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Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD)

are formulated. With the first, the action is extremized under the constraints of density, entropy,

and Lagrangian label conservation, which leads to a Clebsch representation for a generalized

momentum and a generalized vector potential. The second action arises upon transformation to

physical field variables, giving rise to a covariant bracket action principle, i.e., a variational

principle in which constrained variations are generated by a degenerate Poisson bracket. Upon

taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known

relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD

with electron thermal inertia (akin to Comisso et al., Phys. Rev. Lett. 113, 045001 (2014) for the

electron–positron plasma) is introduced. This thermal inertia effect allows for violation of the

frozen-in magnetic flux condition in marked contrast to nonrelativistic Hall MHD that does satisfy

the frozen-in condition. We also find the violation of the frozen-in condition is accompanied by

freezing-in of an alternative flux determined by a generalized vector potential. Finally, we derive a

more general 3þ 1 Poisson bracket for nonrelativistic extended MHD, one that does not assume

smallness of the electron ion mass ratio. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975013]

I. INTRODUCTION

The early discovery of action principles (APs) and associ-

ated Hamiltonian structure, undoubtedly of groundbreaking

importance in the history of physics, has unified the existing

physical models and provided a means for the development of

new models. In physics, it is now believed that an empirically

derived physical model, devoid of phenomenological constitu-

tive relations, would not be justified unless an underlying AP

exists. In addition to mathematical elegance, APs are of practi-

cal importance for seeking invariants via symmetries using

Noether’s theorem1 (see, e.g., Refs. 2 and 3 for plasma exam-

ples), obtaining consistent approximations (e.g., Ref. 4), and

developing numerical algorithms (e.g., Refs. 5–7).

In this paper, we obtain APs for relativistic magnetofluid

models. The key ingredient for constructing APs for a fluid-

like system is a means for implementing constraints, because

direct extremization yields trivial equations of motion. There

are various formalisms available, depending on how the con-

straints are implemented. One is to follow Lagrange8 and

incorporate constraints into the definition of the variables.

This procedure is invoked when using Lagrangian coordi-

nates with the time evolution of variables (fluid element

attributes) (e.g., density and entropy) described a priori by

conservation of differential forms along stream lines. APs in

the Lagrangian coordinates have been obtained for the

nonrelativistic neutral fluid, magnetohydrodynamics

(MHD),9 and various generalized magnetofluid models (e.g.,

extended MHD (XMHD), inertial MHD (IMHD), and Hall

MHD (HMHD)),4,10,11 as well as for the relativistic neutral

fluid12–14 and MHD.15,16 In obtaining such formulations, sev-

eral complications arise, e.g., the inference of the appropriate

Lagrangian variables, the map between the Lagrangian and

Eulerian coordinates in the relativistic case,16 and the exis-

tence of multiple flow characteristics for generalized magne-

tofluid models.4,11

A second type of AP, one that is formulated in terms

Eulerian variables, implements the constraints via Lagrange

multipliers, and in this way, extremization of the action can

lead to correct equations of motion.17,18 Upon enforcing the

constraints of conservation of density, entropy, and a

Lagrangian label,18 this procedure was recently used to

obtain the nonrelativistic HMHD.19 Then, this formulation

for HMHD was used to regularize the singular limit to MHD

by a renormalization of variables, thereby obtaining an AP

for MHD.19 For the relativistic neutral fluid, the velocity

norm (light cone) condition (ulul ¼ 1 with fluid four-

velocity ul) is required as another constraint.20–24 Instead of

taking the limit from HMHD with renormalization, there are

alternative formulations for nonrelativistic25 and relativis-

tic26,27 MHD, in which Ohm’s law or the induction equation

per se is employed as a constraint.

A third type of AP, one of general utilities that incorpo-

rates a covariant Poisson bracket in terms of Eulerian varia-

bles, was introduced in Ref. 28. Instead of including the
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constraints in the action with Lagrange multipliers, the con-

straints are implemented via the degeneracy of a Poisson

bracket that effects constrained variations. In addition to the

neutral fluid, such Poisson bracket APs have been described

for particle mechanics, electromagnetism, the Vlasov-

Maxwell system, and the gravitational field.28 Most recently,

this kind of action was obtained for relativistic MHD.29

From Table I, which summarizes the aforementioned

APs, we see there are missing pieces: The APs for fluid-

dynamical systems are (i) the Lagrangian AP, (ii) Eulerian

constrained least AP, and (iii) the Eulerian bracket AP, for

relativistic generalized magnetofluid models. In this paper,

we formulate the latter two APs, (ii) and (iii), and show that

they are related by variable transformation. Then, we derive

APs for HMHD and MHD by taking limits of the XMHD

AP. Relativistic HMHD is derived for the first time in the

present study by this method. Also, we show that the nonrel-

ativistic limit of the bracket AP gives nonrelativistic XMHD

as a Hamiltonian system.

This paper is organized as follows. In Sec. II, we formu-

late a constrained least AP for relativistic XMHD. In Sec.

III, the bracket AP is derived by a transformation of phase

space variables in the constrained least AP. In Sec. IV, we

derive relativistic HMHD and MHD by taking limits of the

bracket AP for XMHD. These results are used in Sec. V

where remarkable features of relativistic HMHD pertaining

to collisionless reconnection are considered. In Sec. VI, the

nonrelativistic limit of the bracket AP is shown. Finally, in

Sec. VII, we conclude.

II. CONSTRAINED LEAST ACTION PRINCIPLE

Consider a relativistic plasma consisting of positively

and negatively charged particles with masses mþ and m�,

where subscript signs denote species labels, and assume

the Minkowski spacetime with the metric tensor

diagð1;�1;�1;�1Þ. In addition, a proper charge neutrality

condition is imposed so that rest frame particle number den-

sities of each species satisfy nþ ¼ n� ¼ n.30 The four-

velocities of each species are denoted by u6
l, which obey

the velocity norm conditions

u6
lu6l ¼ 1 : (1)

Using the four-velocities u6
l, the four-center of mass veloc-

ity and the four-current densities can be written as

ul ¼ ðmþ=mÞuþl þ ðm�=mÞu�l ; (2)

Jl ¼ eðuþl � u�
lÞ; (3)

respectively, with m ¼ mþ þ m� and the electric charge e.

The time and space components of these fields are written as

ul ¼ ðc; cv=cÞ and Jl ¼ ðqq; JÞ with the speed of light c,

Lorentz factor c ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðjvj=cÞ2

q
, and charge density qq.

The thermodynamic variables needed are the energy density

q6, the enthalpy density h6, the entropy density r6, and the

isotropic pressure p6. These are related by nh6 ¼ p6 þ q6

¼ nð@q6=@nÞ þ r6ð@q6=@r6Þ.28 We also define the total

energy density q ¼ qþ þ q� and the total pressure p ¼ pþ
þp�.

Adding the continuity equations for each species

together leads to an equation for n

@�ðnu�Þ ¼ 0; (4)

while the adiabatic equations of each species can be written

as

@�ðr6u6
�Þ ¼ 0: (5)

In addition to the above constraint equations, we include the

conservations of the Lagrangian labels u6

u6�@
�u6 ¼ 0: (6)

The full set of independent variables of our action are chosen

to be ðul; Jl; n; r6; u6; AlÞ, where Al is a four-vector

potential that defines a Faraday tensor F l� ¼ @lA� � @�Al.

Here, we consider CGS unit getting rid of a factor 1=4p in

the Faraday tensor by renormalization (i.e., F l�=4p! F l�).

In a manner similar to that of Lin’s formalism18 for the non-

relativistic neutral fluid, we bring (4), (5), and (6) into an

action as constraints as follows:

S u; J; n; r6; A; u6½ �

¼
ð X

6

� 1

2
nh6u6�u6

� þ 1

2
p6 � q6ð Þ

� �
� J�A�

(

� 1

4
@lA� � @�Alð Þ @lA� � @�Alð Þ � /@� nu�ð Þ

�
X

6

g6@
� r6u6�ð Þ � k6u6�@

�u6

� �)
d4x; (7)

TABLE I. Summary of APs for fluid-dynamical systems. The bold faces indicate APs which have not formulated until the present study.

Constrained least AP Covariant bracket AP Lagrangian description AP

Nonrelativistic fluid Lin18 Present study Lagrange8

Nonrelativistic MHD Yoshida and Hameiri19 (renormalization and limit from HMHD) Present study Newcomb9

Webb et al.25 (Ohm’s law constraint)

Nonrelativistic XMHD Yoshida and Hameiri19 (HMHD) Present study Keramidas Charidakos et al.4

Relativistic fluid Schutz20 Marsden et al.28 Dewar13

Salmon14

Relativistic MHD Present study (renormalization and limit from HMHD)

Bekenstein and Oron26 (Ohm’s law constraint)

D’Avignon et al.29 Achterberg15

Kawazura et al.16

Relativistic XMHD Present study Present study Unknown
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where
P

6 is summation over species and /; g6, and k6 are

Lagrange multipliers. The first and second terms of (7) are

the fluid parts for each species, the third term is an interac-

tion between the fluid and the electromagnetic (EM) field,

the fourth term is the pure EM part, and the other terms rep-

resent the constraints. The velocity norm conditions (1) will

be imposed after variation of the action.31

Variation of the action, i.e., setting dS ¼ 0, gives

du� : nhu�þDh

e
J� ¼ n@�/þ

X
6

r6@
�g6þk6@

�u6ð Þ; (8)

dJ� : A� þ Dh

e
u� þ h†

ne2
J�

¼
X

6

6
m7

men
r6@

�g6 þ k6@
�u6ð Þ

� �
; (9)

dr6 : u6�@
�g6 ¼

@q6

@r6

; (10)

du6 : @�ðk6u6�Þ ¼ 0; (11)

dA� : J� ¼ @lF l�; (12)

dn : nu�@
�/ ¼ A�J� þ n

X
6

@q6

@n
; (13)

with h :¼ hþ þ h�; Dh :¼ ðm�=mÞhþ � ðmþ=mÞh�, and

h† ¼ ðm2
�=m2Þhþ þ ðm2

þ=m2Þh�. Using (4), (5), and (6), and

(8)–(13), the momentum equation and generalized Ohm’s

law are obtained

@� nhulu� þ Dh

e
ulJ� þ Jlu�ð Þ þ h†

ne2
JlJ�

� �
¼ @lpþ J�F l

�;

(14)

@� n Dhð Þulu� þ h†

e
ulJ� þ Jlu�ð Þ þ Dh]

ne2
JlJ�

� �

¼ m�
m
@lpþ �

mþ
m
@lp� þ enu�F l

� �
mþ � m�

m
J�F l

�;

(15)

with Dh] ¼ ðm3
�=m3Þhþ � ðm3

þ=m3Þh�. These are equivalent

to the relativistic XMHD equations previously formulated by

Koide.30,32 The generalized Ohm’s law of (14) can be rewrit-

ten as

eu�F ?l� � J�
n

F†l� ¼ m�
m

Tþ@
l rþ

n

� �
� mþ

m
T�@

l r�
n

� �
;

(16)

with

A†� ¼ mþ � m�
m

A� � h†

e
u� � Dh]

ne2
J�;

F ?l� ¼ @lA?� � @�A?l and F †l� ¼ @lA†� � @�A†l;

where a generalized vector potential A? is defined by

A?� ¼ A� þ Dh

e
u� þ h†

ne2
J� : (17)

Note, the following must hold as an identity:

@lð�l�qrF ?qrÞ ¼ 0; (18)

where �l�qr is the four-dimensional Levi-Civita symbol.

Upon taking the four-dimensional curl of (16), we obtain the

generalized induction equation

e @l ukF ?�k
	 


� @� ukF ?lk
	 
� �

� @l Jk

n
F †�k

� ��

�@� Jk

n
F †lk

� ��
� m�

m
@lTþ@

� rþ
n

� �
� @�Tþ@l rþ

n

� �� �

þmþ
m

@lT�@
� r�

n

� �
� @�T�@l r�

n

� �� �
¼ 0: (19)

Next, upon combining (14) and (15), we obtain equa-

tions for the canonical momenta33 of each species

u6� @
l}6

� � @�}6
lð Þ þ T6@

l r6

n

� �
¼ 0;

where }6
� ¼ h6u6

�6eA� . Several simplifications have

been proposed to make these equations tractable:30,32 e.g.,

the assumption of Dh ¼ 0 (i.e., hþ ¼ ðmþ=mÞh and

h� ¼ ðm�=mÞh) and/or the usage of the velocity norm condi-

tion ulul ¼ 1 with (2) instead of (1). The latter condition

requires JlJl ¼ 0 to be consistent with (1) (referred to as the

“break down condition” in Ref. 30). Such a simplified model

has recently come into usage.34–36 Imposing Dh ¼ 0 on the

action (7) and/or replacing (1) by ulul ¼ 1 and JlJl ¼ 0,

this simplified model is directly obtained from the AP.

III. COVARIANT BRACKET ACTION PRINCIPLE

Now, we construct our covariant action principle. To

this end, we define a kinetic momentum m� ¼ nhu� and a

generalized momentum m?� ¼ m� þ ðDh=eÞJ� . Then, (8)

and (9) can then be viewed as the Clebsch representations

for m?� and A?� . The reason for introducing these new field

variables is that the action (7) takes a beautiful form in terms

of them

S ¼
ð

m?�m�

2nh
þ
X

6

1

2
p6 � q6ð Þ

"

� 1

4
@lA?� � @�A?lð Þ @lA� � @�Alð Þ

�
d4x: (20)

Interestingly, upon letting m?� ! m� and A?� ! A� , the

action (20) becomes identical to the recently proposed rela-

tivistic MHD action of Ref. 29. When the simplification

Dh! 0 is imposed, m?� becomes the kinetic momentum,

and A?� is decoupled from the kinetic momentum (the non-

relativistic version of such a vector potential was previously

proposed for nonrelativistic IMHD10 and XMHD37,38). In

other words, the difference of the thermal inertiae between

species (i.e., Dh) intertwines the kinetic momentum field and

the EM field. Since the nonrelativistic limit (hþ ! mþc2 and

h� ! m�c2) results in Dh! 0, such a coupling is distinctive

of the relativistic two-fluid plasma.

For our covariant action, it is convenient to use the

Clebsch variables
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z ¼ ðn; /; r6; g6; k6; u6Þ;

as the independent variables of the action (20). With these

variables, all of the dynamical equations (4), (5), (6), (10),

(11), and (13) are derived from the least AP (i.e., dS ¼ 0). In

terms of z, we can simply restate the AP of Sec. II as a

canonical covariant bracket version of the formalism of

Refs. 28 and 29. A canonical Poisson bracket is defined for

functionals F and G as

F; Gf gcanonical ¼
ð

dF

dz
J c

dG

dz
d4x

¼
ð

dF

d/
dG

dn
� dG

d/
dF

dn
þ
X

6

dF

dg6

dG

dr6

� dG

dg6

�"

� dF

dr6

þ dF

du6

dG

dk6

� dG

du6

dF

dk6

��
d4x; (21)

where J c is the symplectic matrix, and dF=dz denotes the

functional derivative obtained by linearizing a functional, e.g.,

dF ¼
ð

dn
dF

dn
d4x : (22)

(See Ref. 39 for review.) Since J c is non-degenerate, with

ðn;/Þ; ðr6; g6Þ, and ðk6;u6Þ being canonically conjugate

pairs, the least AP is equivalent to a bracket AP, i.e.,

fF½z�; Sgcanonical ¼ 0 where F½z� is an arbitrary functional of

z, is equivalent to dS ¼ 0.

Transformation to new “physical” independent variables

defined by

�z ¼ ðn; r6;m
?�;F ?l�Þ;

yields a noncanonical covariant bracket because the �z are not

canonical variables. To transform the bracket of (21), we

consider the functionals that satisfy �F½�z� ¼ F½z�, and calcu-

late functional derivatives by the chain rule

dF

dn
¼ d �F

dn
þ d �F

dm?�
@�/þ 2m�rþ

men2
@l d �F

dF ?l�
@�gþ

� �

þ 2m�kþ
men2

@l d �F

dF ?l�
@�uþ

� �
� 2mþr�

men2

� @l d �F

dF ?l�
@�g�

� �
� 2mþk�

men2
@l d �F

dF ?l�
@�u�

� �
;

dF

d/
¼ �@� n

d �F

dm?�

� �
;

dF

dr6

¼ d �F

dr6

þ d �F

dm?�
@�g67

2m7

men
@l d �F

dF ?l�
@�g6

� �
;

dF

dg6

¼ �@� r6

d �F

dm?�

� �
6

2m7

me
@l d �F

dF ?l�
@�

r6

n

� �
;

dF

dk6

¼ d �F

dm?�
@�u67

2m7

men
@l d �F

dF ?l�
@�u6

� �
;

dF

du6

¼ �@� k6

d �F

dm?�

� �
6

2m7

me
@l d �F

dF ?l�
@�

k6

n

� �
:

Substituting these into (21) gives the following noncanonical

Poisson bracket:

�F; �G
� �

XMHD¼�
ð

n
d �G

dm?�
@�

d �F

dn
� d �F

dm?�
@�

d �G

dn

� �

þm?� d �G

dm?l
@l d �F

dm?�
� d �F

dm?l
@l d �G

dm?�

� �

þ
X

6

r6

d �G

dm?�
@�

d �F

dr6

� d �F

dm?�
@�

d �G

dr6

� ��

6
2m7

me

d �F

dr6

@l d �G

dF ?l�
� d �G

dr6

@l d �F

dF ?l�

� �
@�

r6

n

�

þ2
d �F

dm?k
@l d �G

dF ?l�
� d �G

dm?k
@l d �F

dF ?l�

� �
F ?�k

þ 4

ne
@l d �F

dF ?l�

� �
@k d �G

dF ?kj

� �
F †j�

�
d4x : (23)

The fluid parts (the first three terms) of (23) correspond to

the covariant Poisson bracket for the neutral fluid given in

Ref. 28. Next, in order to use this bracket in a variational

sense, the action (20) is considered to be the functional of

(n; r6;m
?�;F ?l�), i.e., �S½�z�, and its functional derivatives

are calculated as

d�S

dm?�
¼ u�;

d�S

dF ?l�
¼�1

2
F l�;

d�S

dr6

¼�@q6

@r6

;

d�S

dn
¼ hþ

m�
men

J� u�þ m�
men

J�
� �

�h�
mþ
men

J� u�� mþ
men

J�
� �

�@qþ
@n
�@q�
@n
þDh

ne
J�u

�þ h†

n2e2
J�J

�:

Then Equations (4), (5), (14), and (19) follow from

f �F½�z�; �Sg ¼ 0 for all �F.

Here, we must remark that the equations obtained from

the bracket action principle are not closed unless (18) is

imposed. Although (18) is automatically satisfied by the

Clebsch variable definition of F ?l� , it does not emerge from

the bracket AP. Therefore, the bracket AP, only by itself,

does not give the closed set of equations. This is a marked

difference between a Hamiltonian formalism of nonrelativis-

tic MHD;40,41 although r � B ¼ 0 is not derived from the

Hamiltonian equation, the obtained equations are closed

even if r � B 6¼ 0. On the other hand, in the relativistic case,

if (18) is abandoned, we lose @tB ¼ �cr� E as well.

There may be two remedies for this problem. One is to

define a Faraday tensor that builds-in Ohm’s law (16) and

consider (18) as a dynamical equation of the new Faraday

tensor.29,42 This strategy, however, is difficult because

Ohm’s law (16) is more complicated than that of relativistic

MHD, and then, it is hard to formulate the appropriate

Faraday tensor. A second approach is to transform F ?l� to

A?l so as to make the bracket action principle yield Ohm’s

law instead of the induction equation. To write the bracket of

(23) in terms of A?l, we consider the functional chain rule to

relate functional derivatives with respect to F ?l� with those

with respect to A?l, i.e.,

2@�
d �G

dF ?l�
¼ d �G

dA?l
: (24)

Using (24), one can eliminate F ?l� from the Poisson bracket

(23) while introducing the variable A?l. This will give a
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bracket where Ohm’s law (16) is obtained directly. The

transformation (24) yields

�F; �G
� �

XMHD ¼ �
ð (

n
d �G

dm?�
@�

d �F

dn
� d �F

dm?�
@�

d �G

dn

� �

þm?� d �G

dm?l
@l d �F

dm?�
� d �F

dm?l
@l d �G

dm?�

� �

þ
X

6

r6

d �G

dm?�
@�

d �F

dr6

� d �F

dm?�
@�

d �G

dr6

� ��

7
m7

me

d �F

dr6

d �G

dA?�
� d �G

dr6

d �F

dA?�

� �
@�

r6

n

�

þ d �G

dm?�

d �F

dA?l
� d �F

dm?�

d �G

dA?l

� �
F ?l�

� 1

ne

d �F

dA?l
d �G

dA?�
F †l�

�
d4x: (25)

Ohm’s law follows from fA?a; �SgXMHD ¼ 0 with

d�S=dA?l ¼ Jl; the other equations are unaltered, so the sys-

tem is closed.

The noncanonical bracket of (25) has the form

�F; �G
� �

XMHD ¼
ð

d �F

d�z
J d �G

d�z
d4x ;

with a new Poisson operator J . However, because the trans-

formation z 7!�z is not invertible, the Poisson operator J is

degenerate. Since the bracket AP, f �F½�z�; �Sg ¼ 0, is equiva-

lent to J d�S=d�z ¼ 0, because of this degeneracy, it is no lon-

ger true that J d�S=d�z ¼ 0 is identical to dS ¼ 0. In this way,

the constraints of the action (7) are transferred to the degen-

eracy of the Poisson bracket.28,29

Before closing this section, let us make a remark about

the alternative expression of the EM field. The Faraday ten-

sor may be decomposed as F l� ¼ �l�krbkur þ ule� � u�el

with a magnetic field such as four vector b� ¼ ul�
l�krF kr

and a electric field such as four vector e� ¼ ulF l� .42–44 This

decomposition is especially useful in the relativistic MHD

because the standard Ohm’s law is equivalent to e� ¼ 0, and

thus, the EM field is concisely expressed only by b� . In the

context of the action principle, D’Avignon et al. formulated

the bracket AP for relativistic MHD using b� .29 It may be

possible to reformulate the relativistic XMHD action princi-

ple in terms of b� instead of F l� . The key is how we define a

generalized four vector (say b?�) that incorporates the inertia

effect in the similar way as F l� ! F ?l� . Recently, such a

generalization of b� has been proposed by Pegoraro.44

Formulation of the action principle with b?� and the unifica-

tion with the MHD action principle29 will be a future work.

IV. LIMITS TO REDUCED MODELS

In this section, we show how to reduce the bracket AP

to obtain APs for unknown relativistic models, with known

nonrelativistic counterparts.

First consider the electron-ion plasma, where now the

species labels þ and – are replaced by i and e, respectively.

Defining electron to ion mass ratio l :¼ me=mi � 1, we

approximate me=m � l; mi=m � 1. The ion and electron

four-velocities become

u�i ¼ u� þ lJ�

ne
; u�e ¼ u� � J�

ne
;

while the enthalpy variables reduce to Dh � lhi � he; h† �
l2hi þ he and Dh] � l3hi � he, and the generalized vectors

become

m?� ¼ nhu� þ 1

e
lhi � heð ÞJ�; (26)

A?� ¼ A� þ 1

e
lhi � heð Þu� þ 1

ne2
l2hi þ he

	 

J�; (27)

A†� ¼ A� � 1

e
l2hi þ he

	 

u� � 1

ne2
l3hi � he

	 

J�: (28)

Next, in this approximation, the noncanonical Poisson

bracket (25) becomes

�F; �G
� �

XMHD ¼ �
ð 

n
d �G

dm?�
@�

d �F

dn
� d �F

dm?�
@�

d �G

dn

� �

þm?� d �G

dm?l
@l d �F

dm?�
� d �F

dm?l
@l d �G

dm?�

� �

þri

d �G

dm?�
@�

d �F

dri

� d �F

dm?�
@�

d �G

dri

� �

�l
e

d �F

dri

d �G

dA?�
� d �G

dri

d �F

dA?�

� �
@�

ri

n

� �

þre

d �G

dm?�
@�

d �F

dre

� d �F

dm?�
@�

d �G

dre

� �

þ 1

e

d �F

dre

d �G

dA?�
� d �G

dre

d �F

dA?�

� �
@�

re

n

� �

þ d �G

dm?�

d �F

dA?l
� d �F

dm?�

d �G

dA?l

� �
F ?l�

� 1

ne

d �F

dA?l
d �G

dA?�
F †l�

�
d4x: (29)

Using the approximate bracket of (29) with a reduced action
�S, the covariant AP produces the continuity equation (4)

along with the following system of equations:

@� nhulu� þ 1

e
lhi � heð Þ ulJ� þ Jlu�ð Þ

�

þ 1

ne2
l2hi þ he

	 

JlJ�

�
¼ @lpþ J�F l�; (30)

eu�F ?l� � J�
n
F †l� � lTi@

l ri

n

� �
þ Te@

l re

n

� �
¼ 0; (31)

@� ri u� þ lJ�

ne

� �� �
¼ 0; (32)

@� re u� � J�

ne

� �� �
¼ 0: (33)

Next, consider a further reduction using l! 0, meaning

that the electron rest mass inertia is discarded. This limit

gives HMHD, which is well known in the nonrelativistic
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case but has not been proposed in the relativistic case. The

terms including he must not be ignored when the electron

thermal inertia is greater than the rest mass inertia (i.e.,

he � mec2). For example, the temperature of electrons in an

accretion disk near a black hole can be more than 1011 K.45

Then, the thermal inertia he is on the order of 100 mec2, esti-

mated by an equation of state for an ideal gas he ¼ mec2

þ½C=ðC� 1Þ�Te with a specific heat ratio C ¼ 4=3.46 In such

a case, the he terms are not negligible.

Let us employ the following normalizations:

@� ! L�1@�; n! n0n; Ti;e ! mc2Ti;e;

ri;e ! n0ri;e; F l� !
ffiffiffiffiffiffiffiffiffiffiffiffi
n0mc2

p
F l�;

using a typical scale length L and density scale n0. Then, the

generalized momentum density and vector potential are nor-

malized as

m?� ! n0mc2 nhu� � diheJ�½ �;

A?� ! L
ffiffiffiffiffiffiffiffiffiffiffiffi
n0mc2

p
A� � diheu� þ di

2he

J�

n

� �
;

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc2Þ=ðe2n0L2Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmic2Þ=ðe2n0L2Þ

p
¼ c=ðxiLÞ ¼

di is the normalized ion skin depth, and the normalized

Poisson bracket becomes

�F; �G
� �

HMHD¼�
ð

n
d �G

dm?�
@�

d �F

dn
� d �F

dm?�
@�

d �G

dn

� �

þm?� d �G

dm?l
@l d �F

dm?�
� d �F

dm?l
@l d �G

dm?�

� �

þri

d �G

dm?�
@�

d �F

dri

� d �F

dm?�
@�

d �G

dri

� �

þre

d �G

dm?�
@�

d �F

dre

� d �F

dm?�
@�

d �G

dre

� �

�2di

d �F

dre

@l d �G

dF ?l�
� d �G

dre

@l d �F

dF?l�

� �
@�

re

n

þ2
d �F

dm?k
@l d �G

dF ?l�
� d �G

dm?k
@l d �F

dF ?l�

� �
F ?�k

þ4di

n
@l d �F

dF ?l�

� �
@k d �G

dF ?kj

� �
F ?j�

�
d4x: (34)

The bracket AP with this scaling gives the following

equations:

@� nhulu��dihe ulJ�þJlu�ð Þþd2
i

he

n
JlJ�

� �
¼ @lpþJ�F l

�;

(35)

u� � di

J�
n

� �
F ?l� ¼ �diTe@

l re

n

� �
; (36)

@�ðriu
�Þ ¼ 0; (37)

@� re u� � di

J�

n

� �� �
¼ 0: (38)

Note, this relativistic HMHD is different from the usual non-

relativistic HMHD. In Sec. V, we explore some conse-

quences of this.

Next, upon taking the limit di ! 0, we obtain relativistic

MHD.42,43,47 The Poisson bracket for the relativistic MHD

obtained by this reduction is different from the one proposed

by D’Avignon et al. in Ref. 29 because a magnetic field such

as four vector b� was used there instead of Al. The relation

between the two brackets has yet to be clarified.

The same reduction procedure (from XMHD to MHD)

is applicable for the constrained least AP of Sec. II. For

example, if we ignore the electron rest mass, the velocities

of each species are reduced as uþ
l ! ul and u�

l ! ul

�Jl=ne. Similarly, the entropy and Lagrangian label con-

straints are reduced accordingly. With these reductions, the

constrained least AP gives the relativistic HMHD equations.

We note that the renormalization method used in Ref. 19 to

derive AP for MHD is also applicable for relativistic

HMHD.

There are formalisms alternative to the one we presented

that employ either Ohm’s law or the induction equation per
se as a constraint for nonrelativistic25 and relativistic26,27

MHD. However, these formulations cannot be reduced from

the constrained action (7). Whereas the physical meaning of

the constraints in (7) is obvious, embedding Ohm’s law as a

constraint is unnatural and arbitrary. Furthermore, the EM

field cannot be expressed by Clebsch potentials from the AP

with Ohm’s law constraint, unlike the case for our formula-

tion where this emerges naturally in (9).

V. RELATIVISTIC COLLISIONLESS RECONNECTION

In nonrelativistic MHD with the inclusion of electron

(rest mass) inertia (i.e., IMHD), a consequence of electron

inertia is the violation of the frozen-in magnetic flux condi-

tion, and instead, a flux determined by a generalized field is

conserved.10 Such an electron inertia effect was suggested as

a mechanism for a collisionless magnetic reconnection48 and

has now been widely studied. However, nonrelativistic

HMHD does satisfy the frozen-in magnetic flux condition

because the electron inertia is discarded by the l! 0 limit.

Hence, there is no direct mechanism causing collisionless

reconnection in nonrelativistic HMHD.

On the other hand, in relativistic XMHD, there are two

kinds of electron inertiae: one from the electron rest mass me

and the other from the electron temperature he. The l! 0

limit corresponds to neglecting the former and keeping the

latter. Even though the former is small, the latter may not be

ignorable when the electron temperature is large enough.

The latter effect still allows for the violation of the frozen-in

magnetic flux condition. Such a collisionless reconnection

mechanism was previously proposed by Comisso et al. using

a Sweet–Parker model in the context of relativistic

XMHD.34 Here, we find an alternative flux given by the gen-

eralized vector potential A?� ! A� � diheu� þ d2
i ðhe=nÞJ� to

be frozen-in.

Let us stress the difference between our present study

and the pair plasma study by Comisso et al.34 In the latter,

the relativistic electron–positron plasma with the assumption

Dh ¼ 0 was considered. For HMHD, however, this Dh ¼ 0

assumption removes the aforementioned collisionless recon-

nection mechanism. From (27) and (28), we find A?l ! Al
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and A†l ! Al when we take both Dh ¼ 0 and l¼ 0, so there

is no longer the alternative frozen-in flux in HMHD.

To make this statement more explicit, we write the rela-

tivistic HMHD induction equation in a reference frame mov-

ing with the center-of-mass (ion) velocity. When the electron

fluid is homentropic, the right-hand side of (36) vanishes.

Taking a curl of a spatial component of (36), we obtain the

induction equation in the reference frame

@tB
? þr� ðB? � ~veÞ ¼ 0; (39)

where

B? ¼ Bþr� �dihecvþ d2
i he

J

n

� �
(40)

and

~ve ¼ v� di

J

cn

� �
1� di

qq

cn

� ��1

: (41)

Here, ~ve is a modified electron velocity that becomes the

electron velocity ve in the nonrelativistic limit c! 1 and

qq ! 0. Evidently from (39) and (40), the magnetic field B

is no longer frozen-in.

Let us compare (40) with the induction equations for

other magnetohydrodynamic models, summarized in Table

II. The frozen-in condition for B is satisfied in nonrelativistic

MHD and HMHD, and relativistic MHD. The frozen-in con-

dition is violated in nonrelativistic two-dimensional IMHD,

while the alternative field Bþr� ðd2
e J=nÞ, with the elec-

tron skin depth de as the characteristic length,48 is frozen-in.

Therefore, the scale length of the collisionless reconnection

caused by the electron inertia is de. On the other hand, the

alternative frozen-in field in relativistic HMHD is

Bþr� ð�dihecvþ d2
i heJ=nÞ, which has a characteristic

scale length with
ffiffiffiffiffi
he

p
di. Since the scale length de in nonrela-

tivistic, IMHD is replaced with
ffiffiffiffiffi
he

p
di in relativistic HMHD,

and the reconnection scale is expected to be
ffiffiffiffiffi
he

p
di. This esti-

mate is the same as that for the Sweet–Parker model for rela-

tivistic electron–positron XMHD34 (recall that he is

normalized by mc2 in this study).

Here, we have inferred the reconnection scale just by

comparing the non-relativistic and relativistic Ohm’s law.

However, in non-relativistic case, it was shown that the

reconnection scale is not determined by the generalized

Ohm’s law alone when there is a strong magnetic guide field,

and appropriate gyro-physics is added to the model. The

analysis of the resulting gyrofluid model revealed that the

relevant scale becomes the ion sound Larmor radius in this

case.49 The inclusion of gyroscopic effects in the relativistic

context, appropriate for strong guide fields, is a subject for

future work.

VI. NONRELATIVISTIC XMHD—3 1 1 DECOMPOSITION

The covariant Poisson bracket AP formalism also

encompasses the nonrelativistic theories. We will show this

in the context of XMHD and then infer that this is the case

for nonrelativistic MHD and the nonrelativistic ideal fluid.

Because the nonrelativistic theories contain space and time

separately, it is natural to pursue this end by beginning from

the 3þ 1 decomposition for relativistic theories described in

Ref. 28. To this end, we state some general tools before pro-

ceeding to the task at hand.

The functional derivative of (22) is defined relative to

the space-time pairing, while functional derivatives in con-

ventional Hamiltonian theories are defined relative to only

the spatial pairing, i.e.,

dF ¼
ð

dn
dF
dn

d3x: (42)

For functionals of the form F ¼
Ð
Fdx0 where F contains

no time derivatives of a field, it follows, e.g., that

dF

dn x0; xð Þ ¼
dF

dn xð Þ ; (43)

where we explicitly display the arguments to distinguish

space-time from space functional derivatives. For nonrelativ-

istic theories, we need to consider the functionals that are

localized in time, i.e., have the form

F ¼
ð

dðx0 � x00ÞF dx0: (44)

Observe, in this case, if F contains no time derivatives of

the field n, then

dF

dn x0; xð Þ ¼ d x0 � x00ð Þ dF
dn xð Þ ; (45)

and similarly for other fields. Next, let us suppose that a

functional G is separable in the following sense:

G ¼ G0 þ
ð
G dx0; (46)

where all of the time-like components of fields are contained

in the functionals G0 and G contains no time derivatives of

TABLE II. Induction equations for nonrelativistic MHD, HMHD, and IMHD, and relativistic MHD and HMHD.

Barotropic induction equation Frozen-in field

Nonrelativistic MHD @tBþr� ðB� vÞ ¼ 0 B

Nonrelativistic HMHD @tBþr� ðB� veÞ ¼ 0 B

Nonrelativistic 2D IMHD @tB
? þr� ðB? � vÞ ¼ 0 B? ¼ Bþr� ðd2

e J=nÞ
Relativistic MHD @tBþr� ðB� vÞ ¼ 0 B

Relativistic HMHD @tB
? þr� ðB? � ~veÞ ¼ 0 B? ¼ Bþr� ð�dihecvþ d2

i heJ=nÞ
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fields. For functionals G of the form of (46) and F of the

form of (44), it will be shown that

0 ¼ F;Gf g ¼ � dF

dt
þ fF;Gg 3ð Þ; (47)

where fF;Gg is the canonical bracket (21) or the noncanoni-

cal bracket (23), and fF;Ggð3Þ is the appropriate nonrelativ-

istic Poisson bracket. In this way, one can establish the

connection between Poisson bracket APs and usual nonca-

nonical Poisson bracket Hamiltonian formulations.

For the case at hand, let us return to the arbitrary mass

plasma (mþ and m�) and consider a nonrelativistic limit with

h! mc2; Dh! 0; h† ! ðmþm�Þc2=m; c6 ! 1; @tE ¼ 0:

These result in J0 ¼ enðcþ � c�Þ ! 0 and J ¼ r� B, and

the generalized fields become

m?� ! nmc2u� ¼ m� ;

A?� ! A� þ 1

ne2

mþm�
m

c2

� �
J� ;

and

A†� ¼ mþ � m�
m

A?� � m�mþc

me
u� ;

with the four-velocity becoming u� ¼ ð1; v=cÞ. Using the

thermodynamic relations q ¼ nðmc2 þ EÞ and p ¼ nh� q,

with internal energy E, the following limit is calculated

1

2
q� pð Þ ¼ n mc2 þ Eð Þ � 1

2
nh ! n

1

2
mc2 þ E

� �
:

We first show a nonrelativistic Hamilton’s equation for

the Clebsch variables. The action (7) is separated as

S z½ � ¼
ð

n@0/þ
X

6

ðr6@
0g6 þ u6@

0k6Þ
� �

d4x�
ð
Hd0x;

with a Hamiltonian

H z½ � ¼
ð

n mc2þEþ þ E�
	 


þ 1

2
nmv2þ 1

2
J �A?

� �
d3x: (48)

Here, v ¼ m=nmc; A?, and J are functions of z. Substituting

this action and the localized functional (44) into the covari-

ant canonical bracket (21), we get

F; Sf gcanonical ¼
ð

dF

dt
� F; Hf g 3ð Þ

canonical

� �
d x0 � x00ð Þ dx0;

where fF; Hgð3Þcanonical is a canonical Poisson bracket defined

in the three-dimensional space. Thus, we get the nonrelativ-

istic canonical Hamilton’s equation as

dF

dt
¼ F; Hf g 3ð Þ

canonical;

which describes the time evolution of the Clebsch variables

z. Transforming the Clebsch variables to v and B?, we obtain

the non-relativistic XMHD equations, which will be explic-

itly shown below.

Now, we are set to apply this 3þ 1 procedure to the non-

canonical bracket (23). Upon rearranging the action of (20),

we obtain

�S ¼
ð

m0m
0

2nmc2
d4x�

ð
Hdx0; (49)

with the Hamiltonian

H n; r; mi; A?i
� �
¼
ð
� mim

i

2nmc2
þ n

1

2
mc2 þ Eþ þ E�

� �
� A?iJi

2

� �
d3x;

(50)

where we used J0 ¼ 0 to get the last term.

Then, we calculate f �F; �SgXMHD ¼ 0 to get the nonrela-

tivistic XMHD equations. The phase space variables must be

ðn; r6; mi;A?iÞ. Hence, we put �F ¼ �F½n; r6; mi;A?i�. Since

the action (49) does not depend on A?0, we may write
�S ¼ �S½n; r6; m0; mi;A?i�. Therefore, all the terms including

d �F=dm0; d �F=dA?0, and d�S=dA?0 are dropped. Upon writing

�F ¼
ð

dðx0 � x00ÞF n; r6; mi;A?i� dx0 ;
�

the covariant bracket AP can be written as

0 ¼ �F; �S
� �

XMHD ¼ �
ð 

n
m0

nmc2
@0 d x0 � x00ð Þ dF

dn

� �
þ d x0 � x00ð Þ n � dH

dmi
@i dF

dn
þ dF

dmi
@i m0m

0

2n2mc2
þ dH

dn

� �� �

þ
X

6

r6

m0

nmc2
@0 d x0 � x00ð Þ dF

dr6

� �
þd x0 � x00ð Þr6 �

dH
dmi

@i dF
dr6

þ dF
dmi

@i dH
dr6

� �� �
6d x0 � x00ð Þ m7

me

�

� dF
dr6

dH
dA?i
� dH

dr6

dF
dA?i

� �
@i r6

n

� ��
þmi m0

nmc2
@0 d x0 � x00ð Þ dF

dmi

� �� �
þ d x0 � x00ð Þm0 � dF

dmi
@i m0

nmc2

� �

�d x0 � x00ð Þmj dH
dmi

@i dF
dmj
� dF

dmi
@i dH

dmj

� �
þ d x0 � x00ð Þ m0

nmc2

dF
dA?i

� �
@iA?0 � @0A?ið Þ

þd x0 � x00ð Þ dH
dmi

dF
dA?j
� dF

dmi

dH
dA?j

� �
F?ji � d x0 � x00ð Þ 1

ne

dF
dA?i

dF
dA?j

F†ij

�
d4x:
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Next we substitute m0 ¼ m0 ¼ nmc2 and manipulate some

of the terms to obtainð
dF
dn

@0nþ dF
drþ

@0rþ þ
dF
dr�

@0r� þ
dF
dmi

@0mi

�

þ dF
dA?i

@0A?i

�
d3x ¼ 1

c

dF

dt
;

yielding

�F; �S
� �

XMHD ¼
1

c

ð
dF

dt
� F; Hf g 3ð Þ

� �
d x0 � x00ð Þ dx0

þ
ð

A?0@i dF
dA?i

� �
d x0 � x00ð Þ d4x;

with a three-dimensional Poisson bracket fF; Ggð3Þ that

will be explicitly shown below. Evaluating the d-function

shows f �F; �SgXMHD ¼ 0 is equivalent to Hamilton’s equation

along with a gauge-like condition

dF

dt
¼ F; Hf g 3ð Þ and r � dF

dA?

� �
¼ 0: (51)

The second equation of (51), the gauge condition, is

handled manifestly by transforming from the phase space

variable A? to B?; since dF=dA? ¼ r� ðdF=dB?Þ, with

this transformation, the second condition is automatically

satisfied. Finally, we transform mmmm to v and find that the

Poisson bracket fF; Ggð3Þ becomes

F; Gf g 3ð Þ ¼
ð 

dG
dv
� r dF

d.
� dF

dv
� r dG

d.

� �

þr� v

.
� dF

dv
� dG

dv

� �
þ
X

6

r6

.
dG
dv
� r dF

dr6

��

� dF
dv
� r dG

dr6

�
7

cm7

e

dF
dr6

r� dG
dB?

� ��

� dG
dr6

r� dF
dB?

� ��
� r r6

.

� �#

� dG
dv
� r� dF

dB?

� �
� dF

dv
� r� dG

dB?

� �� �
� B

?

.

�mc

.e
r� dF

dB?

� �
� r� dG

dB?

� �� �
� B†

�
d3x;

(52)

where . ¼ mn and r ¼ �@i. This Poisson bracket is a gen-

eralization of the nonrelativistic electron-ion XMHD bracket

proposed before.37,38 The bracket of (52) differs from the

previous results by the choice of scaling and, more impor-

tantly, the assumption m� � mþ is not made.

Now, consider the Hamiltonian of (50); it becomes

H n; r; v; B?½ �

¼
ð

.jvj2

2
þ .

1

2
mc2 þ Eþ þ E�

� �
þ B? � B

2

" #
d3x; (53)

where E6=m is rewritten as E6. The functional derivatives of

H are

dH
d.
¼ 1

m

dH
dn
¼ v2

2
þ c2

2
þ
X

6

E6 þ .
@E6

@.

� �
þmþm�c2

2.2e2
J2;

dH
dr6

¼ .
@E6

@r6

;
dH
dv
¼ .v;

dH
dB? ¼ B :

Finally, using the above Hamilton’s equations of (51) give

@.
@t
¼ .; Hf g 3ð Þ ¼ �r � .vð Þ;

@r6

@t
¼ r6; Hf g 3ð Þ ¼ �r � v6

cm7

.e
J

� �
r6

� �
;

@B?

@t
¼ B?; Hf g 3ð Þ ¼

X
6r� cm7

e
T6r

r7

.

� �� �

þr� v� B?ð Þ � r � mc

.e
J� B†

� �
;

@v

@t
¼ v; Hf g 3ð Þ ¼ � r � vð Þ � v�r v2

2
þ mþm�c2

2.2e2
J2

 !

�rp

.
þ J� B?

.
;

the nonrelativistic L€ust equations.50 Note, here we used the

thermodynamic relations

dE ¼ Td
r
.

� �
þ p

.2
d. ¼ T

.
drþ 1

.2
p� Trð Þd.

and

.d E þ .
@E
@.

� �
þ rd .

@E
@r

� �
¼ dp:

In closing this section, we seek the Casimirs of (52) for

the barotropic case. They must satisfy 8F : 0 ¼ fF;Cg lead-

ing to a system

r� B?

.
� Cv þ CA? � B?

.

� �
¼ 0; (54)

r�Cv¼ 0 and Cv�
r�v

.
þCA? �B?

.
�rC.¼ 0; (55)

where we use the abbreviated notation C. :¼ dC=d..

Seeking a helicity Casimir, we assume a linear combination

C kð Þ ¼ 1

2

ð
d3x A? þ k vð Þ � B? þ kr� vð Þ ; (56)

which is substituted into (54) and (55) leading to a quadratic

equation for k with roots k6 ¼ 6m6c=e. These new

Casimirs constitute topological constraints for a plasma with

mþ; m� species masses. In the limit m� � mþ, these

Casimirs become those of Refs. 37 and 38. For a discussion

of topological properties of XMHD, see Ref. 51. Notice that

the C6 coincide exactly with the known 2-fluid canonical hel-

icities
Ð

P � dP for each species of Refs. 33 and 52. However,

we emphasize here the importance of the variables v and A?.

In addition to the helicity Casimirs, when the barotropic

condition is violated, we obtain the family
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C rð Þ ¼
ð

d3x . f
rþ
.
;
r�
.

� �
; (57)

albeit with the condition rþ=. being a function of r�=. or

f;þ� ¼ 0, where f;þ denotes the differentiation with respect

to the first argument.

VII. CONCLUSION

We have formulated APs for relativistic XMHD. For the

constrained least action principle, the constraints, namely,

conservation of number density, entropy, and Lagrangian

labels for each species, were employed in the manner of Lin.

Extremization of the constrained action led to the Clebsch

potential expressions for the generalized momentum and the

generalized vector potential. Then, variable transformation

from the Clebsch potentials to the physical variables led to

the covariant Poisson bracket for XMHD. In the Poisson

bracket AP, the constraints are hidden in the degeneracy of

the Poisson bracket. Through these APs, we have unified the

Eulerian APs for all magnetofluid models. Indeed, returning

to Table I, we see that all slots for Eulerian APs have been

completed. Now, the only remaining work is the formulation

of the AP for relativistic XMHD in the Lagrangian descrip-

tion. The examination of the results of Ref. 11 for nonrelativ-

istic XMHD suggests this may not be an easy task.

Another important result was our formulation of relativis-

tic HMHD, obtained by taking a limit of the AP for XMHD.

We observed that while the nonrelativistic HMHD does not

have a direct mechanism for collisionless reconnection, rela-

tivistic HMHD does allow the violation of the frozen-in mag-

netic flux condition via the electron thermal inertia effect. We

also found an alternative frozen-in flux, in a manner similar to

that for nonrelativistic IMHD. The scale length of the colli-

sionless reconnection was shown to correspond to the recon-

nection layer width estimated by the Sweet–Parker model.34

Further study of relativistic HMHD, such as a numerical sim-

ulation of (39), will be the subject of future work.

Lastly in this paper, we passed to a nonrelativistic limit

within the covariant bracket formalism, thus arriving at a

“covariant” bracket for nonrelativistic XMHD. Then, we

derived the usual 3þ 1 noncanonical Poisson bracket.

However, beyond the results of Refs. 37 and 51, the result of

(52) does not assume the smallness of electron mass and thus

is also applicable to electron–positron plasmas.
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