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Internal gravity wave energy contributes significantly to the energy budget of the
oceans, affecting mixing and the thermohaline circulation. Hence it is important to
determine the internal wave energy flux J= p v, where p is the pressure perturbation
field and v is the velocity perturbation field. However, the pressure perturbation field
is not directly accessible in laboratory or field observations. Previously, a Green’s
function based method was developed to calculate the instantaneous energy flux field
from a measured density perturbation field ρ(x, z, t), given a constant buoyancy
frequency N. Here we present methods for computing the instantaneous energy
flux J(x, z, t) for an internal wave field with vertically varying background N(z),
as in the oceans where N(z) typically decreases by two orders of magnitude from
the pycnocline to the deep ocean. Analytic methods are presented for computing
J(x, z, t) from a density perturbation field for N(z) varying linearly with z and for
N2(z) varying as tanh(z). To generalize this approach to arbitrary N(z), we present a
computational method for obtaining J(x, z, t). The results for J(x, z, t) for the different
cases agree well with results from direct numerical simulations of the Navier–Stokes
equations. Our computational method can be applied to any density perturbation data
using the MATLAB graphical user interface ‘EnergyFlux’.

Key words: geophysical and geological flows, internal waves, stratified flows

1. Introduction
Ubiquitous internal gravity waves are generated in the oceans by tidal flow over

bottom topography and by surface storms (Munk & Wunsch 1998; Alford 2003;
Wunsch & Ferrari 2004). The internal waves transmit energy from generation sites
to large distances, and ultimately the energy is converted into small-scale mixing.

† Email address for correspondence: m.allshouse@northeastern.edu
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Internal waves are a major contributor of the energy budget of the oceans, and the
mechanism for this contribution can be better understood through the energy flux
field. In this paper, we examine the baroclinic energy flux J(x, z, t),

J= p v, (1.1)

in the presence of a stable background density stratification with a buoyancy frequency
profile N(z), where p(x, z, t) is the pressure perturbation from the background
hydrostatic pressure field, and v(x, z, t) is the velocity perturbation from the
background velocity flow field. Determining the energy flux requires the simultaneous
measurement of both the pressure and velocity perturbation fields. In numerical
investigations of internal waves, these fields are computed (Lamb 2004; Niwa &
Hibiya 2004; King, Zhang & Swinney 2009, 2010; Zilberman et al. 2009; Gayen &
Sarkar 2010, 2011; Rapaka, Gayen & Sarkar 2013), enabling a direct calculation of
the energy flux. However, in laboratory and field studies, simultaneous measurements
of the velocity and pressure perturbation fields are usually not possible.

Laboratory observations of internal waves have been made by particle image
velocimetry (PIV) (Echeverri et al. 2009; King et al. 2009, 2010; Paoletti, Drake
& Swinney 2014), synthetic schlieren (Sutherland et al. 1999; Dalziel, Hughes
& Sutherland 2000; Clark & Sutherland 2010; Allshouse et al. 2016) and light
attenuation (Dossmann et al. 2016). In PIV, neutrally buoyant particles scatter
incident laser light, and movies of the scattered light field yield the time-varying
velocity field. In the schlieren method, a patterned mask is placed behind a tank
that contains the internal waves, and the time-varying distorted image formed by
light transmitted through the tank in the transverse direction gives the time-dependent
density perturbation field (Sutherland et al. 1999; Dalziel et al. 2000). The light
attenuation technique uses dye intensity that varies with depth and moves with the
fluid to measure the density field as a function of time (Dossmann et al. 2016).
These experimental techniques yield the velocity field in the case of PIV and the
density perturbation field in the case of synthetic schlieren and light attenuation
measurements. No experimental technique directly yields the pressure perturbation
field needed for the energy flux calculation.

Given the importance of the energy flux and the far-field radiated power obtained by
integrating the flux, multiple efforts have been made to calculate the energy flux from
experimental measurements. One method assumed a constant buoyancy frequency and
calculated the energy flux (averaged over a tidal period) given only the streamfunction,
thus eliminating the need to measure the pressure perturbation field (Balmforth, Ierley
& Young 2002). The streamfunction method was subsequently extended to a buoyancy
frequency varying exponentially with depth (Llewellyn Smith & Young 2003; Lee
et al. 2014). Another method applied the polarization relations to density perturbation
data to obtain estimates for the velocity and pressure perturbation amplitudes (Clark
& Sutherland 2010). This method provided the energy flux time averaged over a tidal
period for a monochromatic plane wave, which is not representative of the complex
ocean internal wave fields, which have many natural frequencies and spatially varying
wave packets. Finally, an ocean observation analysis technique calculated the pressure
perturbation field for measured density profiles, assuming a hydrostatic pressure
field; this together with simultaneous velocity measurements allowed the calculation
of the energy flux field (Nash, Alford & Kunze 2005). This method assumed that
the contribution of dynamic pressure is negligible, which is often not the case in
experiments and in high velocity events in the ocean.
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FIGURE 1. (Colour online) Two buoyancy frequency profiles computed from the World
Ocean Circulation Experiment data sets by the method of King et al. (2012). (a) A
measured buoyancy frequency squared profile (black dots) fit to a tanh profile (red). (b)
A measured buoyancy frequency profile (black dots) fit to a linear profile (red). The
insets show regions 1000 km× 1000 km that contain the locations (red dots) where the
measurements were made. The mean buoyancy frequency (squared for (a)) of bins of
stratification measurements is plotted as a function of depth (black dots) with error bars
representing two standard deviations from the mean.

The methods presented here for obtaining the instantaneous energy flux from
laboratory and field data differ from previous methods that determined the time-
averaged energy flux or a global energy conversion rate. Recently, Allshouse et al.
(2016) developed a Green’s function method was used to calculate the instantaneous
energy flux field from a density perturbation field for a fluid with constant buoyancy
frequency, where the buoyancy frequency is

N(z)=

√
−g
ρ00

∂ρ0

∂z
, (1.2)

where ρ00 is a reference density taken here to be 1000 kg m−3 and ρ0(z) is the
unperturbed, background density profile. However, in the oceans N varies significantly
with depth, as figure 1 illustrates with data from two locations in the North Atlantic.

Recognizing the strength of the Green’s function method, we extend that method to
accommodate a profile with N varying linearly with z, and a tanh N2 profile. These
two profiles are selected due to their mathematical properties and their presence in
ocean stratifications. The tanh N2 profile is often a good approximation in the ocean
where two nearly constant buoyancy frequency zones are separated by a transition
region, as figure 1(a) illustrates. The linear N profile can occur in the ocean when
there is no narrow region with a rapid change in N(z), as illustrated in figure 1(b).

Many buoyancy frequency profiles cannot be adequately approximated by either a
linear N or a tanh N2 profile as in figure 1. Other examples of buoyancy frequency
profiles are presented in figure 5 of King et al. (2012). The general N(z) case must
be treated separately from the linear N or a tanh N2 cases. Hence we present a
numerical method for computing the instantaneous energy flux field solely from a
density perturbation field that can have an arbitrary N(z) profile.
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The present work provides a method for the calculation of the instantaneous energy
flux field from density perturbation data. Our method provides the instantaneous
rather than time-averaged energy flux field. Thus the resultant energy flux and
integrated far-field power include all spectral components, while previous methods
provided only the global conversion rates or monochromatic results. Application of
this method to experimental systems requires the density perturbation field, obtained
for example by synthetic schlieren or light attenuation measurements. Application to
ocean observations will require a time-varying density perturbation field that can be
measured using, for example, a Fast-CTD (Conductivity, Temperature and Density)
system (Pinkel, Buijsman & Klymak 2012) or a moving wirewalker (Pinkel et al.
2011).

The paper is organized as follows. An outline of our method for obtaining the
energy flux from the density perturbation field in a tanh N2 and linear N stratification
is presented in § 2. This method is then verified with numerical simulations in § 3.
A finite difference method for calculating the energy flux for an arbitrary buoyancy
frequency profile is presented in § 4, and is applied to an ocean-inspired stratification.
Then we present in § 5 scaling arguments for the errors in the velocity components
and the pressure perturbation due to nonlinearities, since the method assumes linearity,
and these error scalings are verified using parameter sweeps with the numerical
simulations. Lastly, conclusions and potential applications of this work are presented
in § 6.

2. Theoretical development
The general equations for the method are presented in § 2.1, which builds on the

theoretical foundation presented in Allshouse et al. (2016). The equations provide the
velocity perturbation components u(x, z, t) and w(x, z, t) as a function of the density
perturbation field ρ(x, z, t) and provide a functional relationship between the density
and pressure perturbation fields. For an analytic tanh N2(z) and a linear N(z), we
calculate the Green’s function in §§ 2.2 and 2.3, respectively.

2.1. Generalities
Our goal of obtaining the energy flux (1.1) from the density perturbation field
alone requires calculating the pressure perturbation and components of the velocity
perturbation from the density perturbation field. The details of these calculations
were given in Allshouse et al. (2016) for a uniform N profile, but here we present
a condensed version of the pressure perturbation calculation, which is needed for the
calculations for the tanh N2 and linear N profiles.

We begin with the linearized two-dimensional Euler equations for perturbation about
a hydrostatic background, neglecting rotation,

∂u
∂t
=−

1
ρ0

∂p
∂x
,

∂w
∂t
=−

1
ρ0

∂p
∂z
−
ρ

ρ0
g, (2.1a,b)

∂ρ

∂t
=

N2 ρ0

g
w,

∂u
∂x
+
∂w
∂z
= 0, (2.2a,b)

where u and w are the horizontal and vertical components of the velocity perturbation,
respectively, p is the pressure perturbation, ρ is the density perturbation, ρ0 is
the hydrostatic background density profile and N is the buoyancy frequency. The
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total pressure pT and density ρT are separated into their respective background and
perturbation quantities by pT = p0(z) + p(x, z, t) and ρT = ρ0(z) + ρ(x, z, t) for this
linearization. By manipulating (2.1) and (2.2) we obtain an equation for the pressure
perturbation in terms of the density perturbation,

∂2p
∂x2
+
∂2p
∂z2
+

N2

g
∂p
∂z
=−N2ρ − g

∂ρ

∂z
. (2.3)

Because (2.3) is valid at any given instant in time, explicit time dependence is omitted
in (2.3) and in the following derivations.

Equation (2.3) is solved for p assuming ρ is given. Equation (2.3) is brought into
a convenient form by applying the following transformation:

p(x, z)= s(x, z)T(z), (2.4)

where

T(z)= exp
[
−

1
2g

∫ z

dz′N2(z′)
]
, (2.5)

and then Fourier expanding in x to obtain

d2S
dz2
−

(
k2
+

N
g

dN
dz
+

N4

4 g2

)
S=−R. (2.6)

Here R(z; k) and S(z; k) denote the Fourier components of

r(x, z)=
1

T(z)

(
N2ρ + g

∂ρ

∂z

)
(2.7)

and s(x, z), respectively.
We solve (2.6) for S given R by obtaining the Green’s function for the Fourier

components, which satisfies

d2

dz2
G(z, z′; k)−

(
k2
+

N
g

dN
dz
+

N4

4g2

)
G(z, z′; k)= 0, z 6= z′, (2.8)

with a no-flux condition in the z direction at the bottom (z= 0) and top (z= h) of the
domain, (

dG
dz
−

N2

2g
G
)∣∣∣∣

z=0, h

= 0, (2.9)

and the Green’s function matching conditions,

G+(z′) = G−(z′) (2.10)
dG+

dz
(z′) =

dG−

dz
(z′)+ 1. (2.11)

Here, G+ and G− indicate the two parts of G for z> z′ and z6 z′, respectively, where
z is the location of evaluation and z′ is the location of the source. Thus, given profiles
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Internal wave energy flux from density perturbations in nonlinear stratifications 903

for the buoyancy frequency N and source term r, the pressure perturbation is given
by the following expression:

p(x, z)=Re

{
−

2
l

T(z)
∑

k

e−ikx
∫ h

0
dz′G(z, z′; k)

∫ l

0
dx′ r(x′, z′) eikx′

}
, (2.12)

where k= 2πn/l, l is the width of the system, and n is a positive integer.
Next, we obtain the components of the velocity perturbation. The vertical

component follows by inverting (2.2a), which yields

w=
g

N2 ρ0

∂ρ

∂t
. (2.13)

The horizontal component is obtained by using the vertical velocity perturbation (2.13)
and the incompressibility condition, (2.2b), which gives the differential equation

∂u
∂x
=−

∂

∂z

(
g

N2ρ0

∂ρ

∂t

)
, (2.14)

which can be integrated along horizontal slices of data to get u. This horizontal
integration requires an integration constant at each horizontal slice of the system. It
is possible to assume the point along the horizontal slice with negligible change in
density corresponds to a point of negligible horizontal velocity. In experiments, it is
possible to find these regions of negligible flow outside the wave beams, but this
may not be straightforward in ocean data.

The forms of (2.12), (2.13) and (2.14) are valid for a general stratification, so
it is possible to compute all the necessary expressions for the energy flux from ρ
alone. However, to calculate analytically the Green’s function for (2.8), it is necessary
that the functional form of the buoyancy frequency profile be specified. Allshouse
et al. (2016) investigated the particular case where the buoyancy frequency is constant
resulting in a Green’s function that is exponential. In § 2.2 we present the calculations
for obtaining the pressure perturbation for the tanh N2 profile, and in § 2.3 we present
the analogous calculation for the linear N profile.

2.2. The tanh profile
The buoyancy frequency profile we assume in this section is given by

N2(z) =
N2

1 +N2
2

2
+

N2
2 −N2

1

2
tanh(α(z− zt)) (2.15)

≡ η+ + η− tanh(α(z− zt)), (2.16)

because this gives a convenient form for N dN/dz. Here α controls the transition width
between the two buoyancy frequency values N1 and N2, and zt is the midpoint of the
transition. For large α, equation (2.16) approximates a two-layer N2 profile, which we
will investigate in § 3.2.

With the buoyancy frequency profile in (2.16), we can estimate the contributions
of each of the terms in (2.8). For experimental systems, we can use the orders of
magnitude N ∼ 10−1–100 rad s−1, l∼ 10−1–100 m and dN/dz∼ 100–102 rad m−1 s−1,
which are based on experimental internal wave beams (Mathur & Peacock 2009;
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Paoletti & Swinney 2012; Ghaemsaidi et al. 2016). With these estimates, it can be
shown that k2

∼ (101–103)n2 m−2 and N4/4g2
∼ 10−6–10−2 m−2. In regions where N

changes rapidly, (N/g)(dN/dz)∼ 101 m−2, which means k2>(N/g)(dN/dz)�N4/4g2.
In regions where N changes slowly, (N/g)(dN/dz) can be similar to or even smaller
than N4/4g2, which means, for any n, k2

� N4/4g2
∼ (N/g)(dN/dz). However, to

simplify the calculations, we simply drop N4/4g2 for all regions. This provides a
uniformly good approximation to the ‘potential term’ in (2.8), without the need
to represent and solve the equation in a piecewise manner for the two types of
regions, which would complicate the calculations. Similar arguments could be made
for observational data when using the orders of magnitude N ∼ 10−4–10−2 rad s−1,
l ∼ 102–103 m, and dN/dz ∼ 0–10−4 rad m−1 s−1, based on Gerkema, Lam & Maas
(2004) and Martin, Rudnick & Pinkel (2006).

Upon dropping N4/4g2 in (2.8), and substituting the stratification of (2.16), the
Green’s function equation (2.8) becomes

∂2

∂z2
G(z, z′; k)−

(
k2
+
α η−

2 g
sech2(α(z− zt))

)
G(z, z′; k)= 0, z 6= z′. (2.17)

Equation (2.17) is of the form of a well-studied time-independent Schrödinger
equation (e.g. Epstein 1930; Pöshl & Teller 1933; Lekner 2007).

With the dimensionless coordinate transformation

z= zt +
1
α

tanh−1 y, (2.18)

equation (2.17) becomes

(1− y2)
d2Ḡ
dy2
− 2 y

dḠ
dy
+

(
ν(ν + 1)−

µ2

1− y2

)
Ḡ= 0, y 6= y′, (2.19)

where the dimensionless Green’s function Ḡ is given by

G(z(y))=
1
α

Ḡ(y), (2.20)

and the parameters ν and µ are given by

ν± =−
1
2
±

1
2

√
1−

2 η−
α g

, µ=
k
α
. (2.21a,b)

Thus the transformation takes (2.17) into the associated Legendre equation (2.19),
which has the two linearly independent solutions Pµν (y) and Qµ

ν (y), the associated
Legendre functions of the first and second kind, respectively. From the definition of
the Legendre functions, both ν+ and ν− will produce the same result. We use ν+
throughout our calculations, but will represent this as ν for brevity. Then, solving
(2.19) with the boundary conditions (2.9) and the matching conditions (2.10) and
(2.11) gives the Green’s function,

Ḡ(y, y′)=
1

DT W

{
(Φ2Pµν (y

′)+Π2Qµ
ν (y
′))(Φ1Pµν (y)+Π1Qµ

ν (y)), y< y′

(Φ1Pµν (y
′)+Π1Qµ

ν (y
′))(Φ2Pµν (y)+Π2Qµ

ν (y)), y> y′.
(2.22)
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Here

DT =−

∣∣∣∣Π1 Π2
Φ1 Φ2

∣∣∣∣ , W = 22µ
0

(
ν +µ+ 2

2

)
0

(
ν +µ+ 1

2

)
0

(
ν −µ+ 2

2

)
0

(
ν −µ+ 1

2

) , (2.23a,b)

Π1,2 =
dPµν
dy
(y0,h)−

N2
1,2

2 g (1− y2
0,h)

Pµν (y0,h), (2.24)

Φ1,2 =−
dQµ

ν

dy
(y0,h)+

N2
1,2

2 g (1− y2
0,h)

Qµ
ν (y0,h). (2.25)

The quantities y0,h represent y(z=0) and y(z=h), respectively. Note, the transformation
factor T(z) for this case is given by

T(z)=
{

cosh[α(z0 − zt)]

cosh[α(z− zt)]

}η−/(2α g)

exp
[
η+(z0 − z)

2 g

]
. (2.26)

Here, z0 is the integration constant that comes from the integral in (2.5). For
further information on the numerical calculation of the Green’s function see the
Supplementary materials (https://doi.org/10.1017/jfm.2018.699).

2.3. The linear profile
The calculations for the linear N profile are similar to those of § 2.2, so we only
highlight the important differences. The linear profile for the buoyancy frequency is
given by

N(z)= (z− zt)
dN
dz
≡ (z− zt)N ′, (2.27)

where zt is now the location where the buoyancy frequency becomes zero, and N ′ is
the constant gradient of N(z). Substituting (2.27) into (2.8), we again neglect N4/4g2

relative to k2 and (N/g)(dN/dz) in (2.8) due to the same scaling argument presented
in § 2.2. Thus for the linear N profile, instead of (2.17) we obtain

∂2

∂z2
G(z, z′; k)−

(
k2
+ (N ′)2

(z− zt)

g

)
G(z, z′; k)= 0, z 6= z′. (2.28)

With the coordinate transformation

z= zt − g k2(N ′)−2
+ g1/3(N ′)−2/3 y, (2.29)

where once again y is a dimensionless coordinate variable, equation (2.28) becomes

d2

dy2
Ḡ(y)− y Ḡ(y)= 0, y 6= y′, (2.30)

which is the Airy equation with the two independent solutions Ai(y) and Bi(y), the
Airy functions of the first and second kind, respectively. Then, the dimensionless
Green’s function is given by

Ḡ(y, y′)=
π

DL

{
(β2Ai(y′)+ α2Bi(y′)) (β1Ai(y)+ α1Bi(y)) , y< y′

(β1Ai(y′)+ α1Bi(y′)) (β2Ai(y)+ α2Bi(y)) , y> y′,
(2.31)
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which when given dimensions becomes

G(z(y))= g1/3(N ′)−2/3Ḡ(y). (2.32)

Here

DL =−

∣∣∣∣α1 α2
β1 β2

∣∣∣∣ , (2.33)

α1,2 =
dAi
dy
(y0,h)−

1
2

g−2/3(N ′)4/3(z0,h − zt)
2Ai(y0,h), (2.34)

β1,2 =−
dBi
dy
(y0,h)+

1
2

g−2/3(N ′)4/3(z0,h − zt)
2Bi(y0,h), (2.35)

where z0 and zh are the coordinates of the bottom and top of the domain, respectively,
and y0 and yh are the corresponding transformed coordinates. The transformation factor
T(z) in this case is given by

T(z)= exp
{
(N ′)3

6 g
[(z0 − zt)

3
− (z− zt)

3
]

}
. (2.36)

Here, as before, z0 is the integration constant that comes from the integral in (2.5).

3. Verification of Green’s function analysis
To verify the Green’s function analysis in § 2, we compare those predictions

with results for the energy flux obtained from direct numerical simulations of the
Navier–Stokes equations. The simulations are described in § 3.1. The simulated
velocity perturbation, pressure perturbation and energy flux fields of internal waves in
a stratified fluid are compared with the predictions from the analyses for a tanh N2

profile in § 3.2 and for a linear N profile in § 3.3.

3.1. Simulation of the density perturbation field
To verify the Green’s function method, we perform direct numerical simulations of the
Navier–Stokes equations in the Boussinesq approximation. These simulations provide
the density perturbation field needed to calculate the velocity perturbation, pressure
perturbation and energy flux fields. The simulations use the CDP-2.4 algorithm, which
is a finite volume solver that implements a fractional-step time-marching scheme (Ham
& Iaccarino 2004; Mahesh, Constantinescu & Moin 2004). This code has previously
been used to simulate internal waves and has been validated with experiments (King
et al. 2009; Dettner, Paoletti & Swinney 2013; Lee et al. 2014; Paoletti et al. 2014;
Zhang & Swinney 2014; Allshouse et al. 2016).

Our two-dimensional simulations span the domain x∈ [−1.5,3] m and z∈ [0,1.5] m.
The simulation solves for the total density ρT , pressure pT and velocity uT :

∂uT

∂t
+ uT · ∇uT =−

1
ρ00
∇pT + νw∇

2uT −
gρT

ρ00
ẑ, (3.1)

∂ρT

∂t
+ uT · ∇ρT = κs∇

2ρT, ∇ · uT = 0, (3.2a,b)
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FIGURE 2. (Colour online) (a) The N profile of a broad transition tanh N2 (dotted red
curve) and a narrow transition tanh N2 profile (solid blue curve). The dashed black line
is a linear N profile. (b) The simulation domain and density perturbation field ρ for the
narrow transition tanh N2 internal wave field. Rayleigh damping is applied in the outer
grey region of the field. The dark grey region indicates the location of the internal wave
body forcing. The black dashed line bounds the subdomain used for analysis.

where ρ00 = 1000 kg m−3 (density of water), νw = 10−6 m2 s−1 (kinematic viscosity
of water at 20 ◦C) and κs = 2 × 10−9 m2 s−1 (the diffusivity of NaCl in water).
The system is initially at rest and the density field is unperturbed. The initial
density field is analytically derived from the buoyancy frequency profiles presented in
figure 2(a). The boundary conditions at the bottom and top are no slip and free slip,
respectively. The left and right boundaries are set to be periodic; however, Rayleigh
damping is used along the perimeter of the domain (see figure 2b), thus forcing the
velocity to be negligible at the left and right boundary.

The internal wave beam is produced by using a momentum source that forms a
rectangle with height 0.15 m and width 0.04 m, centred at (−0.02, 0.8) m and rotated
to match the internal wave beam angle corresponding to the buoyancy frequency at
z= 0.8 m. The wave beam velocity imposed is

uT =ωA(z̃) sin(ωt− kz̃z̃) ˆ̃x, (3.3)

with an amplitude profile given by

A(z̃)= exp(−(z̃)2/0.0022), (3.4)

where the lengths are in metres, the rotated coordinates x̃ and z̃ correspond to the
beam tangent and normal coordinates centred at x = (−0.02, 0.8) m, respectively,
ω= 2π/13 rad s−1 and kz̃ = 8245 m−1. These parameters were selected to match the
experimental and numerical wave beam properties used in Allshouse et al. (2016).
The Gaussian envelope causes the amplitude of the beam to decay nearly to zero at
the edge of the forcing region. A time step size δt= 0.0025 s (5200 steps per period)
is sufficient for temporal convergence. Spatial convergence is obtained using an
unstructured mesh with resolution δx≈ 0.0014 m inside the region x∈ [−0.8, 1.80] m,
y∈ [0.5, 1.1] m. This high resolution region contains the beam generation, the density
gradient transition for the tanh N2 profiles, and generation of any additional beams.
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FIGURE 3. (Colour online) The beam-normalized per cent difference between the
density-perturbation-based method and a direct numerical simulation for the velocity
components (a) w and (b) u of an internal wave beam incident diagonally from the upper
left. The insets show the per cent difference across the beam for three transects in the
simulation domain: the incoming beam (solid black), the transmitted beam (dashed green)
and the second harmonic beam (dotted orange). In the simulation domain the locations of
the transects are shown in their respective line styles.

The resolution outside of this region grows to δx ≈ 0.0025 m near the boundaries.
Changes in the velocity field are less than 1 % when spatial and temporal resolutions
are doubled.

The density perturbation field for the case where we have a rapid change in
buoyancy frequency (blue line in figure 2a) is presented in figure 2(b). The internal
wave beam generated at (−0.02, 0.8) m produces a beam propagating to the right;
this beam is the focus of our studies. (A beam propagating to the left is damped
out by the Rayleigh damping.) The beam propagating down to the right reaches the
interface at z= 0.6 m at which point three beams are produced: a reflected beam to
the top right at the same angle to the horizontal as the incoming beam, a transmitted
beam to the bottom right that has a different angle, and a reflected second harmonic
beam at approximately twice the incoming angle. This particular snapshot is shown
after 23.06 periods of forcing, which is sufficient for the beam in the region of
interest to reach steady state.

We note that the no-flux boundary condition for the Green’s function is not satisfied
at the top boundary. As demonstrated in Allshouse et al. (2016), the resulting errors
are small and localized to the top of the domain.

3.2. Verification of the tanh N2 profile analysis
The vertical (2.13) and horizontal (2.14) components of the velocity and the pressure
perturbation calculated from the density perturbation using the Green’s function
(2.22) for the tanh N2 profile are verified by comparison with the direct numerical
simulations described in § 3.1. For large α, the tanh N2 profile can be approximated
as a two-layer N system, as illustrated in figure 2(a), where α = 4 corresponds to
a transition thickness of 0.01 m for a 95 % change in N2. This transition thickness
is at least an order of magnitude smaller than the beam width and domain height.
Henceforth the large α case is called the ‘narrow transition’ tanh N2 profile.
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FIGURE 4. (Colour online) The pressure perturbation field from (a) the direct numerical
simulation and (b) the Green’s function calculation from the density perturbation. (c) The
beam-normalized per cent difference between the pressure fields from the two methods.

The difference between the density-perturbation-based velocity perturbation and the
simulated velocity perturbation for the narrow transition tanh N2 profile are presented
in figure 3. To evaluate the errors in the velocity and pressure fields, we calculate
the per cent difference normalized by the amplitude of the generated internal wave
beam. In most of the domain, this beam-normalized per cent difference is less than
3 %, except in the transition region at z= 0.6 m where there is a significant amount of
nonlinearity. Because u is found by horizontally integrating ∂w/∂z (2.14), the patches
of error in ∂w/∂z result in horizontal bands of error in u. Despite this nonlinearity,
the error is small in most of the domain.

Next we investigate how well the Green’s function method calculates the pressure
perturbation field from the density perturbation field. Figure 4(a) shows the simulated
pressure perturbation field, and figure 4(b) shows the pressure perturbation calculated
using the Green’s function method. Despite the nonlinearities in the narrow transition
layer, the Green’s function method, which is based on the linear equations, yields
accurate estimates of the pressure perturbation for the reflected, transmitted and second
harmonic beams, as figure 4(b) illustrates. This beam-normalized per cent difference
between the calculated and simulated pressure perturbation fields is presented in
figure 4(c). The calculation is accurate to within 5 % over most of the domain, and
to better than 10 % everywhere except within 0.02 m of where the beam enters the
domain. Near the top of the domain, the Green’s function method overestimates the
pressure perturbation by 4–6 %, which causes some distortion in the second harmonic,
as can be seen around (1.25, 0.8) m in figure 4(a,b). The Green’s function method
underestimates the pressure perturbation in the centre of the domain, but the error is
less than 5 %.

Finally, we use the calculated velocity and pressure perturbation fields to compare
the energy flux J directly from the numerical simulations with the flux computed
from the Green’s function analysis. The magnitude of the energy flux from the
simulations is presented for the narrow transition tanh N2 profile in figure 5(a).
For the narrow transition region case, the energy flux for the reflected beam is
higher than for the transmitted beam and an order of magnitude greater than in the
second harmonic. The beam-normalized per cent differences of the horizontal and
vertical energy flux are presented in figures 5(b) and 5(c), respectively. Outside of
the immediate vicinity of the interface region at z = 0.6 m, the per cent difference
is less than 3 %. The accumulated error from multiplying the calculated velocity and
pressure perturbation to obtain the flux components is large at the narrow transition
interface as a consequence of error in the horizontal velocity perturbation, which is
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FIGURE 5. (Colour online) The energy flux magnitude |J| computed in direct numerical
simulations for the (a) narrow (α = 4) and (d) broad transition (α = 0.1) tanh N2 profile.
The beam-normalized per cent difference between the x-component of the energy flux
Jx from the simulations and from the Green’s function method is shown in (b) and (e),
respectively, for the narrow and broad transition regions, and corresponding results for
the z-component of the energy flux Jz are in (c) and ( f ). For each case an inset shows
the difference between the simulations and Green’s function methods is less than 5 % for
most of the domain; the insets in each panel show the difference along two or three beam
transects. The locations for these transects in the simulation domain are shown in their
respective line styles.

compensated to some extent by a more accurate pressure perturbation calculation at
the interface. The error is smaller for Jz(x, z) than for Jx(x, z) because the vertical
velocity is more accurate than the horizontal velocity. In the lower half of the domain,
the magnitude of the energy flux is underestimated due to underestimation of the
pressure perturbation. The insets show that the error along three beam transects is
mostly smaller than 3 % for the narrow transition simulation.

We also simulate a tanh N2 profile with a broader transition thickness layer of
0.31 m (α= 0.1). We omit the comparison of the velocity and pressure perturbations
for brevity and instead examine the energy fluxes, as shown in figure 5. The energy
flux field for the broader tanh N2 profile is presented in figure 5(d). The internal
wave beam passes through the broad transition without reflection because there are no
rapid changes in buoyancy frequency. This smooth transition reduces the nonlinearities,
so there are significantly smaller errors in the velocity perturbation field and thus
the energy flux field as compared to the narrow transition tanh N2. The magnitude
of the energy flux decreases as the beam widens in the bottom of the domain and
then increases again as the beam narrows after reflection. Beam-normalized per cent
differences are presented for the horizontal and vertical energy flux in figures 5(e)
and 5( f ), respectively. There is a change of overestimating the energy flux in the top
of the domain to underestimating the energy flux in the bottom of the domain. This
is most clearly seen at (0.7, 0.7) m where the bands of constant phase change from
red to blue and vice versa. This change is due to errors in the pressure perturbation.
The two insets show that within the beam the per cent difference is consistently less
than 5 %.
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FIGURE 6. (Colour online) (a) The energy flux magnitude from the numerical simulation
for the linear N profile. The beam-normalized per cent difference between simulation and
the Green’s function method for the (b) Jx and (c) Jz components of the energy flux;
the difference is less than 5 % for most of the beam, as illustrated by insets showing
the difference for two beam transects. The locations for these transects in the simulation
domain are shown in their respective line styles.

Figure 5(a–c) demonstrates that our method can handle rapid changes in N2, while
the broad N2 transition thickness in figure 5(d–f ) is much more representative of
ocean stratifications. Figure 5(d) shows the energy flux amplitudes and reveals that the
broadening of the transition layer eliminates the reflected and second harmonic beams.
Further, the error in the broad transition region in figure 5(e, f ) is much smaller than in
the narrow transition region in figure 5(b,c). The errors of the energy flux calculation
for the two tanh N2 profiles are less than 5 % except in the narrow transition region
(cf. insets of figure 5).

3.3. Verification of the linear profile analysis
To verify that the theory for the linear N profile of § 2.3 is valid, we perform
simulations analogous to those in § 3.2. The energy flux field in figure 6(a)
demonstrates that the internal wave beam bends more gradually for the linear N
profile (figure 6a) as compared to the tanh N2 profiles discussed in § 3.2 (figure 5a,d).
This slower change is due to the smaller gradient of the buoyancy frequency for the
linear N profile. Again, because there are no rapid changes in N, there are no
reflection depths other than the bottom of the system, so nonlinearities are limited to
the reflection point at (1.6, 0) m.

We present only the errors in the energy flux calculation; the errors in the velocity
and pressure perturbation calculations are qualitatively similar to the results in
figures 3 and 4. Figures 6(b) and 6(c) show the per cent difference of the horizontal
and vertical components of the energy flux, respectively. As with the tanh N2 profile
comparisons, the errors in the energy flux field are confined to the internal wave
beam. Throughout the beam the difference between the simulation and Green’s
function method is less than 5 %, as illustrated by the beam transects in the insets
of figure 6(b,c); the largest errors occur where the beam enters and leaves the
domain and where it reflects off the bottom boundary. The transition from pressure
perturbation overestimation to underestimation is highlighted by the change from red
to blue and vice versa near (0.5, 0.75) m.

4. Analysis for arbitrary N(z)

Implementation of the Green’s function method is convenient for systems with
stratifications where an analytic representation of the Green’s function exists.
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FIGURE 7. (Colour online) (a) The per cent difference between the finite difference
(FD) and simulated pressure perturbation fields for the narrow tanh N2 profile, which is
essentially a two-layer system. (b) The per cent difference between the finite difference
and the Green’s function based pressure perturbation fields for the narrow transition
tanh N2 profile. (c) Pressure perturbation profiles corresponding to the dashed black line
in (b) from the narrow tanh N2 simulation (black), Green’s function method (red) and
finite difference method (blue) at z= 0.605 m.

While some stratifications in the ocean and laboratory may approximately fit
to these particular stratification profiles as we show in figure 1, making this
density-perturbation-based calculation more general is necessary for most applications.
To accomplish this generalization, we use a finite difference method to determine the
pressure perturbation field. We present the method in detail along with a comparison
between the Green’s function method and the finite difference method in § 4.1. Then,
we apply the finite difference method to an ocean-inspired stratification in § 4.2.

4.1. Finite difference method
Since the velocity perturbation calculation does not depend on having an analytic
stratification, only the calculation of the pressure perturbation field requires modification
for application to general stratifications. This is accomplished by implementing
a numerical solver of the second-order differential equation (2.6). The boundary
conditions for this differential equation are analogous to (2.9):(

dS
dz
−

N2

2g
S
)∣∣∣∣

z=0, h

= 0. (4.1)

We solve (2.6) using a second-order finite difference method. The Robin boundary
conditions are calculated to second order by adding ghost points to the top and
bottom of the domain. This numerical method is applied to both the real and
imaginary components for every Fourier mode. After the calculation of S(z; k) using
the finite difference method, the inverse Fourier transform of S is then used in (2.4)
to obtain the pressure perturbation field.

Applying the finite difference method to the tanh N2 stratification provides a
baseline for comparison to the Green’s function method. The pressure perturbation
fields from the Green’s function method, the finite difference method, and the direct
numerical simulations are compared in figure 7 for the narrow tanh N2 stratification.
Figure 7(a) presents the per cent difference between the simulated pressure field
and the pressure field calculated with the finite difference method. This result is
qualitatively similar to the difference between the simulated pressure field and Green’s
function result presented in figure 4(c). The figure shows that the pressure perturbation
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fields calculated using the finite difference method differ everywhere by less than
5 % from the Green’s function pressure perturbation. The major difference between
the two methods is near the narrow transition where the Green’s function method
is consistently more accurate than the finite difference method; see figure 7(b).
This is highlighted in figure 7(c) by comparing pressure perturbation profiles just
above the transition layer. The difference is likely due to the Green’s function’s
ability to accurately account for the rapid change in the buoyancy frequency when
it modifies the coefficients in the calculation of the Legendre functions. The length
scale of the transformed coordinate variable y of (2.18) is set by the steepness
coefficient α. This effectively increases the spatial resolution at rapid transitions. The
finite difference method can only account for variations of the scale of the original
data set step size, which, in the case of the narrow transition, is too coarse.

4.2. Verification of the finite difference method
To further validate the finite difference method, we apply the method to a stratification
that does not fit a simple analytic function as was the case in §§ 2 and 3. The
stratification we simulate is based on a density profile measured in the ocean during
the World Ocean Circulation Experiment (WOCE). The particular profile presented in
figure 8(a) was measured at 165◦ W, 51.5◦ N on September 20th, 1994. This profile
features two layers of large density gradient similar to the transitions of the tanh N2

profiles. The first, more abrupt layer is centred at 30 m below the surface and the
second layer is centred at 100 m. The full profile extends to a depth of 1000 m, but
there is little variation in the buoyancy frequency below 200 m.

While it would be possible to apply the finite difference method to a full
ocean-scale simulation, we instead simulate an equally complex stratification at the
experimental scale. In order to simulate the beams in a similar domain and time scale
as the analytic stratifications, we rescale the vertical coordinate and the density. We
note that this is done to mimic the actual ocean profile and use it as an inspiration,
rather than to model it accurately. Because the length scale of the transition layers
in the simulation are small compared to the length scale of the beams, the rescaled
simulation done here stress tests the method.

The first adjustment we make is to provide additional vertical space above the
stratification features so that the internal wave beam is fully developed and the
resulting reflection off the top of the first transition is visible. The vertical coordinate
is scaled from 200 m to 0.8 m in the simulation. The density is also modified to
increase the buoyancy frequency, so that the values of the buoyancy frequency are
comparable to those used in the Green’s function verification. The minimum buoyancy
frequency of the scaled density profile is N = 0.55 rad s−1 and the maximum value
is N = 2.40 rad s−1. Finally, to capture the effect of the change in N we shift the
location of forcing to be at (0.2, 1.2) m to have the internal wave beam enter from
the top. The time scale and forcing periodicity match the previous simulations.

The magnitude of the energy flux field is presented in figure 8(b). There are a
number of reflections and transmissions due to the more complicated density profile.
For the first transition layer, the internal wave beam produces reflections off the top
and bottom of the transition layer at (0.5, 0.8) m and (1.0, 0.8) m, respectively. In
addition to the reflected energy, some of the internal wave energy is trapped in the
transition layer and is transported to the right (e.g. (1.25, 0.7) m); however, a large
fraction of the energy is transmitted through the layer. Very little energy is reflected
off the second layer, allowing the rest of the energy to reflect off the bottom of the
domain.
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FIGURE 8. (Colour online) (a) Density profile from the ocean ρ0,obs (red) and the scaled
version used for simulation ρ0,sim (blue). (b) The simulated absolute energy flux field.
(c) The beam-normalized per cent difference between the simulated and finite difference
energy flux fields.

The finite difference method is applied to the modified ocean density profile, and
the beam-normalized per cent difference of the energy flux magnitude is presented
in figure 8(c). The largest errors occur near the more abrupt transition layer. The
maximum per cent difference in this region 28.1 %. There is no consistent trend with
regards to under or over estimating the energy flux. Outside of the immediate region
of the sharper transition, the per cent difference is generally within 5 %. Note that the
method captures and accurately determines the energy flux in the reflected, transmitted
and trapped internal waves outside of the highly nonlinear first reflection region.

5. Error analysis
The method for obtaining the energy flux of internal waves presented in § 2 was

developed using linear theory. Therefore, as nonlinearities become significant, errors in
the method become bigger. In this section we examine the effect of the nonlinearities
on our method. The general properties of the errors in the velocity components
and pressure perturbation shown in § 3 are discussed in § 5.1. In § 5.2 we discuss
why the energy flux error comes from the error in the velocity components, which
in turn arises from nonlinearities in the transition region. Then we present scaling
arguments for the errors in the velocity components and the pressure perturbation due
to nonlinearities. Lastly, in § 5.3 we verify our error scalings with simulations using
parameter sweeps over the amplitude of the internal waves and the steepness of the
density gradient region.

5.1. General qualities of the error

For both the narrow transition tanh N2 profile and the ocean inspired profile, the
largest errors in the calculated energy flux fields are localized in the layer where the
vertical gradient in N(z) is the largest, as can be seen in the velocity and pressure
perturbation fields from the tanh N2 simulation in figures 3 and 4, respectively. In
particular, the vertical velocity component has large errors where the incoming beam
intersects the density transition layer and partially reflects. Because the horizontal
velocity is calculated as an integral of ∂w/∂z from left to right, signatures of the
errors of the vertical velocity extend across most of the transition region. We show
that the errors in the velocity components arise from nonlinearities due to the sharp
transition in N.
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Internal wave energy flux from density perturbations in nonlinear stratifications 915

The pressure perturbation field has larger average errors than the velocity field, but
there is not a clear correlation of the highest errors with the transition region. There
is some error in the calculated pressure at the reflection point, but there are larger
pressure errors, both in magnitude and physical extent, along the top of the domain,
where the internal wave beams are generated and along the left and right boundaries,
where the periodic boundary condition is imposed. The error in the pressure
calculations is not strongly dependent on nonlinearities from the transition region.
The spatial distribution of the error is likely due to the transformation factor in (2.5).
We conclude that the errors in the energy flux (figure 5) arise primarily from the
errors in the velocity field in the transition region due to nonlinearities. The scaling
of the errors for both the velocity components and the pressure perturbation are
obtained in § 5.2.

5.2. Scaling of errors due to nonlinearities
To determine the error scaling for the velocity components and the pressure
perturbation, it is necessary to evaluate the contributions of the nonlinear terms
neglected in determining (2.13) and (2.12). The full nonlinear version of the vertical
velocity wn derived from (2.2) is

wn =

(
∂ρ

∂t
+ u

∂ρ

∂x

)/(
N2ρ0

g
−
∂ρ

∂z

)
. (5.1)

Taking ∂ρ/∂z to be small compared to N2ρ0/g=|dρ0/dz|, we expand the denominator
of (5.1) in |dρ0/dz|−1(∂ρ/∂z) to obtain

wn ≈

∣∣∣∣dρ0

dz

∣∣∣∣−1 (
∂ρ

∂t
+ u

∂ρ

∂x

)(
1+

∣∣∣∣dρ0

dz

∣∣∣∣−1
∂ρ

∂z

)
, (5.2)

which upon expanding to second order becomes

wn ≈

∣∣∣∣dρ0

dz

∣∣∣∣−1
(
∂ρ

∂t
+ u

∂ρ

∂x
+

∣∣∣∣dρ0

dz

∣∣∣∣−1
∂ρ

∂t
∂ρ

∂z

)
, (5.3)

where the first term in the parentheses is first order and the second and third terms
are second order. We compare the two second-order terms using dimensional scaling
arguments. Assuming the propagation angle of the internal wave is not very steep or
very shallow, we set the time scale of the internal wave to be N−1, using the standard
internal wave dispersion relation. The density perturbation scale is Aρ0, where A is
the dimensionless amplitude of the internal wave oscillations. The horizontal length
scale is set as the beam width Lb. The velocity components scale like the amplitude
multiplied by the beam width divided by the time scale, ALbN. The vertical length
scale in the transition region in the term ∂ρ/∂z is set to be Lz = N(dN/dz)−1,
which corresponds to the transition thickness, because the beam amplitude changes
significantly over the transition region due to reflections. On the other hand, the
vertical length scale in the term dρ0/dz is set to be h, the height of the domain, since
the background density changes gradually over the height of the domain. With these
scalings the two second-order terms in (5.3) scale as

u
∂ρ

∂x
∼ ALbN

Aρ0

Lb
= A2Nρ0, (5.4)
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dz

∣∣∣∣−1
∂ρ

∂t
∂ρ

∂z
∼

h
ρ0

Aρ0N
Aρ0

Lz
= A2Nρ0

h
Lz
. (5.5)

Thus the ratio of sizes of the term in (5.5) to the term in (5.4) scales as h/Lz, which
is large for the steep transitions in N that produce appreciable nonlinearities, because
the transition thickness is then small compared to the domain height. Therefore, we
drop the second-order term u ∂ρ/∂x in (5.3). Then the error (wn − w)/w=1w/w of
the nonlinear vertical velocity relative to the linear vertical velocity is

error=
1w
w
∼

1
ALbN

h
ρ0

(
A2ρ0h

dN
dz

)
∼

Ah2

LbN
dN
dz
, (5.6)

where we substitute Lz=N(dN/dz)−1 for the vertical length scale. Keeping the domain
height, beam width, and the overall magnitude of N fixed, we find that the error in
the vertical velocity due to nonlinearities scales as

error∼ A
dN
dz
. (5.7)

The full nonlinear version of the pressure equation (2.3) is given by

∂2p
∂x2
+
∂2p
∂z2
+

N2

g
∂p
∂z
=−N2ρ − g

∂ρ

∂z
− 2ρ0

(
∂u
∂z
∂w
∂x
−
∂u
∂x
∂w
∂z

)
. (5.8)

Using the same scaling arguments as before, it can be shown that the nonlinear terms
on the right-hand side of (5.8) scale approximately as

−2ρ0

(
∂u
∂z
∂w
∂x
−
∂u
∂x
∂w
∂z

)
∼ A2N2ρ0

Lb

Lz
, (5.9)

while the linear terms scale as

−N2ρ − g
∂ρ

∂z
∼ AN2ρ0

h
Lz
. (5.10)

The ratio of the nonlinear terms to the linear terms in (5.8) scales as ALb/h, which
is small, assuming the domain height is large compared to the beam width. Thus the
errors due to nonlinearities are not as significant in the pressure calculations. This
was verified in simulations with the parameter sweeps; the maximum error in the
pressure field does not depend strongly on A dN/dz scaling. Thus we conclude that
the nonlinearities primarily affect the velocity calculations.

5.3. Verification of velocity error scaling through a parameter sweep

To verify the scaling arguments, we have run a sequence of tanh N2 simulations
that vary the internal wave beam’s velocity amplitude and the stratification transition
thickness, which changes the maximum dN/dz. Simulations were conducted for eight
velocity amplitudes ranging from 0.001 m s−1 to 0.01 m s−1 (the results in § 3.2 are
for an amplitude of 0.005 m s−1). The two tanh N2 profiles presented in § 3.2 set
the upper and lower bounds on the transition layer thickness. Eight different α values
were simulated. This range corresponds to a minimum and maximum value for dN/dz
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FIGURE 9. (Colour online) Maximum per cent absolute difference between the energy
flux from direct numerical simulations and the energy flux computed by our method
as a function of the velocity amplitude and the maximum dN/dz. The diagonal lines
have slope −1, as predicted by the scaling arguments for nonlinear terms neglected in
our method, as described in § 5.2. The grey solid line corresponds to a 1 % error, the
dashed grey line to a 5 % error and the dotted grey line to a 10 % error. (a) Domain
of the sweep in simulation parameters, where white dots represent each simulation and
symbols represent the approximate parameters for the following experiments: Mathur &
Peacock (2009) (grey circles), Paoletti & Swinney (2012) (grey star) and Ghaemsaidi et al.
(2016) (grey square). (b) A larger parameter domain that includes the internal wave beam
parameters for ocean observations by Martin et al. (2006) (triangle) and Gerkema et al.
(2004) (inverted triangle).

of 4.0 m−1 s−1 and 112 m−1 s−1, respectively. All 64 simulations were run with the
same time steps, resolution and time window as the simulations presented in § 3.2.
For each simulation, we calculate the maximum absolute beam-normalized per cent
difference error in the energy flux in the internal wave beam.

The simulations reveal that for most of the domain the error is less than 5 %
(figure 9). The maximum error is 74 % of the beam amplitude, which occurs in the
reflection region for the case with the largest vertical gradient of N(z) (where α= 4)
and the largest velocity amplitude (0.01 m s−1). The diagonal lines with a slope of
negative one indicate that the error scales approximately as A dN/dz, as predicted by
the scaling arguments in § 5.2.

To put the computational error into context for application to experimental and
potentially observational data sets, we present in figure 9(b) points that approximate
the amplitude and dN/dz values from three internal wave beam laboratory experiments
that produced internal wave beams in a nonlinear stratification (Mathur & Peacock
2009; Paoletti & Swinney 2012; Ghaemsaidi et al. 2016) and two ocean observations
(Gerkema et al. 2004; Martin et al. 2006). Although the three experiments did not
have a tanh N2 profile, we can still estimate the maximum value of dN/dz, which
is where we would expect the largest errors. The experiments all fall below the
5 % error line (dashed grey in figure 9(a); for the experiment of Mathur & Peacock
(2009), the system falls in the regime where we would expect the method to produce
errors of less than 1 %. In both observations of internal wave beams in the oceans,
the amplitude is at least an order of magnitude larger than the experiments, and
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the dN/dz is multiple orders of magnitude smaller (Gerkema et al. 2004; Martin
et al. 2006).

We conclude from the parameter sweep simulations and our scaling arguments that
our method yields errors due to nonlinear effects that are typically less than 1 %, and
in almost all cases less than 5 %. While nonlinear effects may be the predominant
source of error in analysing experimental data, dN/dz data from ocean measurements
often have large uncertainty and low spatial resolution. Also, ocean data incorporate
additional complications such as background shear or tidal flow, Coriolis effects and
three-dimensional internal waves. Finally, the method assumes a flat bottom to the
domain, which can be accomplished by cropping out the topography, but incorporating
the topography into the boundary conditions would be an avenue for future research.

6. Conclusions

We have presented two methods for calculating the instantaneous internal wave
energy flux field using only data for the density perturbation field. Both methods are
applicable to background density stratifications with the buoyancy frequency N(z)
varying with height z: the first method, a Green’s function method, uses convenient
analytic density stratification profiles, while the second, a finite difference method,
applies to arbitrary stratification profiles.

Using our Green’s function method we obtained the instantaneous energy flux field
from the density perturbation field for two profiles of N(z): one linear in z and the
other where N(z)2 ∝ tanh(z). The difference between the Green’s function method
and our direct numerical simulations is less than 5 % outside of regions containing
significant nonlinearity. Despite the Green’s function method being based on linear
theory, it accurately predicts the energy flux in the transmitted and reflected beams,
and even in harmonic beams, which result from significant nonlinearities.

With the finite difference method we showed how to capture the energy flux in
an internal wave field containing nonlinear interactions, wave beam reflections, and
second harmonic beams for any buoyancy frequency profile N(z). This method was
compared with the Green’s function method and direct numerical simulations, and
again the errors were less than 5 % for most of the domain.

An error analysis was performed to understand the scaling of errors due to
nonlinearities from large gradients in N. We argue that errors in the velocity are
proportional to A dN/dz (where A is the dimensionless amplitude of the internal
wave), and this scaling was verified in a series of simulations. To place the maximum
per cent difference into context, parameters from experimental and observational
nonlinear internal wave beam studies were used to estimate potential error from
nonlinear effects. The internal wave beams fall in the parameter region where expected
maximum errors are less than 5 %.

The method presented here and in Allshouse et al. (2016) allow detailed studies
of the entire instantaneous energy flux field for an internal wave field, as contrasted
with methods that yield a single global conversion rate or a time-averaged result.
Our methods can be used to determine the instantaneous velocity perturbation,
pressure perturbation, and energy flux fields from density perturbation data obtained in
experiments using, for example, synthetic schlieren or light attenuation measurements.
We emphasize that our methods require only an instantaneous density perturbation
field and the background buoyancy frequency profile. The accuracy of the method
relies on an accurate density perturbation field, and errors in this field will propagate
through the calculated velocity and pressure fields. If the internal wave amplitude
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is so large as to cause experimental measurement errors, this will likely cause the
nonlinear errors of the method to be large.

The Matlab GUI ‘EnergyFlux’ described in Allshouse et al. (2016) has been
extended to include the methods discussed in this paper. The GUI requires density
perturbation data, domain coordinates, time step size and the N(z) profile. A manual
and tutorial that reproduces the results in this work is available on the Matlab
Central file exchange to make possible straightforward applications of the methods
presented here.
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