is given by an extremum of the energy,
therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies
demonstrated that the SA succeeds to lead to various MHD equilibria in two-dimensional
rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta
reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy
state, is shown. Several versions of the artificial dynamics are developed that can effect
smoothing. The smoothing effect is examined in the numerical results.

Keywords: simulated annealing, stationary state, magnetohydrodynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

The calculation of magnetohydrodynamics (MHD) equilibria
is fundamental for fusion plasma research. Axisymmetric
toroidal equilibria are described by the well-known Grad–
Shafranov (GS) equation [1–3]. Because the GS equation is
an elliptic differential equation, of the same type as Poissonʼs
equation, numerical methods for solving it are well-estab-
lished [4]. The extension of the GS equation to include
plasma rotation has also received attention [5–8]. The GS
equation including toroidal rotation is also an elliptic differ-
ential equation that can be solved by the same numerical
methods as the original GS equation. Other extensions such as
inclusion of anisotropic pressure are also possible. (See e.g.
[9] for a review of MHD equilibrium calculations.) The
inclusion of poloidal rotation, however, can make the

equilibrium equation hyperbolic [5, 6], for which no general
numerical method has been established.

The calculation of three-dimensional (3D) MHD equili-
bria is considerably more involved. The existence of nested
magnetic surfaces is not guaranteed generally. Various
numerical codes for the 3D MHD equilibrium have been
developed. Variational Moment Equilibrium Code(VMEC)
[10, 11] may be the most used one, where nested magnetic
surfaces are assumed to exist. In VMEC the energy of the
system is minimized by the steepest descent method to obtain
an equilibrium. Princeton Iterative Equilibrium Solver(PIES)
[12] is another type, where nested magnetic surfaces are not
assumed. In PIES the solution method consists of an iteration
with the following steps: (i) calculation of the pressure by
magnetic field line tracing, (ii) calculation of current density
by the MHD equilibrium equation for the obtained pressure
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and (iii) determination of the magnetic field by the Ampèreʼs
law. Another code Helical Initial value solver for Toroidal
equilibria (HINT) [13] and its spawn HINT2 [14] are partly
similar to PIES. HINT2 solves the MHD evolution equation,
instead of steps (ii) and (iii) of PIES, under a fixed pressure
given by step (i). Inclusion of dissipation leads to an equili-
brium. A new type of the equilibrium code is Stepped Pres-
sure Equilibrium Code(SPEC) [15], where an equilibrium is
constructed by connecting multiple layers of Taylor relaxed
states (Beltrami fields) under continuity of the total pressure.
In each layer the plasma pressure is flat and the existence of
magnetic surfaces is not assumed. Ideal Perturbed Equili-
brium Code (IPEC) [16] calculates 3D MHD equilibrium
perturbatively by adding zero-frequency, linear ideal MHD
modes to an axisymmetric equilibrium. As for inclusion of
plasma rotation, an extension of HINT2 to toroidally rotating
equilibrium is on-going [17].

Such 3D structures in magnetically confined plasmas are
strongly related to self-organization and relaxation processes.
Magnetic island formation, effects of plasma rotation on the
magnetic island, and their interactions with externally applied
magnetic fields have recently received attention in tokamak as
well as helical [18] plasma research. Also, the transition to
helical equilibria of reversed field pinch plasmas [19–21] is an
interesting self-organization phenomenon that is being
investigated. Therefore, 3D MHD equilibrium codes, in
addition to nonlinear evolution codes, are of great importance.
For these studies, the existence of magnetic surfaces should
not be assumed, and plasma rotation should be included.
Moreover, it is important to characterize equilibria in a sys-
tematic way in order to understand important physical
phenomena.

The present work concerns an MHD equilibrium code of
another type based on simulated annealing (SA) [22, 23].
Originally the idea was developed for neutral fluids and
demonstrated to work for computing simple equilibria [24]
(see also [25, 26]). Briefly, we solve an artificial dynamics,
which is generated on the basis of the physical dynamics, to
reach an energy extremum while preserving conservation
properties of the physical system other than the energy. The
energy extremum is an equilibrium of the system of ideal
fluids described by Hamiltonian [27, 28]. Later it was gen-
eralized in [29] to apply to a large class of equilibria of
Hamiltonian field theories by allowing for smoothing and the
enforcement of constraints that select out a broader class
equilibria. SA is based on Hamiltonian structure, and can be
applied to fluid and plasma models, in particular ideal MHD,
because they are Hamiltonian in terms of noncanonical
Poisson brackets involving a skew-symmetric Poisson
operator [30, 31]. As we will see below, the SA does not rely
on the existence of flux surfaces nor assumption of absense of
plasma rotation. Therefore, the SA is a promising candidate
for an equilibrium code of a new type.

As noted above, we consider Hamiltonian systems which
includes ideal neutral fluid dynamics and MHD. For Hamil-
tonian systems the time evolution of the dynamical variables
is determined by the functional derivative of the Hamiltonian
multiplied by a skew-symmetric Poisson operator. The

harmonic oscillator is the simplest finite-dimensional exam-
ple, for which the state variable is u q p, T= ( ) , with q and p
being the usual canonical coordinate and momentum,
respectively, and the Hamiltonian is H q p 2.2 2= +( ) Using

uH q p, T¶ ¶ = ( ) and skew-symmetric canonical Poisson

matrix J 0 1
1 0

,c -
⎜ ⎟
⎛
⎝

⎞
⎠≔ gives the equations in the Hamiltonian

form Ju
ut c
Hd

d
= ¶

¶
. Because of the skew-symmetry of Jc, the

energy of the oscillator is conserved. In addition to the energy
conservation, for more general noncanonical Poisson brack-
ets, with Poisson operators J, there exist Casimir invariants
arising from degeneracy. The degeneracy is not because of
variable change, but is inherent in the Eulerian forms of ideal
fluid dynamics and MHD and can be seen as arising from the
underlying canonical description in terms of Lagrangian
variables (see e.g. [31]). Such systems evolve on a surface
specified by its energy and the Casimir invariants in the
corresponding phase space of the dynamical variables. The
magnetic and cross helicities are examples for ideal MHD. A
surface defined by constant Casimir invariants in the phase
space is called a Casimir leaf. An extremum of the energy on
the Casimir leaf gives an equilibrium, a stationary state, as
first noted in the plasma literature [27] and then later for the
neutral fluid [28]. If we solve the physical evolution equation,
the system follows a trajectory with a constant energy on the
Casimir leaf. However, it does not relax to an equilibrium if
the initial condition is not an equilibrium.

SA uses an artificial evolution equation obtained from the
Hamiltonian structure of the physical evolution equation by
‘squaring’ the Poisson bracket, i.e. the dynamics is given by

Ju
ut

Hd

d
2= ¶
¶
. For such artificial dynamics, it is easy to see that

the energy monotonically decreases, as can easily be shown
for the harmonic oscillator example. Similarly, for MHD, the
energy of the system changes monotonically; however, as we
will see in the theoretical development, the Casimir invariants
are preserved because the artificial dynamics is constructed on
the basis of the Poisson bracket of the original dynamics
which generates the Casimir invariants. A schematic picture
explaining the Casimir leaf, the physical and the SA is shown
in figure 1. Because the energy extremum on a Casimir leaf is
by definition an equilibrium state, this method can be used as
a numerical method for finding equilibria. An advantage of
this method is that the stationary state is characterized by the
values of the Casimir invariants.

The original work [24–26] was effective for simple
equilibria, but because of the plurality of equilibria it did not
prove effective for equilibria of interest, and needed to be
modified. This was done in [29], where the term SA was
introduced for this method of the artificial dynamics, by
introducing a general symmetric bracket that allows for
smoothing and the use of Dirac theory to impose constraints.
On the basis of these early studies, SA was applied to 2D low-
beta reduced MHD [32] in [22], and a method to pre-adjust
values of the Casimir invariants, by pre-adjusting initial
conditions, in order to characterize the sought equilibrium
states was developed in [23].
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The previous studies were performed in a 2D rectangular
domain with periodic boundary conditions in both directions,
except for a few cases in [29] where layer models were used
for describing a third dimension. In the present study a 3D
code is developed, although the outer boundary of the plasma
is still cylindrical. Then a stationary state with magnetic
islands with multiple helicities can be obtained if it has lower
energy than a cylindrical symmetric state. The code uses the
symmetric bracket of [29] that can effect smoothing.
Although the code development is still in progress in some
parts, we have observed that such a smoothing effect is
important for numerical stability of the code as well as for the
computational cost. The code can be numerically unstable
easily without the smoothing. Also, the computational cost
can be affected by the smoothing because the relaxation path
to the lower energy state can be changed. Therefore, we focus
on the smoothing effect in examining numerical results.

The paper is organized as follows. In section 2, the set-
ting of the problem is explained, the SA method is summar-
ized, with a focus on the 3D low-beta reduced MHD example,
and three types of symmetric brackets are introduced.
Section 3 presents numerical results, with the choices of the
symmetric brackets examined, and a stationary state with
magnetic islands calculated. Next, section 4 contains discus-
sion, where some remaining issues are raised. Finally, the
paper is summarized in section 5.

2. Theory

2.1. Reduced MHD system

In this study, let us consider a cylindrical plasma with minor
radius a and length R2 0p . The cylindrical coordinates are
r z, ,q( ), with the toroidal angle being z R0z ≔ and the
inverse aspect ratio given by a R0e ≔ . Physical quantities
are normalized by the length a, the magnetic field in the z-
direction B0, the Alfvén velocity v BA 0 0 0m r≔ with 0m and

0r being vacuum permeability and typical mass density,
respectively, and the Alfvén time a vA At ≔ . Then low-beta
reduced MHD is given by

U

t
U J

J
, , , 1j y e

z
¶
¶

= + -
¶
¶

[ ] [ ] ( )

t
, , 2

y
y j e

j
z

¶
¶

= -
¶
¶

[ ] ( )

where the fluid velocity is v z j= ´ ˆ , the magnetic field is
B z zy= +  ´ˆ ˆ, the vorticity is U  j^≔ , the current
density is J  y^≔ , the Poisson bracket for two functions f
and g is zf g f g,  ´ [ ] ≔ ˆ · , the unit vector in the z
direction is denoted by ẑ, and ̂ is the Laplacian in the r–θ
plane.

2.2. Simulated annealing theory

Now, we briefly review the governing SA system, referring
the reader to [29] for a detailed explanation. The artificial
dynamics of SA is given by

u
u

t
H, , 3

¶
¶

= (( )) ( )

where u is a vector of the dynamical variables, uH [ ] is the
Hamiltonian functional and F G,(( )) is the symmetric bracket
for two functionals uF [ ] and uG [ ], defined by

x x x x

F G x x

F u K u G

, d d

, , , , 4i
ij

j

3 3

 ò ò¢ 

´ ¢ ¢  

(( )) ≔

{ ( )} ( ){ ( ) } ( )

where Kij( ) is a definite symmetric kernel, and

u
x

x x
u
x

F G x x

F

u
J

G

u

, d d

, 5
i

ij
j

3 3

 ò ò
d
d

d
d

¢ 

´
¢

¢ 


{ } ≔

[ ]
( )

( ) [ ]
( )

( )

is the Poisson bracket for two functionals, with  denoting
the whole domain of the system. The quantity Jij( ) is the
skew-symmetric Poisson operator, and u uFd d[ ] and

u uGd d[ ] are the functional derivatives of F and G, respec-
tively. Here a functional derivative u

u
Fd
d

[ ] of an arbitrary

functional uF [ ] is defined by u u uF Fd

d 0


 
d = + =

=
[ ] [ ˜]

uxd ,u
u

F3
ò

d
d

˜[ ] where ũ is an arbitrary function satisfying the
same boundary condition as u. Note that  is a small para-
meter and is not the inverse aspect ratio e. The sign of the
right-hand side is taken so that energy decreases as time
progresses. Note that the Dirac theory for imposing con-
straints is not used in this paper. As we will describe in
section 2.5, we can generate a variety of artificial dynamics by
the choices of the symmetric kernel. We will introduce three
types of Kij( ) in section 2.5 that can effect smoothing. We will
examine the smoothing effect in the numerical results in
section 3.

Here let us discuss briefly the meaning of the symmetric
kernel by using the finite-dimensional analogue that appeared
in section 1. The artificial dynamics generated by squaring the

Figure 1. Schematic picture explaining Casimir leaf, physical and
artificial dynamics.
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Poisson bracket can be rewritten as u u u H, , ,u

t
i j jd

d

i

= { }{ }
where i j, 1, 2= and ,{· ·} denotes the usual Poisson bracket
defined in classical mechanics (only in this paragraph). This
equation is already similar to (3) with (4), however, the
evolution equation in the finite-dimensional system can be

generalized to u u K u H, , ,u

t
i j

jk
kd

d

i

= { } { } where k 1, 2= and
Kjk( ) should have a definite sign. If Kjk( ) is taken to be a unit
matrix, the evolution equation is the same as the one gener-
ated just by squaring the Poisson bracket. If Kjk( ) is diagonal
but the diagonal elements are different, the change rates of the
variables in time can be made different. The choice of Kjk( )
can generate a variety of artificial dynamics.

Let us come back to the infinite-dimensional MHD sys-
tem. The Hamiltonian structure for low-beta reduced MHD,
as was first given in [33, 34], has u u u,1 2 T≔ ( ) where u U1 =
and u2 y= , and the Hamiltonian

uH x Ud
1

2
63 1 2 2


ò y + ^ ^
-

^[ ] ≔ {∣ ( )∣ ∣ ∣ } ( )

with  being the whole domain of the cylindrical plasma.
This Hamiltonian is the physical one, and is substituted in
equation (3) for the SA. The first and the second terms of the
the integrand of (6) correspond to the kinetic energy Ek and
magnetic energy Em, respectively, and the skew-symmetric
Poisson operator is given by

x x x x

x x

x

J

U

,

, ,

, 0
. 7

ij 3d

y e
z

y e
z

¢  = ¢ - 

´
-  -  +

¶
¶ 

-  +
¶
¶ 

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

( ( )) ( )

[ ( ) ] [ ( ) ]

[ ( ) ]
( )

Here x3d ( ) is the Diracʼs delta function in 3D space, and
its explicit form is x r r3d d d q d z e=( ) ( ) ( ) ( ) since

x r rd d d d3 q z e= . In order to write down the evolution
equation of the SA, we need to calculate the Poisson bracket
between the dynamical variables, and between the dynamical
variable and the Hamiltonian. The functional derivative of

uH [ ] is straightforward:
u

u
H

J
. 8

d
d

j
=

-
-( )[ ] ( )

The functional derivatives of U and ψ can be obtained by
considering the functionals

x x x xU x Ud , 93 3

ò d= ¢ ¢ - ¢( ) ( ) ( ) ( )

x x x xxd . 103 3

òy y d= ¢ ¢ - ¢( ) ( ) ( ) ( )

The functional derivatives of xU ( ) and xy ( ) are

x
u

x xU

0
, 11

3d
d

d= - ¢⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )

x
u x x

0
, 123

dy
d d

=
- ¢

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

hence we obtain

x x x x xU U U, , , 133d¢ = ¢ - ¢{ ( ) ( )} [ ( ) ( )] ( )

x x x x x
x x

U , , ,

14

3
3

y y d e
d

z
¢ = ¢ - ¢ -

¶ - ¢

¶ ¢
{ ( ) ( )} [ ( ) ( )] ( )

( )

x x x x x
x x

U, , ,

15

3
3

y y d e
d

z
¢ = ¢ - ¢ -

¶ - ¢

¶ ¢
{ ( ) ( )} [ ( ) ( )] ( )

( )

x x, 0, 16y y ¢ ={ ( ) ( )} ( )
x x x x x

x
U H U J

J

, , ,

, 17

j y

e
z

 =   +  

-
¶ 
¶ 

{ ( ) } [ ( ) ( )] [ ( ) ( )]
( ) ( )

x x x
x

H, , . 18y y j e
j
z

 =   -
¶ 
¶ 

{ ( ) } [ ( ) ( )] ( ) ( )

These confirm that the physical evolution equations are
written as

u
u

t
H, 19

¶
¶

= { } ( )

by the definitions of the Hamiltonian (6) and the Poisson
bracket (5).

Using the above Poisson brackets, the symmetric
brackets are obtained as

x x

x x
x

U H U

J
J

, ,

, , 20

j

y e
z

=

+ -
¶
¶

(( )) [ ( ) ˜ ( )]

[ ( ) ˜( )]
˜( ) ( )

x x
x

H, , , 21y y j e
j
z

= -
¶
¶

(( )) [ ( ) ˜ ( )] ˜ ( ) ( )

where

x x x x

x x x

x K f

K f

d ,

, , 22

UU
U

U

3

òj =-   

+  y
y

˜ ( ) ( ( ) ( )

( ) ( )) ( )

x x x x

x x x

J x K f

K f

d ,

, , 23

U
U3

ò=-   

+  

y

yy
y

˜( ) ( ( ) ( )

( ) ( )) ( )

and

x x
x x x x

x x x x
K

K K

K K
,

, ,

, ,
24ij

UU U

U

¢  =
¢  ¢ 
¢  ¢ 

y

y yy

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ( ))

( ) ( )
( ) ( )

( )

with f U and f y being defined by the right-hand sides of the
physical evolution equation as

x x x x x
x

f U J
J

, , , 25U j y e
z

+ -
¶
¶

( ) ≔ [ ( ) ( )] [ ( ) ( )] ( ) ( )

x x x
x

f , . 26y j e
j
z

-
¶
¶

y ( ) ≔ [ ( ) ( )] ( ) ( )

Observe, U and ψ are advected by j̃ and J̃ in SA, instead ofj
and J in the physical dynamics. A variety of artificial
dynamics can be generated by different choices of the kernel
Kij( ). We will present some choices of Kij( ) in section 2.5, and
will examine the smoothing effects by the choice of Kij( ) in
the numerical results in section 3.
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2.3. Casimir invariants

Before examining the choice of Kij( ), let us introduce the
Casimir invariants. A Casimir invariant of the system is
defined as a functional uC [ ] that satisfies

C F, 0 27={ } ( )

for any functional uF [ ]. From the definition of the symmetric
bracket (4), it is obvious that the Casimir invariants in the
original dynamics are preserved in the artificial dynamics. If
we write u uC C C,1 2

Td d =[ ] ( ) and u uF F F,1 2
Td d =[ ] ( ) ,

then

x x

x x x

x x
x

x x x
x

x x x

x x
x

x x x
x

x x x

x x
x

x x x
x

C F x x

C U F

F
F

C F
F

x C U F

F
F

C F
F

x F C U

C
C

F C
C

, d d

,

,

,

d ,

,

,

d ,

,

, ,

28

3 3 3

1 1

2
2

2 1
1

3
1 1

2
2

2 1
1

3
1 1

2
2

2 1
1

 





ò ò

ò

ò

d

y e
z

y e
z

y e
z

y e
z

y e
z

y e
z

= ¢  ¢ - 

´ ¢ -  

-   +
¶ 
¶ 

+ ¢ -   +
¶ 
¶ 

= ¢ ¢ - ¢ ¢

- ¢ ¢ +
¶ ¢

¶ ¢

+ ¢ - ¢ ¢ +
¶ ¢

¶ ¢

= ¢ ¢ - ¢ ¢

- ¢ ¢ -
¶ ¢

¶ ¢

+ ¢ - ¢ ¢ -
¶ ¢

¶ ¢

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

{ } ( )

( ( )( [ ( ) ( )]

[ ( ) ( )] ( )

( ) [ ( ) ( )] ( )

( ( )( [ ( ) ( )]

[ ( ) ( )] ( )

( ) [ ( ) ( )] ( )

( ( )( [ ( ) ( )]

[ ( ) ( )] ( )

( ) [ ( ) ( )] ( )

( )

where the last equality follows upon integration by parts. In
order to satisfy C F, 0={ } for any F1 and F2, C1 and C2

must satisfy

x x x x
x

C U C
C

, , 0, 291 2
2y e
z

+ +
¶
¶

=[ ( ) ( )] [ ( ) ( )] ( ) ( )

x x
x

C
C

, 0. 301
1y e
z

+
¶
¶

=[ ( ) ( )] ( ) ( )

ChoosingC 01 = andC 12 = , yields xC x Cd3
mò y= ( ) ≕ ,

while choosing C 11 = and C 02 = , yields C xd3
ò=

xU Cv( ) ≕ . (See [33] for a discussion of how these are
remnants of the helicity and cross helicity.) The accuracy of a
numerical simulation can be tested by monitoring the con-
servation of Cm and Cv.

2.4. Cross helicity

Another conserved quantity of ideal MHD is a cross helicity,
which is defined by

v BC xd 31c
3

ò≔ · ( )

x Ud . 323

ò y= ( )

The functional derivative of Cc is given by

u
C

U
. 33cd

d
y= ⎜ ⎟⎛

⎝
⎞
⎠ ( )

Then, x x x xC U C, , 01 2 y+ =[ ( ) ( )] [ ( ) ( )] and x xC ,1 y[ ( ) ( )]
0= in (29) and (30), however, ζ-derivative terms remain

finite generally. When uF [ ] in (27) is taken to be uH [ ],
F1 j= - and F J2 = - , and we can show that

x
x

x
x

C H x
U

J

x

, d

1

2
d

0

34

c
3

3 2 2





ò

ò

j e
z

e
y
z

z
j y

= ¢ ¢ ¶ ¢

¶ ¢
+ ¢ ¶ ¢

¶ ¢

= - ¢ ¶
¶ ¢

 + 

=

^ ^

⎛
⎝⎜

⎞
⎠⎟{ } ( ) ( ) ( ) ( )

(∣ ∣ ∣ ∣ )

( )

by integration by parts under appropriate boundary condi-
tions. Therefore, the cross helicity Cc is also conserved by the
SA as well as the physical dynamics.

2.5. Choices for the symmetric kernel

In section 2.2, we obtained a general form of j̃ and J̃ in (22)
and (23). Here we introduce three choices for Kij( ). First,
let us set the off-diagonal terms of Kij( ) to zero in this

paper for simplicity. Then, x x xJ x K fd ,UU
U3

ò= -  ˜ ( ) ( )
and x x xJ x K fd ,3

ò= -  yy
y˜ ( ) ( ). Thus we may use the

definition

x x x xh x K fd , 353

ò= -   ˜( ) ( ) ( ) ( )

with h̃ chosen to be j̃ or J̃ , K to be KUU or Kyy, and f to be
f U or f y, respectively. Below we introduce three choices of
K which will be used in the numerical calculations. The
motivation for the choices is to examine their smoothing
effect. Such smoothing may affect the relaxation path to the
energy minimum, computational cost as well as the numerical
stability. Since it is easiler to show the expressions of h̃ in the
unified manner, here we introduce the Fourier representation
of xh̃( ) in θ and ζ as

xh h r e . 36
m n

m n
m n

,

iå= q z+˜( ) ˜ ( ) ( )( )
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Then the Fourier coefficients are given by

x

x x x

x x x

x x

h r h

x K f

x f K

x f K r

1

2
d d e

1

2
d d d , e

d
1

2
d d , e

d , .

37

m n
m n

m n

m n

m n

2
i

2
3 i

3
2

i

3







ò

ò

ò

p
q z

p
q z

p
q z

=

= -   

= -   

= -   

q z

q z

q z

- +

- +

- +

∮ ∮

∮ ∮

∮ ∮

˜ ( )
( )

˜( )

( )
( ) ( )

( )
( )

( )

( ) ( )
( )

( )

( )

( )

For our first choice of smoothing we consider

x x
x x

x x
K ,

0

0
, 38ij

UU
3

3

a d
a d

 =
- 

- yy

⎛
⎝⎜

⎞
⎠⎟( ( ))

( )
( )

( )

where 0UUa > and 0a >yy are constants that scale the
resulting advection fields j̃ and J̃ . Since the Fourier repre-
sentation of the 3D delta function is given by x x3d -  =( )

r r e
r m n

m n
2 ,

i i
2 d -  åe

p
q q z z-  + - ( )

( )
( ) ( ) with r rd - ( ) being a

Diracʼs delta function in r, and it is straightforward to obtain
h r f rm n m na= -˜ ( ) ( ); namely,

r f r , 39m n UU m n
Uj a= -˜ ( ) ( ) ( )

J r f r . 40m n m na= - yy
y˜ ( ) ( ) ( )

These advection fields are the right-hand sides of the physical
evolution equations (1) and (2) multiplied by UUa- and
a- yy, respectively. Note that this is the same situation as the

artificial dynamics generated by squaring the Poisson bracket
J explained in the Introduction. We refer to this version of
smoothing as ‘SA-1’.

The second choice of smoothing introduced in this
paper is

where gqz is defined by

g , , ,

, 42

2

2

2

2q z
q z q z

d q q d z z

¶
¶

+
¶
¶

 

= - -  - 

qz

⎛
⎝⎜

⎞
⎠⎟ ( )

( ) ( ) ( )

i.e., gqz is a Greenʼs function in the θ–ζ plane. By Fourier
transforming (42) in θ and ζ to obtain the Fourier expansion
coefficients of gqz , and we obtain

xK r r r
m n r

,
2

e .

43

m n
m n

2 2 2
id

a e
p

 = - 
+

q z- + ( ) ( )
( ) ( )

( )

( )

Then

h r
m n

f r , 44m n m n2 2

a
= -

+
˜ ( ) ( ) ( )

which gives the advection fields j̃ and J̃ . The symmetric
bracket with this smoothing has the effect of reducing short-

wave-length components of the advection fields in the θ–ζ

plane, and thus those modes are not easily excited. It is similar
to the one introduced for 2D vortex dynamics [29] and 2D
low-beta reduced MHD [22, 23]. We refer to this version of
smoothing as ‘SA-2’.

Lastly, consider our third choice for smoothing,

x x
x x

x x
K

g

g
,

, 0
0 ,

, 45ij
UUa

a
 =


yy

⎛
⎝⎜

⎞
⎠⎟( ( ))

( )
( ) ( )

where

x x x xg , , 463 d - - ( ) ≔ ( ) ( )

i.e., each diagonal component of the symmetric kernel is
proportional to the Greenʼs function in 3D. If we Fourier
expand g in θ, ζ, q and z as

x xg g r r, , e e ,

47
m nm n

m n m n
m n m n

, ,
,

i iåå =  q z q z

 
 

+  +  ( ) ( )

( )

( ) ( )

we can express (46) as

r r
r

r
g r r

m

r
n g r r

r
r r

1
,

,
2

.

48

m n m n

m n m n

,

2

2
2 2

, 2
e

e
p

d

¶
¶

¶
¶



- +  =
-

- 

- -

- -

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

( ( ))

( )
( )

( )
( )

Here g r r,m n m n, - - ( ) means g r r,m n m n,   ( ) with
m m = - and n n = - . For a given r, we can solve the
homogeneous equation to obtain the solutions in both

r r0  <  and r r 1 < regions. These are actually linear
combinations of the modified Bessel functions. In order to
determine the coefficients of the linear combination, we

require the continuity of gm n m n,- - and the jump condition

r
g r r

r

,
49m n m n

r

r
,

0

0

e
¶ 

¶
= -- -

-

+( )
( )

at r r= . The jump condition (49) is obtained by integrating
(48) from r 0 - to r 0 + . Note that we solved (48) together
with (49) numerically, instead of using the modified Bessel
function explicitly. By using this symmetric kernel, we obtain

h r

r r g r r f r

2

d , . 50

m n

m n m n m n

2

0

1

,ò

a
p
e

= -

´    - -

˜ ( ) ( )

( ) ( ) ( )

This version of smoothing can effect not only the behavior in
the θ–ζ plane but also in the r direction, because the advection
field h̃ at a radial position is obtained by integrating the ori-
ginal advection field f over the radius with the weight of the

x xK
r r g r

r r g r
,

, , , 0

0 , , ,
, 41ij

UUa e d q z q z

a e d q z q z
 =

-   

-   
qz

yy qz

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ( ))

( ) ( )
( ) ( )

( )
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Greenʼs function. We refer to this version of smoothing as
‘SA-3’.

Since these choices of the kernels may be different in the
smoothing effect, the relaxation path towards an equilibrium
can be different. If there are several local minima of the
energy on the Casimir leaf, especially if those local minima
are located closely, the system can relax to a different equi-
librium. However, we know little about the structure of such
local minima in the phase space, so we do not discuss it in
detail in this paper. Even if the system goes to a different
equilibrium due to the difference of the relaxation path, it is
still an equilibrium of the original system because u H, 0={ }
when u H, 0=(( )) with the kernel Kij( ) with definite sign.

3. Numerical results

Consider now our numerical results obtined from a code
developed for solving the artificial evolution equation (3).
The code imposes regularity of physical quantities at r=0
and 0j y= = at the plasma boundary. The pseudo-spectral
method is adopted in θ and ζ, which allows for multiple
helicities, while a second-order finite difference method is
used in r. For time advancement, fourth-order Runge–Kutta
with adaptive step-size control is used. Starting from an initial
condition, the artificial evolution equation is solved and, in
accordance with theory, the energy of the system decreases
monotonically. When the relative change rates of both kinetic
and magnetic energy, E t Ed dk k∣ ∣ and E t Ed dm m∣ ∣ , become
smaller than a tolerance, the simulation is stopped.

For the numerical results shown below, the inverse aspect
ratio 1 10e = , while the grid numbers for r, θ and ζ are 100,
32 and 16, respectively. The Fourier mode numbers included
in the simulation are m10 10 - and n0 5  ,
respectively. The pseudo-spectral method together with two-
thirds prescription was used for avoiding aliasing errors. The
tolerance for the convergence was chosen to be 10−6.

We present results for two initial conditions. The first
corresponds to a trivial stationary state where U U r= ( ) and

ry y= ( ), with corresponding j and J satisfying U  j= ^
and J  y= ^ , also being functions of r only. Clearly, the
right-hand side of (3), or (19), becomes zero in this case, and
no change of the system occurs. Indeed, the simulation code
stopped immediately after initializing.

The second initial condition is given by the stationary
state of the first one, plus a small perturbation that has a radial
magnetic field resonant at a rational surface. The small per-
turbation changes the field-line topology by opening a
magnetic island. If the stationary state with cylindrical sym-
metry is unstable against the associated tearing mode, we
expect the system to evolve and reach a stationary state with
magnetic islands, with its energy decreased by the SA.

Figure 2 shows the safety factor profile q r( ) of the sta-
tionary state with cylindrical symmetry. The plasma rotation
was assumed to be zero and ry ( ) was chosen so that the
safety factor q r r re y= - ¢( ) ( ), where the prime denotes r
derivative. Specifically, q r q r1 20

2= -( ) ( ) was used,
where q0 is the safety factor at r=0, which gives q=2 at
r 1 2= . Note that any function q r( ), and no rotation in this
case, is a stationary state.

The stationary state shown in figure 2 is unstable against
a tearing mode with mode numbers m 2= - and n=1,
which has the tearing mode parameter [35] 22.4D¢ » . We
then expect that the system may evolve to a stationary state
with magnetic islands as a lower energy state if we add the
m 2= - and n=1 perturbation. Thus a small perturbation
with m 2= - and n=1 was added to the cylindrically
symmetric state. Although the radial profile is not taken to be
the same as the eigenmode structure of the linear tearing
mode, it is important to give a radial magnetic field across the
q=2 surface to open a tiny magnetic island initially. The
radial profile of the perturbed velocity field, as well as its
phase to the perturbed magnetic field, were chosen also to be
consistent with the linear tearing mode, while it is not the
same as its eigenfunction. The radial profiles of the m 2= -
and n=1 components are shown in figure 3. Real or ima-
ginary parts of those variables now shown in figure 3 are zero
due to the choice of the relative phase among those variables
for the initial condition.

Let us compare our three smoothing kernels. For the
initial condition shown in figures 2 and 3, the right-hand sides
of the evolution equations at t=0 are plotted in figure 4. In
the figure, ‘physical’ shows the m 2= - and n=1 compo-
nents of the right-hand side of the physical evolution
equation (19). Only the imaginary part of

U

t

d

d
2 1- and the real

part of
t

d

d
2 1y- are plotted because the real and imaginary parts

of them, respectively, are zero for the initial condition. For
SA-2 and SA-3, the amplitudes of the plotted figures are
multiplied by 10 and 100, respectively for easier comparison.
Observe in figure 4(a) how the r-dependence is smoother for
SA-3.

Figure 5 shows the radial profile of g r r,m n m n, - - ( ) of
SA-3 for r 0.2 = , 0.4, 0.6 and 0.8. The mode numbers are
m 2= - and n=1 in figure 5(a), and m 10= - and n=5
in figure 5(b). The range of the vertical axis is the same for

Figure 2. The safety factor profile q r( ) for a stationary state.
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both figures. Note that g r r,m n m n, - - ( ) has smaller ampli-
tudes for high m and n. This smoothing effect in 2D is the
same as that observed in [22, 23, 29], and is present also in
SA-2. The smoothing effect in r of SA-3 is larger for smaller
m and n because the radial extent of g r r,m n m n, - - ( ) is
larger for smaller m and n. Note that there is no smoothing
effect in r if g r r r r,m n m n, d = - - - ( ) ( ), as in SA-2. Thus
the smoothing effect in r of SA-3 may disappear if m and n go
to infinity, while the smoothing in θ and ζ becomes infinitely
large.

The time evolution of the energy and the conserved
quantities are shown in figure 6 with 100UUa a= =yy for
SA-2 and SA-3. SA-1 was numerically unstable, and a sta-
tionary state was not obtained. From figure 6(a), we observe
that the total energy E Ek m+ decreases monotonically.
Figure 6(b) shows the time history of E t Ed dk k∣ ∣ and

E t Ed dm m∣ ∣ . When they became lower than the tolerance
10−6, the simulation was stopped. Since the magnetic energy
Em is dominant, its change is relatively small from the
beginning. From figures 6(c) to (e), we observe that quantities
that should be conserved are well conserved in the simulation.
The change of Cm is monitored relative to its initial value
C 0 3.76m =( ) , while Cv and Cc are plotted directly since their
initial values are zero.

SA-3 requires longer t for convergence. Although the
time t is not physical and depends on UUa and ayy, late
convergence can also be because SA-3 smooths in r, and thus
tends to prevent generation of fine structure in r. Magnetic
islands have current channels localized in r that may be easier
to generate with SA-2 than SA-3. This also indicates that a
stationary state with fine structure in θ and ζ may take more
simulation time using SA-2 and SA-3.

Figure 3.Depiction of m 2= - and n=1 components of (a) UI and jI , (b) yR and JR at t=0. A radial magnetic field exists at the q=2
surface.

Figure 4. Depiction of m 2= - and n=1 components of (a) U

t

d

d
2 1-

I and (b)
t

d

d
2 1y-

R at t=0 for physical dynamics and SA. Since the

amplitudes are largely different, those of SA-2 and SA-3 are multiplied by 10 and 100, respectively. The significant smoothing effect in r of
SA-3 is observed in (a).
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Figure 7 shows the real parts of the radial profiles

2 1y-R , 4 2y-R , J 2 1-R and J 4 2-R of the obtained sta-
tionary state. The radial magnetic field of the m 2= - and
n=1 mode remains at the q=2 surface when the magnetic
island exists. These profiles differ greatly from the initial
condition, with larger amplitudes, while the radial profile of
the m n 2 1= - mode is still similar to the corresponding
linear mode. Therefore, the magnetic island of this stationary
state saturated in a weakly nonlinear sense.

On the other hand, the radial profiles of SA-2 and SA-
3 are a bit different. Also, almost no change was observed in

UI and jI . These will be discussed in the next section.

4. Discussion

Firstly, let us investigate why SA-2 and SA-3 differ. One
reason could be the tolerance for stopping the simulation,
which was set to E t Ed dk k∣ ∣ and E t Ed dm m∣ ∣ becoming
smaller than 10−6. While the magnetic energy of the
m n 0 0= component is very large, the relative rate of
change of Em of the m n 0 0¹ components was very small.
Therefore, we may need another criterion for convergence.
For example, separating out the energy of the m n 0 0=
mode and monitoring the relative change rates of both com-
ponents of energy could be an improvement.

Secondly, let us investigate why UI and jI did not
change during the SA evolution; i.e., why ψ relaxed faster
than U. One possible reason is again the convergence criter-
ion. If a longer simulation is performed with a much smaller
tolerance, U and j may also change. Another possible reason
may be due to the choice of UUa and ayy, especially their
ratio. If we write the evolution equations for SA-1 explicitly,

we have

x x

x x
x

U

t
U f

f
f

,

, , 51

UU
Ua

a y e
z

¶
¶

=

+ -
¶
¶

yy
y

y⎛
⎝⎜

⎞
⎠⎟

[ ( ) ( )]

[ ( ) ( )] ( ) ( )

x x
x

t
f

f
, . 52U

Uy
a y e

z
¶
¶

= -
¶
¶

yy
⎛
⎝⎜

⎞
⎠⎟[ ( ) ( )] ( ) ( )

Therefore, the ratio of UUa to ayy can significantly affect the
time evolution of U. As was studied in [22] for the 2D cases,
the relaxation path can change if we change the ratio of UUa to
ayy. As we observe, the time evolution of U is governed by
two advection fields f U and f y, while ψ by f U only. Therefore
the relaxation path can change if we change the ratio of
contributions from f U and f y. This situation is also the same
for SA-2 and SA-3. If the relaxation of U is much slower than
ψ, a simple solution is to increase the ratio of UUa toayy. Then
the right-hand side of the evolution equation of ψ becomes
smaller and that of U becomes larger. However, if UUa is
increased in the present code, the simulation tends to be
unstable. The dependence of the numerical stability on UUa
and ayy, in addition to the choice of the symmetric bracket,
needs to be examined more carefully.

The result of section 3 is only one example of a magnetic
island stationary state achievable with SA. When the initial
perturbation of the m 2= - and n=1 component was chosen
larger, the m=0 and n=0 components of U and ψ were
changed significantly by the nonlinear effects, leading to a dif-
ferent stationary state. Incorporating Dirac constraints as in [29]
should be explored in the future for selecting out desired states.
Also, the effects of the m=0 and n=0 component of the
plasma rotation should be investigated because it changes the
linear stability against tearing modes. Details of these issues will
be studied and will be reported on in the near future.

Figure 5. Radial profile plots of the 3D Greenʼs functions g r r,m n m n, - - ( ) of SA-3 with (a) m 2= - , n=1 and (b) m 10= - and n=5,
for r 0.2 = , 0.4, 0.6 and 0.8. The amplitudes of g r r,m n m n, - - ( ) are smaller for larger m and n, implying a larger reduction of the short-

wave-length components of the advection fields in the θ–ζ plane. Also, observe the larger smoothing in r for smaller m and n, since the radial
extent of g r r,m n m n, - - ( ) is larger for smaller m and n.
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Figure 6. Time evolution of (a) total energy E Ek m+ , (b) relative change rate of energy E t Ed dk k∣ ∣ and E t Ed dm m∣ ∣ , (c) relative change
C t C C0 0m m m-( ( ) ( )) ( ), (d)Cv and (e)Cc. The values 100UUa a= =yy were used. The total energy decreases monotonically and reaches
a stationary state. The relative change of Cm is normalized by the initial value C 0m ( ) in (c). Since C 0v = and C 0c = at t=0, just their
values themselves are plotted in (d) and (e).

10

Plasma Phys. Control. Fusion 59 (2017) 054001 M Furukawa and P J Morrison



5. Summary

The method of SA was developed to obtain a 3D stationary
state of low-beta reduced MHD in cylindrical geometry. The
theory of SA was explained for low-beta reduced MHD, and
three versions of the symmetric bracket were introduced. A
simulation demonstrated that the energy of the system
monotonically decreases by SA, while conserving other
invariants. Starting from a cylindrically symmetric state with
the addition of a perturbation that opens a small magnetic
island at a rational surface, SA generated a stationary state
with magnetic islands as a lower energy state. Especially we
focused on the smoothing effects by the symmetric brackets
in examining the numerical results. A symmetric bracket with
higher smoothing may require longer simulation time for
convergence, while it can contribute to numerical stability.
Several issues for consideration in the future were discussed.
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