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Abstract. Metriplectic dynamics is applied to compute equilibria of fluid dynamical systems.
The result is a relaxation method in which Hamiltonian dynamics (symplectic structure) is
combined with dissipative mechanisms (metric structure) that relaxes the system to the desired
equilibrium point. The specific metric operator, which is considered in this work, is formally
analogous to the Landau collision operator. These ideas are illustrated by means of case studies.
The considered physical models are the Euler equations in vorticity form, the Grad-Shafranov
equation, and force-free MHD equilibria.

1. Introduction
The computation of general 3D magnetohydrodynamic (MHD) equilibria plays a fundamental
role in simulations of stellarators and it is important for tokamaks as well, due to deviations
from axisymmetry (magnetic islands, ripples, and resonant magnetic perturbations).
This problem has always attracted interest in the plasma physics community, leading to different
numerical approaches [1, 2, 3, 4, 5]. Nonetheless, the efficient computation of three-dimensional
MHD equilibria is still an open issue.

In the geometric mechanics community, on the other hand, there has been a significant effort
directed to the study of the appropriate geometric structures for the description of dissipative
systems and irreversible dynamics. Such a structure has been proposed by Morrison [6, 7] and it
is referred to as metriplectic dynamics since it combines the symplectic structure of Hamilton’s
equations with the metric structure of gradient flows. Several physical systems can be cast in
metriplectic form, e.g., the free rigid body with suitable chosen torque [8], resistive MHD [9]
and the Lindblad equation for open quantum systems [10]. However, the geometric properties
of metriplectic flows can also be exploited to design artificial dynamical systems that relax
to an equilibrium of the considered physical system. The advantages of such methods come
from properties directly implied by the geometric structure and the energy-Casimir principle
[11, 12, 13].

A related but different approach has been proposed by Flierl and Morrison [14] and developed
further by Chikasue, Furukawa and Morrison [15, 16, 17, 18]. In such an approach, the relaxation
mechanism is constructed on the basis of the symplectic structure only, essentially by squaring
the Poisson operator. This method has the properties of minimizing the energy functional of the
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system, while preserving all the other Casimir invariants; for the case of ideal MHD this implies
the preservation of the magnetic field line topology determined by the initial conditions.

The present work is set in the framework of metriplectic dynamics. A specific metric
operator is constructed on the lines of the Landau operator for Coulomb collisions, which has a
metriplectic structure already discovered by Morrison [6, 7]. The basic idea is developed for three
case studies in order to explore the advantages and disadvantages of the proposed relaxation
method.

2. Theory
For a class of dynamical systems arising in fluid and kinetic theories of plasmas, equilibrium
states can be characterised by a variational principle.

Typically equilibrium states are extrema of an entropy functional under the constraints
imposed by the first integrals of the systems, such as mass, energy or momentum. For instance,
in the Boltzmann equation (with collisions) equilibria are obtained by extremizing the entropy
at constant energy, momentum, and particle number [19]. Moreover, the Boltzmann equation
has the additional property that a solution of the initial value problem relaxes, as time goes to
infinity, to an equilibrium because of the celebrated H theorem [19]; equilibria can therefore be
identified by time-evolution of properly chosen initial conditions. In general this is not the case:
ideal systems with no dissipation mechanisms will not relax to an equilibrium. Therefore, in order
to design a relaxation method for the computation of equilibria, some dissipation mechanism
has to be introduced.

The idea proposed by Morrison [6] shows the possibility to define a dissipative dynamics
that relaxes to a solution of the variational problem for the equilibrium. These concepts will be
explained in more detail here with the help of specific physical models.

2.1. Physical Models
Three specific case studies are presented in order to illustrate the proposed idea.

The first example uses the vorticity form of the 2D Euler equations,

∂tω(t, x) + [ω(t, x), φ(t, x)] = 0 −∆φ(t, x) = ω(t, x), (1)

where t is time and x = (x1, x2) are the Cartesian coordinates in the two-dimensional space.
The dynamical variable ω is the vorticity of an incompressible flow v = (∂yφ,−∂xφ) in two-
dimensions and φ is the stream function. The two-dimensional Laplacian is ∆ = ∂2

x1
+ ∂2

x2
and

[f, g] = ∂x1f∂x2g − ∂x1g∂x2f , for any pair of functions f, g.
The equilibrium states of the Euler system are reached when ∂tω = 0. Then from [ω, φ] = 0,

the vorticity must be proportional to a function of the stream function, ω = λf(φ). Substituting
this expression into the Poisson equation of (1) leads to the non-linear eigenvalue problem

−∆φ = λf(φ), (2)

for the pair (λ, φ); given a solution, the corresponding vorticity field is determined by ω = λf(φ).
Complemented with boundary conditions, the nonlinear eigenvalue problem (2) determines a
whole class of equilibrium states (λ, φ): for every choice of f , each solution (λ, φ) corresponds
to an equilibrium.

In the second case study, we apply the method to solve the Grad-Shafranov equation [20, 21]:

−∆∗ψ(R, z) = λf(ψ,R, z), (3)

where ∆∗ = R∂R
(
R−1∂R

)
+ ∂2

z , and (R, z) are the radial and axial coordinates of a cylindrical
reference system (R, z, ϕ). Physically the unknown ψ is a flux function and the right-hand side
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is λf(ψ,R, z) = (4π/c)Rjϕ with jϕ the ϕ-component of the current density, and c the speed of
light in vacuum (c.g.s. units).

The Grad-Shafranov equation is formally analogous to equation (2), if the Laplace operator
and the stream function φ are replaced by ∆∗ and the flux function ψ, respectively. The same
considerations about the equilibrium states apply.

As a last example, force-free MHD equilibria (also known as Beltrami fields or Taylor-relaxed
states) are considered. The magnetic field B =

(
B1(x), B2(x), B3(x)

)
, where x = (x1, x2, x3)

are the Cartesian coordinates in three-dimensional domain, satisfies the force-free equilibrium
condition if it satisfies the Beltrami equation

∇×B = µB, B · ∇µ = 0, (4)

where µ is in general a function. If µ is constant, the Beltrami equation (4) reduces to the
eigenvalue problem for the curl operator.

2.2. Variational Principle
The equilibria of the considered systems can be characterised as the extrema of an entropy
functional with the constraint that a given Hamiltonian functional is preserved.

We consider either the case of a scalar field u = u(x) or a multicomponent field u =(
u1(x), . . . , un(x)

)
, defined over a spatial domain Ω. Let S = S(u) and H = H(u) be the

entropy and Hamiltonian functionals, respectively. The problem of finding the extrema of S at
constant H is written as

δS(u)

δu
= λ

δH(u)

δu
, (5)

where λ is the Lagrange multiplier.
In the Euler example, the dynamical variable u is the scalar vorticity ω. The energy functional

H is the kinetic energy of the fluid (per unit mass) written as

H(ω) =
1

2

∫
Ω
ω(x)φ(x)dx. (6)

We restrict the entropy functional to be of the form

S(ω) =

∫
Ω
s(ω(x))dx, (7)

where s = s(ω) is smooth with monotonic derivative s′. The functional derivatives are readily
computed,

δH(ω)

δω
= φ,

δS(ω)

δω
= s′(ω).

and equation (5) becomes
s′(ω) = λφ. (8)

One can now compare this result with equation (2), and deduce a relationship between the
choice of the entropy functional and a particular physical equilibrium described by the function
f , namely,

f = (s′)−1. (9)

The inverse exists since s′ is monotonic. This also implies that only equilibria with a monotonic
f can be described in this way.

In the case of the Grad-Shafranov equation, the natural variational principle [22] seeks
the extrema of an action functional written in terns of a Lagrangian density. However, this
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variational principle is not in the form (5). In order to obtain a variational principle in the
form (5), let us introduce the variable u = (4π/c)Rjϕ. The flux function ψ is determined from
u by solving the linear elliptic problem

−∆∗ψ = u,

equipped with the desired boundary conditions. Then we define the energy functional

H(u) =
1

2

∫
Ω
u(R, z)ψ(R, z)

dRdz

R
, (10)

and we consider entropy functionals of the form

S(u) =

∫
Ω
s
(
u(R, z), R, z

)dRdz
R

. (11)

As an example, the entropy

S(u) =
1

2

∫
Ω

u2(R, z)

CR2 +D

dRdz

R
, (12)

where C and D are positive constants, leads to the Herrnegger-Maschke solutions of the Grad-
Shafranov equation [23, and references therein]. Other choices, which will lead to different
physical equilibria, can be made. The functional derivatives with respect to L2 scalar product
with metric dRdz/R are

δH(u)

δu
= ψ,

δS(u)

δu
= s′u(u,R, z),

where s′u(u) = ∂s(u,R, z)/∂u. Equation (5) becomes

s′(u,R, z) = λψ.

On using the entropy (11) for the sake of illustration, one obtains

u

CR2 +D
= λψ, (13)

and since u = −∆∗ψ, one obtains the weighted linear eigenvalue problem

−∆∗ψ = λ(CR2 +D)ψ,

that characterises the Herrnegger-Maschke solutions.
As a last example, let us address Beltrami fields, that are the minimisers of the magnetic

energy at constant magnetic helicity [24, 25]. Thus the natural choice for the Hamiltonian
functional is the magnetic helicity,

H =

∫
Ω
B(x) ·A(x)dx, (14)

where A(x) is the magnetic vector potential. We fix the Coulomb gauge,

∇×A = B, ∇ ·A = 0. (15)

With suitable boundary conditions, equation (15) establishes a one-to-one relationship between
A and B. Correspondingly, the dissipated entropy is actually the physical energy of the magnetic
field

S =

∫
Ω

|B|2

8π
dx. (16)
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We have now two equivalent choices. The standard choice [24] consists in setting u = A and
computing

δH(A)

δA
= 2B,

δS(A)

δA
= ∇×B/(4π),

and condition (5) gives the Beltrami equation directly with a constant µ = +8πλ. Alternatively,
one can set u = B, so that

δH(B)

δB
= 2A,

δS(B)

δB
= B/(4π),

and condition (5) reduces to
B = 8πλA,

which should be solved together with (15). Since λ is a constant, this formulation is equivalent
to the Beltrami equation. The latter choice appears more convenient in terms of computational
cost.

2.3. Metriplectic dynamics
The metriplectic formulation of the dynamics of a (possibly multi-component) time-dependent
field u = u(t, x) reads: for every functional F , the function t 7→ F(u(t, ·)

)
must satisfy

dF(u)

dt
= {F(u),H(u)}+ (F(u),S(u)), (17)

where {·, ·} is a Poisson bracket, that is an anti-symmetric, bilinear operation on the functionals,
satisfying the Leibniz and Jacobi identities [26], whereas (·, ·) is a metric bracket, that is a
symmetric, bilinear operation with a definite sign. In the following we shall assume that the
metric brackets are negative semi-definite, but this is just a convention. The functional F plays
the same role as the test-function in a weak formulation.

The Hamiltonian and entropy functionals must satisfy the conditions

{F(u),S(u)} = 0, (F(u),H(u)) = 0,

for all F . Such compatibility conditions imply

dH(u)/dt = 0, dS(u)/dt =
(
S,S

)
(u) ≤ 0,

that is, the entropy is dissipated at constant Hamiltonian. The qualitative idea is that, if S is
bounded from below, the system will evolve on the manifold H(u) = H(u0), where u0 is the
initial condition, toward a state that satisfies (S,S) = 0. If the metric brackets vanish only in
the direction of the Hamiltonian functional, i.e.,

(S,S) = 0 ⇔ δS
δu
∝ δH

δu
, (18)

then the relaxed state is a solution of the variational problem (5). This is not always the case:
some metric brackets have a larger “null space” so that the set of relaxed states strictly contains
the solutions of (5). If this happens we say that the operator does not completely control the
relaxation process.

In general the only constraint on the dynamics is that u belongs to the manifold of constant
energy H(u) = H(u0) The topology of the initial condition can be destroyed.
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2.4. The metric operator and its applications to equilibria
In this work we shall focus on the metric part of the dynamics and consider the class of metric
brackets introduced by Morrison [6] as a generalisation of the Landau collision operator. Such
operators will be referred to as integral collision-like operators.

The general form for two arbitrary functionals A and B can be written as [6]

(A,B) = −
∫∫

Li

(δA
δu

)
· TijLj

(δB
δu

)
dxdx′,

where L(v) = ∇v(x)−∇v(x′) and Tij = Tij(x, x
′) is a matrix with either scalar- or matrix-valued

entries, depending on whether u is a scalar or a multi-component field, respectively. Symmetry
requires Tij(x, x

′) = Tji(x
′, x).

In order to ensure the conservation of a given Hamiltonian H we choose the kernel of the
metric brackets according to

Tij(x, x
′) ∝ |g(x, x′)|2I − g(x, x′)⊗ g(x, x′),

where g = L(δH/δu). A rigorous proof of (18) for this class of operators is still not available.
We shall however show in numerical experiments that the corresponding dynamics relaxes to a
solution to (5) as desired.

However this choice of the metric brackets leads to integral operators that are as challenging
as the full Landau collision operator. Even though structure-preserving methods for the
discretization of such operators are now available [27, 28], we have introduced a simplified class
of brackets leading to diffusion-like operators. Specifically we define

(A,B) = −
∫ ( ∂

∂xi

δA
δu

)
·Dij

( ∂

∂xi

δB
δu

)
dx, (19)

where D(x) = |g(x)|2I − g(x)⊗ g(x) is an effective diffusion coefficient, with g(x) = ∇(δH/δu).

3. Computational Aspects
For the time discretization the Crank-Nicolson scheme [29] has been chosen, in order to guarantee
discrete energy conservation, at least for quadratic energy functionals. The discrete entropy is
proven to be dissipated. A finite element discretization has been chosen for the spatial operators.
Continuous piecewise linear Lagrange elements have been used. Both the integro-differential
operator and its local version have been implemented in FEniCS, a computing platform for
solving partial differential equations [30, 31].

4. Numerical Experiments
A gallery of different numerical experiments, for the models of Section 2, is presented here.

4.1. 2D Euler Equation
The setup for the simulations is as follows: an anisotropic Gaussian is chosen as initial
condition and Dirichlet homogeneous boundary conditions are applied for the squared domain
Ω = [0, 1]× [0, 1]. A resolution of 64× 64 points is chosen. A total number of 10000 time steps,
with a time step size of 100, is simulated.

The entropy functional is quadratic in the dynamical variable ω, namely s(ω) = ω2/2 in
equation (7) , from which the variational principle predicts a linear relation between ω and the
stream function φ, ω = λφ. A local version of the collision-like metric operator, derived from
equation (19), has been used to evolve the system. The energy functional is preserved with a
relative precision of 10−12.



7

1234567890 ‘’“”

Varenna2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1125 (2018) 012002  doi :10.1088/1742-6596/1125/1/012002

(a) The color plot of ω together with the contours of φ at the

equilibrium.

(b) A comparison of the functional relationship between ω

and φ at the initial and final state. An inset shows the time

evolution of the entropy functional. The x-axis of the inset is in

units of 100 time steps. As the entropy functional is minimised

the system relaxes towards the equilibrium condition for which

ω is a linear function of φ.

Figure 1. Euler testcase, quadratic entropy

Figure 1(a) shows the color plot of the vorticity field ω with the contours (represented with
white solid curves) of the stream function φ at equilibrium, that is, at the end of the simulation.
At the equilibrium the contours of ω and φ should be the same and one can qualitatively see that
this is the case in Figure 1(a). A quantitative assessment of the equilibrium condition requires
specific diagnostics. First of all, the time evolution of the entropy functional gives information
about the relaxation process. When no appreciable variation of the entropy functional occurs,
the system has reached an equilibrium. Moreover, it is interesting to make use of another
diagnostic which is a particular type of scatter plot. It is constructed by plotting for every
grid node (i, j) the corresponding discrete values φi,j and ωi,j : when the system is far from the
equilibrium, these points are scattered over regions of the plane with no well-defined relation.
On the other hand, as the system relaxes to the equilibrium, they show a functional relation,
which can then be compared with what is theoretically expected from the variational principle.

Figure 1(b) shows the scatter plot at the beginning and at the end of the temporal evolution,
together with the time evolution of the entropy functional.

A fit of the functional relationship is performed, confirming that a linear functional
relationship between ω and φ is found. Two verification tests of the numerical results have
been then carried out. In the case of the choice of a quadratic entropy functional analytical
results are available.

In fact equation (2), which describes the physical equilibria, reduces to the linear eigenvalue
problem

−∆φ = λφ, (20)

which can be solved analytically. The analytical eigenvalues can be compared with the result of
the fit in the numerical simulation.

The eigenvaues in a domain Ω = [0, a]× [0, b] with Dirichlet boundary conditions are

λn,m = π2
((n

a

)2
+
(m
b

)2)
, n,m ≥ 1. (21)

In our example a = b = 1, and thus the analytical eigenvalue corresponding to the fundamental
state (the equilibrium) is λ1,1 = 2π2 ≈ 19.73921. Figure 2 shows a convergence test in which the
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Figure 2. Euler testcase, quadratic entropy: convergence test in a logarithmic scaling: the relative error
between the numerical and analytical eigenvalue is plotted against different resolutions. The convergence order
is tested against a reference line of order one.

relative error between the numerical and the analytical eigenvalue is plotted against increasing
mesh resolutions in a logarithmic scaling. A numerical fit shows a convergence order equal to
1. This result is in agreement with the choice of the order of the finite elements used, namely
piecewise linear Lagrange elements.

The second verification test has been performed with another numerical algorithm, described
in [32], to compute the fundamental eigenvalue of equation (20). The maximum relative error
between the result of the numerical fit and the value computed with this procedure for each
mesh resolution is of the order 10−8, using the same spatial discretization method.

Other numerical experiments confirm that the equilibrium reached, given a choice for the
boundary conditions, is independent of the initialisation chosen for the simulation (initial con-
ditions), being driven by the choice of the entropy functional only. A topology change of the
initial configuration can also occur. All the numerical results behave in the same way as the
case for which a convergence test has been performed.

The same test case has been simulated in a complicated mesh, with the domain constructed
from a unitary circle mapped by the Czarny mapping [33]. A resolution of 8270 points is chosen.
A total number of 220000 time steps, with a time step size of 100, is simulated.

Figure 3(a) shows the color plot of the dynamical variable ω and the solid white lines
representing the contours of the streaming function φ at equilibrium.

In Figure 3(b) the scatter plot at the initial and equilibrium state of the simulation and the
time evolution of the entropy functional are shown. Again as the system reaches the equilibrium
state, i.e. as the entropy functional is minimised, the expected linear functional relationship
between ω and φ appears. The numerical eigenvalue can be computed from the final functional
relationship with a fit. The result is λnum ≈ 0.2203, with a fit error of 10−9. Due to the non
trivial domain, it is not possible to verify this result against an analytical value. Therefore, the
only verification test available is with the numerical algorithm described in [32]: the relative
error between the two numerical results is 10−6.

The more complicated domain does not influence the selection of the physical equilibrium,
which is due to the choice of the entropy functional only. The method can thus be applied in
complicated domains.
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(a) The color plot of ω with the contours of φ at the

equilibrium.

(b) Same as in Figure 1(b). The x-axis of the inset is in units

of 647 time steps. The mapped domain does not play any role

in the selection of the physical equilibrium.

Figure 3. Euler testcase, quadratic entropy in a Czarny mapped domain

4.2. Grad Shafranov
Numerical simulations for the Grad Shafranov model have also been performed. The simulation
setup used here is the following: anisotropic Gaussian as initial condition, homogeneous Dirichlet
boundary conditions on a rectangular domain Ω = [1.0, 7.0] × [−9.5, 9.5]. A resolution of
128 × 128 points is chosen. A total number of 53000 time steps, with a time step size of
100, is simulated. The entropy functional is chosen according to the equilibrium to be selected.
As in the simulations for the Euler case, the energy functional is preserved with a relative error
of 10−13 or smaller.

As a first example, the entropy functional in equation (12) has been chosen in order to
reproduce the Herrnegger-Maschke solution described in Section 2. The functional relation
between u = (4π/c) Rjφ and ψ is u = λ(CR2 + D)ψ, where C and D are arbitrary positive
constants equal to 0.6 and 0.18 respectively.

In Figure 4(a) the color plot of the dynamical variable is shown together with the contours
of the flux function ψ. The contours of the two fields are aligned, as the simulation has reached
the equilibrium state.

A more quantitative analysis of the equilibrium state is shown in Figure 4(b). Here the
functional relationship between the dynamical variable u and (CR2 + D)ψ is shown at two
different simulation times: at the initial and final state. An inset shows the time evolution of
the entropy functional, which is minimised. The functional relationship at convergence is the
one expected from the variational principle, and the numerical eigenvalue can be computed with
a fit. The result of the fit is λnum ≈ 0.0305, with a fit error of 10−6. A verification test against
the numerical result given by the algorithm described in [32] shows agreement with a relative
error of 10−3.

An entropy functional quadratic in the dynamical variable u, s(u,R, z) = u2/2 in equation
(11) , has been chosen in order to run the same simulation on a Czarny mapped domain [33]. A
resolution of 8270 points is chosen. A total number of 18000 time steps, with a time step size
of 100, is simulated. The initial configuration is otherwise the same as stated in the previous
testcase. The variational principle still describes a linear functional relation between u and the
flux function ψ, u = λψ.
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(a) The color plot of u and the contours of (CR2 + D)ψ at

equilibrium.

(b) The functional relationship between the dynamical

variable u and (CR2 + D)ψ is shown at the initial and final

state, together with the temporal evolution of the entropy

functional. The x-axis of the inset is in units of 1060 time

steps. At convergence, u is a linear function of (CR2 + D)ψ,

as expected.

Figure 4. Grad-Shafranov testcase, Herrnegger-Maschke entropy

(a) The color plot of u and the contours of ψ at

equilibrium.

(b) Same as in Figure 4(b). The x-axis of the inset is in units

of 600 time steps.

Figure 5. Grad-Shafranov testcase, quadratic entropy in a Czarny mapped domain

Figure 5(a) shows the color plot of u with the white solid lines representing the contours of
ψ.

Figure 5(b) shows the scatter plot diagnostics at the initial and final state. As in the previous
cases, an inset shows the time evolution of the entropy functional. As the entropy functional is
minimised, the functional relation collapses to a linear function of the two variables u and ψ,
as expected from the variational principle. The numerical eigenvalue is again computed: the
result is λnum ≈ 0.226 with a fit error of 10−8. The relative error between this result and the
one obtained by the algorithm described in [32] is 10−7.
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5. Outlook
In this work we have shown, in simple testcases, that metriplectic dynamics can be used as a
relaxation method for the calculation of equilibria. The method requires a significant number
of iterations in order to relax to the equilibrium and for the two-dimensional models consid-
ered here, it is not competitive as compared to standard approaches. However it does have the
advantage of being applicable to generic three-dimensional equilibria, as long as a variational
principle of the form (5) is available. This is the case for force-free MHD equilibria (Beltrami
fields discussed in Section 2.2). The application of the method to full three-dimensional ideal
MHD equilibria is currently under investigation. The main difficulty consists in recasting the
equilibrium problem in the form of equation (5) with appropriate energy and entropy function-
als. The standard variational formulation for MHD equilibria [34] cannot be directly exploited
since it makes use of constrained variations. The appropriate reformulation of the variational
principle has to be addressed.
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