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The linearized Vlasov-Poisson system can be exactly solved using the G-transform, an integral

transform introduced in Morrison and Pfirsch [Phys. Fluids B 4, 3038–3057 (1992)] and Morrison

[Phys. Plasmas 1, 1447 (1994); Transp. Theory Stat. Phys. 29, 397 (2000)] that removes the electric

field term, leaving a simple advection equation. We investigate how this integral transform inter-

acts with the Fokker-Planck collision operator. The commutator of this collision operator with the

G-transform (the “shielding term”) is shown to be negligible. We exactly solve the advection-

diffusion equation without the shielding term. This solution determines when collisions dominate

and when advection (i.e., Landau damping) dominates. This integral transform can also be used to

simplify gyro-/drift-kinetic equations. We present new gyrofluid equations formed by taking

moments of the G-transformed equation. Since many gyro-/drift-kinetic codes use Hermite polyno-

mials as base elements, we include an explicit calculation of their G-transform. Published by AIP
Publishing. https://doi.org/10.1063/1.5046194

I. INTRODUCTION

One of the intriguing features of the Vlasov-Poisson sys-

tem is the ability of an electrostatic wave to damp, even in

the absence of any dissipation mechanism.4 This can occur

because the electrostatic wave couples to a continuum of

modes describing all of the possible ways that the distribu-

tion function can vary in velocity space.

The linearized Vlasov-Poisson system can be solved

using the Laplace transform,4,5 normal modes,6 a Green’s

function,7,8 or numerically by a variety of codes (e.g., Refs.

9–12). Another method for describing Landau damping,

which employs an integral transform in velocity space based

on the Hilbert transform, was introduced in Refs. 1–3.

Applying this G-transform to the linearized Vlasov-Poisson

equation completely removes the electric field term. The

resulting advection equation is trivially solved, and then

the inverse transform is applied to return the solution to the

original coordinates.

Versions of this integral transform exist for a variety of

models,13 and there is one that can be used effectively on

any collisionless kinetic model with one velocity dimension.

A simple and important way to extend the linearized

Vlasov-Poisson system is to add collisions. The Landau-

Boltzmann collision operator for Coulomb collisions is usu-

ally unmanageable, so simpler collision operators are often

used instead. A good collision operator, such as the Fokker-

Planck operator,5,14–17 acts as a diffusion in velocity space,

conserves particle number, and has a Maxwellian equilib-

rium. Typically, the collision frequency is assumed to be

small. Even if the collision frequency is small, collisions

should not be completely neglected. Landau damping produ-

ces fine structures in velocity space for which the diffusion

eventually becomes important.

The picture of Landau damping is similar to Kolmogorov

turbulence: energy which is input on large velocity scales cas-

cades down to smaller velocity scales until it reaches a dissipa-

tion velocity scale where the collisions are important. There is

also an intermediate velocity scale where collisions are impor-

tant for particles with small parallel velocities.18 Since the

damping rate typically depends more on the creation of fine

structures in velocity space than on the details of the collision

operator, replacing the complete collision operator with a sim-

plified version is reasonable. Landau damping causes the effec-

tive dissipation rate to be much higher than the collision

frequency. The importance of the fine structures in determining

the dissipation rate can be seen by noticing that if the initial

conditions have fine structures in velocity space, then the

damping rate can be much higher than if the initial conditions

differ from a Maxwellian in a more gradual way.11

Gyrokinetics and drift-kinetics are natural places to look

for applications for the G-transform because they have only

one velocity dimension. In many applications, the plasma

has a strong magnetic field. A particle’s motion perpendicu-

lar to this field mostly follows small circles around the field

lines. This motion does not need to be resolved. Instead, the

three-dimensional Vlasov-Poisson equations are integrated

over the perpendicular velocity dimensions. Drift velocities

which depend on the fields can be added to preserve impor-

tant aspects of the perpendicular motion. The resulting

system has three spatial dimensions, one velocity dimension

and time.19–21

The G-transform has been used to analyze data from

laboratory experiments.22–25 Doppler-resolved laser induced

fluorescence measures the dependence of the distribution func-

tion on the velocity parallel to the laser beam. G-transforming

the data at a single point yields the amplitudes of the van

Kampen modes excited by an externally created wave. The

spatial dependence of the electric field can be determined

from the van Kampen mode amplitudes using a measurement
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of the velocity distribution function at a single point. The

G-transform could also be used on satellite data to measure

Landau damping and nonlinear energy transfer between fields

and particles in the heliosphere.26,27

This paper is organized as follows: In Sec. II, we review

general properties of the G-transform and its use on the

one-dimensional linearized Vlasov-Poisson system. This is

followed by Sec. III that deals with collisions. Here, we

show that the G-transform almost commutes with the colli-

sion operator. The resulting equations have an exact solution

which allows us to easily compare advection and diffusion.

These results are robust to changes in initial conditions or

the collision operator. Section IV shows how the G-trans-

form can also be used to simplify gyro-/drift-kinetic equa-

tions. The resulting equations, which no longer have a

parallel electric field, can be solved numerically using a basis

of Hermite polynomials or we can take moments of them to

get novel drift-fluid equations. We conclude in Sec. V.

II. ONE-DIMENSIONAL VLASOV-POISSON

One of the simplest models for a plasma is the one-

dimensional Vlasov equation for a single species plasma

@f

@t
þ v

@f

@x
� e

m

@/
@x

@f

@v
¼ 0; (1)

where the electric field is determined self-consistently using

the Poisson equation

r2/ ¼ 4pe

ð
R

fdv� 4pqb; (2)

with e and m being the electron charge and mass, respec-

tively, and qb being a neutralizing background positive

charge density. Linearizing (1) and (2) about an arbitrary

homogeneous equilibrium, n0f0ðvÞ and Fourier transforming

the perturbation in position, yields

@fk

@t
þ ikv fk � i

x2
P

k

ð
R

fk dv0
df0

dv
¼ 0; (3)

which we consider for an arbitrary initial conditions fk
�

ðvÞ. In

(3), the third term comes from substituting the linearized

Poisson equation in for the electric field, and the second term

will be referred to as the advection term.

Equation (3) can be exactly solved using the G-trans-

form, which relies on the Hilbert transform. So we review it

and some of its properties next.

A. Hilbert transform properties

The Hilbert Transform is defined by

H g½ �ðvÞ :¼ 1

p

ð
�

R

gðuÞ
u� v

du; (4)

where
Ð
� is the Cauchy principle part of the integral.

Following is a list of some basic Hilbert transform proper-

ties, with well-known proofs (see, e.g., Ref. 28):

• H½…� is a linear operator: (5)

• If g(v) has a Hilbert transform, then there is a function G;

analytic in the upper half complex v plane; that limits to

the real v axis with

gðvÞ ¼ gRðvÞ þ igIðvÞ; (6)

where the real and imaginary parts of G are related by

gR ¼ H gI½ �; gI ¼ �H gR½ �: (7)

• The inverse of the Hilbert transform is negative itself, i.e.,

H H g½ �
� � ¼ �g: (8)

• For two functions g1 and g2; the following convolution

identity holds:

H g1H g2½ � þ g2H g1½ �
� � ¼ H g1½ �H g2½ � � g1g2: (9)

• The Hilbert transform commutes with differentiation; i.e.,

H
@g

@u

� �
¼ @

@v
H g½ �: (10)

• The Hilbert transform has the following multiplication by

u identity

H ug½ � ¼ vH g½ � þ
1

p

ð
�

R

gðuÞ du: (11)

• The adjoint of the Hilbert transform is negative itself; i.e.,

ð
�

R

f H g½ � dv ¼ �
ð
�

R

g H f½ � dv: (12)

• The Hilbert transform reverses the parity of a function;

i.e.,

P H f½ �½ � ¼ �P f½ �: (13)

Of interest in plasma physics is the fact that the Hilbert

transform of a Gaussian is the real part of the plasma Z func-

tion, i.e.,

Z
u

vt

� �
:¼ pH

1ffiffiffi
p
p e�v2=v2

t

� �

¼ 1ffiffiffi
p
p
ð
�

R

e�v2=v2
t

dv

v� u
: (14)

From Hilbert transform properties (10) and (11) and from

our knowledge of the derivative of a Gaussian, we can

determine that the derivative of the plasma Z function

satisfies

@Z

@u
¼ � 2

vt
1þ u

vt
Z

u

vt

� �� �
: (15)

B. G-transform and exact linear solution

The G-transform is defined by
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f ðvÞ ¼ G g½ �ðvÞ :¼ �RðvÞgðvÞ þ �IðvÞH g½ �ðvÞ; (16)

where

�IðvÞ :¼ �p
x2

P

k2

@f0ðvÞ
@v

and �RðvÞ :¼ 1þ H �I½ �ðvÞ: (17)

In order for an integral transform to be useful, it has to have

an inverse, which for this one is given by

gðuÞ ¼ G�1 f½ �ðuÞ :¼ �RðuÞ
j�ðuÞj2

f ðuÞ � �IðuÞ
j�ðuÞj2

H f½ �ðuÞ; (18)

where j�j2 :¼ �2
R þ �2

I . It is straightforward to check that

gðuÞ ¼ G�1½G½g��ðuÞ using the definition of �R (17) and

Hilbert transform properties (8) and (9).

The G-transform provides an exact solution to the one-

dimensional linear Vlasov equation.1–3 The transform takes

you to new coordinates that naturally unravel the phase mix-

ing. In these new coordinates, there is no term from the elec-

tric field, so the equation is trivial.

Applying the inverse G-transform in velocity space to

(3) gives

@

@t
G�1 fk½ � þ ik G�1 vfk½ � � i

x2
P

k

ð
R

fkdv0 G�1 df0

dv

� �
¼ 0: (19)

Defining gk :¼ G�1½fk�, the first term is simple, while the

other two terms will take a little bit of work.

The second term can be dealt with using the Hilbert

transform property (11). The correction term is the integral

of a nonsingular quantity, so we can remove the principal

value from the integral

G�1 vfkðvÞ½ � ¼ �R

j�j2
ufkðuÞ �

�I

j�j2
H vfkðvÞ½ �;

¼ �R

j�j2
ufkðuÞ �

�I

j�j2
uH fkðvÞ½ � þ 1

p

ð
�

R

fkðvÞdv

� �
;

¼ u
�R

j�j2
fkðuÞ �

�I

j�j2
H fkðvÞ½ �

� �
� 1

p
�I

j�j2
ð

R

fkðvÞdv;

¼ u G�1 fk½ � �
�I

pj�j2
ð

R

fkðvÞdv: (20)

The third term can be dealt with by recognizing that df0=dv
is only a constant away from �I and that H½�I� ¼ �R � 1.

Thus,

G�1 df0

dv

� �
¼ G�1 � k2

px2
P

�I

" #
¼ � k2

px2
P

G�1 �I½ �;

¼ � k2

px2
P

�R

j�j2
�I �

�I

j�j2
ð�R � 1Þ

� �
;

¼ � k2

px2
P

�I

j�j2
: (21)

Upon plugging these results back into (19), we observe

the remarkable cancellation

@gk

@t
¼�ik ugk �

�I

pj�j2
ð

R

fkdv

 !
þ i

x2
P

k

ð
R

fkdv0 � k2

px2
P

�I

j�j2

 !

¼�ikugk: (22)

The solution of (22) is trivial

gkðu; tÞ ¼ gk
� ðuÞ e�ikut: (23)

The one-dimensional linear Vlasov equation can be

solved by first inverse G-transforming the initial conditions

to get gk
� ðuÞ, using the solution (23), and then G-transforming

back into the original coordinates

fkðv; tÞ ¼ G G�1 fk

�

ðvÞ
h i

e�ikut

h i
: (24)

It can be shown that this solution is equivalent to van

Kampen’s solution, which in turn is equivalent to Landau’s.

C. Landau damping

Evidently, the solution of (24) must include Landau

damping. If the equilibrium distribution function is monoton-

ically decreasing, then the spatial dependence of a perturba-

tion (associated with the electric field) decays. How does

Landau damping appear in this solution?

The distribution function itself does not damp—it could

not because this is a Hamiltonian system. Instead, what

damps are the density and electrical field perturbations,

which are proportional to the integral of the distribution

function. For example,

nkðtÞ ¼
ð

R

G G�1 fk

�

h i
ðuÞ e�ikut

h i
dv;

¼
ð

R

�RðvÞG�1 fk
�

h i
ðvÞ e�ikvt

 

þ �IðvÞ
1

p

ð
�

R

G�1 fk
�

h i
ðuÞ e�ikut du

u� v

!
dv;

¼
ð

R

dv �RðvÞG�1 fk

�

h i
ðvÞ e�ikvt

þ 1

p

ð
�

R

du

ð
R

dv
1

u� v
�IðvÞG�1 fk

�

h i
ðuÞ e�ikut : (25)

Because the integrals in (25), including the integrals in the

G�1-transform, are not simple, we will only look for the

damping in the long time limit.

The Riemann-Lebesgue lemma determines the long

time limit; for any sufficiently smooth function F(f)

lim
t!1

ð
R

FðfÞ e�ift df ¼ 0: (26)

The integrals in (25) are of the form specified in the

Riemann-Lebesgue Lemma if we assume that the initial con-

ditions are sufficiently smooth and j�j2 is never zero along

the real axis. We can thus conclude

lim
t!1

nkðtÞ ¼ 0: (27)
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The density perturbation of the plasma (and thus the electric

field) decays to zero as time !1. The Riemann-Lebesgue

Lemma also tells us that the decay rate will be proportional

to the distance from the real axis to the nearest pole of F(f).

In our case, that is the distance from the real axis to the near-

est place, where j�j2 ¼ 0. From this, one can obtain the usual

damping rate.1

III. COLLISIONS

Let us now consider collisions together with the Vlasov-

Poisson dynamics by adding a collision operator to the right-

hand side of (3)

@fk

@t
þ ikvfk � i

x2
P

k

ð
R

fkdv0
df0

dv
¼ C f½ �: (28)

Equation (28) is no longer Hamiltonian. A manifestation of

this is that the collision operator C½f � will have asymptotic

stability to a Maxwellian distribution. A common choice for

describing collisions is the Fokker-Planck operator,5,14–17

that has the form

C f½ � :¼ � v2
t

2

@2fk

@v2
þ v

@fk

@v
þ fk

� �
: (29)

This operator gives zero when it acts on the Maxwellian

f0ðvÞ ¼
1ffiffiffi
p
p

vt
e�v2=v2

t : (30)

If the advection and electric field terms are set to zero,

then any other initial function of velocity will decay to

this Maxwellian.

Without collisions, we had a continuum of possible

equilibria, but adding the Fokker-Planck collision operator

selects (30) as the only equilibrium. Thus, we no longer

work with general �I(v) and �R(v)—instead we can be content

with a special case of the Maxwellian, where

�I ¼
ffiffiffi
p
p 2x2

P

k2v2
t

v

vt
e�v2=v2

t ; (31)

�R ¼ 1þ 2x2
P

k2v2
t

þ 2x2
P

k2v2
t

v

vt
Z

v

vt

� �
: (32)

In (32), Z is the real part of the plasma Z function of (14).

If � is small, we might be tempted to treat the collision

operator as a perturbation on the original problem. This is

not easy because we are faced with a singular perturbation.

The small parameter multiplies the highest derivative of f
with respect to v. If f has a structure on extremely small

velocity scales, then the highest derivative of f can become

O(1/�), making the conventional perturbation theory ille-

gitimate. For the Vlasov-Poisson system, we are guaran-

teed that f will eventually get a fine structure in v, since it

behaves as e�ikut for large t.
This motivates our use of the G-transform to attack this

problem.

A. G-transform and collisions

Now, let us apply the inverse G-transform in velocity

space to (28). Because we have already seen the cancellation

that occurs with the Vlasov part of this equation, we need

only examine its affect on the collision operator, which leads

to

@gk

@t
þ ikugk ¼ G�1 C G gk½ �

� �� �
: (33)

We will have to determine the commutation relations

between the G-transform and the collision operator. Before

doing so, we state some properties of the collision operator.

The proofs are all simple and some indications of how to

approach them are given immediately after each.

• C½…� is a linear operator: (34)

• C �I½ � ¼ ���I: (35)

Recall �I / df0=dv / v expð�v2=v2
t Þ and consider the

derivatives of this

• C½AB� ¼ B C½A� þ A C½B� � �ABþ �v2
t

@A

@v

@B

@v
: (36)

Use the product rule several times and rearrange

• C½H½A�� ¼ H½C½A��: (37)

Use Hilbert transform properties (10) and (11) and note

everything decays at a

• C½�R� ¼ �ð2� �RÞ: (38)

Use the definition of 2R of (17) and collision operator

property (35).

In order to evaluate C½G½gk��, we first use the linearity

property (34)

C G gk½ �
� � ¼ C �Rgk½ � þ C �RH gk½ �

� �
: (39)

Next, we use the collision operator product rule (36) on each

term, and then apply the collision operator on �I using prop-

erty (35) and on �R using property (38)

C �Rgk½ � ¼ �RC gk½ � þ gkC �R½ � � ��Rgk þ �v2
t

@�R

@v

@gk

@v
;

¼ �RC gk½ � þ 2�ð1� �RÞgk þ �v2
t

@�R

@v
@gk

@v
;

C �IH gk½ �
� � ¼ �IC H gk½ �

� �þ H gk½ �C �I½ �

� ��IH gk½ � þ �v2
t

@�I

@v

@H gk½ �
@v

;

¼ �IH C gk½ �
� �

� 2��IH gk½ � þ �v2
t

@�I

@v
H
@gk

@u

� �
: (40)

We can also commute the collision operator with the Hilbert

transform using property (37), and note that a derivative can

move inside of a Hilbert transform using Hilbert transform

property (10). Thus, we obtain
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C G gk½ �
� �¼ �RC gk½ �þ2�ð1��RÞgkþ�v2

t

@�R

@v

@gk

@v

þ�IH C gk½ �
� �

�2��IH gk½ �þ�v2
t

@�I

@v
H
@gk

@u

� �
;

¼ �RC gk½ �þ�IH C gk½ �
� �	 


þ2�gk

�2� �Rgkþ�IH gk½ �
	 
þ�v2

t

@�R

@v

@gk

@v
þ@�I

@v
H
@gk

@u

� �� �
;

¼G C gk½ �
� �

þ2�ðgk�G gk½ �Þ

þ�v2
t

@�R

@v
@gk

@v
þ@�I

@v
H
@gk

@u

� �� �
: (41)

Using this result in (33), we can determine how the collision

operator interacts with the G-transform

@gk

@t
þ ikugk ¼ G�1 C G gk½ �

� �� �
;

¼ G�1 G C gk½ �
� �

þ 2�ðgk � G gk½ �Þ
�

þ �v2
t

@�R

@v

@gk

@v
þ @�I

@v
H
@gk

@u

� �� ��
; (42)

¼ C gk½ � þ 2�G�1 gk½ � � �gk

þ 2�v2
t G�1 @�R

@v

@gk

@v
þ @�I

@v
H
@gk

@u

� �� �� �
: (43)

When dealing with the G�1 of the last term, we use Hilbert

transform property (9) to simplify the H[…H[…]] term.

Finally, we obtained the G-transformed one-dimensional

Vlasov equation with collisions

@gk

@t
þ ikugk ¼ C gk½ � þ 2�ðG�1 gk½ � � gkÞ

þ �v
2
t

j�j2
�R
@�R

@u
� �I

@�I

@u

� �
@gk

@u

�

þ �R
@�I

@u
þ �I

@�R

@u

� �
H
@gk

@v

� �#
: (44)

The left hand side of this equation is simply advection: the

electric field term has vanished. The right-hand side of this

equation has the collision operator in terms of u, but it also

has other terms. The rest of the right-hand side describes

how the electric field and the collisions interact. We will call

all of them the shielding term, S½gk�.

B. Dropping the shielding term

What have we gained by doing the G�1-transformation?

At first, it does not look like we have gained very much.

If the collision operator is not there, the G-transform trans-

forms an integro-differential equation into a differential

equation. The equations of motion are dramatically simpler

since they are local in k and v. However, the shielding term

that arises from the G-transform of the collision operator is

also nonlocal. We have replaced an integro-differential equa-

tion with another integro-differential equation. And, the new

one looks more complicated.

However, if we know that some terms are small, it is a

reasonable approximation to drop all of the complicated

terms on the right-hand side and add them in later as a

perturbation.

In most physical situations when the Vlasov equation is

relevant, the collision frequency � is assumed to be smaller

than the other frequencies in the system

�gk �
@gk

@t
; kugk: (45)

All of the terms on the right-hand side are proportional to �, so

they all appear to be smaller than the terms on the left hand

side of (44). This suggests that it might be possible to treat the

collision term as a perturbation in the original problem and not

worry about G-transforming the collision operator.

Having a small collision frequency is not enough to

make sure that the right-hand side remains small. The colli-

sion operator has a term proportional to @2gk=@u2, which is

the highest derivative with respect to u in the problem.

Although the left hand side may be originally dominant, the

dynamics create a small-scale structure in velocity space,

with terms proportional to expðikvtÞ. These small scales in

velocity space make the collision operator significant, even

for small collision frequencies.

Note, unlike the Fourier transform, the Hilbert transform

preserves scale. If g(u) ¼ H[f(v)](u) and f is rapidly varying,

say f(v/k) for k� 1, then g(u/k). Thus, rapid variation is also

preserved by the G-transform: a solution with a rapid scale

of variation expðikutÞ in u will have a scale of variation

expðikvtÞ in v, and vice versa.

The highest derivative in the shielding term is @gk=@u.

When a function has extremely small scales, its higher order

derivatives are larger than its lower order derivatives. Even

when the right-hand side of this equation is important, the

collision operator still dominates the shielding term.

This same argument could also be used for the last two

terms of the collision operator (29). They both are also multi-

plied by the small parameter � and neither has a second

derivative. If we are justified in dropping the shielding terms,

then we are also justified in dropping the latter two terms of

the collision operator.

We thus have two reasonable approximations that we

could make: drop the shielding terms and keep the entire col-

lision operator or drop everything except the second deriva-

tive. We call the second derivative by itself D½gk� for

diffusion and everything else can be lumped together into an

expanded set of shielding terms S0½gk�.
If we keep only the second derivative, the resulting solu-

tion is easier to solve and analyze analytically. However, its

long-time limit is strange. The full collision operator relaxes

to a Maxwellian with width vt. The collision operator D
results in a Gaussian whose width increases without bound.

This is not too big of a concern for us since our perturbations

will decay on a much shorter time than the collision time

1/�. Numerically, these ever-expanding tails cause problems

at the boundary. When we consider the problem numerically

in Sec. III G, we use the entire collision operator. A compari-

son of the analytic solutions for both of these reasonable

approximations in found in Appendix A. The two solutions

agree anywhere they are significantly different from zero.
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The shielding term is a good term to initially ignore, and

then add back in as a perturbation.

C. Exact solution of the advection-diffusion equation

Given the arguments of Sec. III B, we proceed with the

local equation

@gk

@t
þ ikugk ¼ �

v2
t

2

@2gk

@u2
; (46)

an equation that can be exactly solved. First Fourier trans-

form in velocity. This reduces the equation to being first

order in time and velocity instead of being first order in time

and second order in velocity. We can then use the method of

characteristics to solve this problem with the Fourier trans-

formed initial conditions. Afterwards, we inverse Fourier

transform back into the original velocity coordinate. Instead

of working through this calculation, we will just state the

solution. For more details, see Sec. III H, where we consider

the corresponding inhomogeneous problem. Given Eq. (46)

and an initial condition which is Gaussian in velocity and

has a wave number k in position

gkðu; 0Þ ¼
1ffiffiffi
p
p

vt
e�u2=v2

t ; (47)

the solution to (46) is

gðu; tÞ ¼ 1ffiffiffi
p
p

vt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�t
p exp

�
� u2

v2
t ð1þ 2�tÞ

�ikut
1þ �t

1þ 2�t
� 1

12
k2v2

t �t3
2þ �t

1þ 2�t

�
: (48)

As a check, it is not difficult to plug this solution back into

the equations and see that it does satisfy them. An existence

and uniqueness theorem guarantees that this is the only cor-

rect solution.

The exponential of (48) has three terms. The first term is

the result of the diffusion part of the equation. If we ignore

advection here, the remaining heat equation will cause a

Gaussian to spread out in time. The variance in velocity

space increases, but the amplitude of the perturbation does

not change. The time scale for this process is 1/�. In our

ordering, the perturbation will already have decayed away

before this increased variance becomes significant.

The second term is primarily the result of the advection

part of the equation. It is a velocity dependent phase shift of

the initial conditions. This does not change the amplitude of

the perturbation to the distribution function. As we saw in

Sec. II C, it does result in Landau damping for the perturba-

tion to the density and electric field.

The rate at which this occurs is modulated by an extra

factor resulting from the collision operator. This factor is

unity at t¼ 0 and decays to 1/2 as t!1. This change

occurs with a time scale 1/�, so the perturbation will already

have damped away before its effect becomes significant.

However, as we will see in Sec. III E, this effect can occur

much sooner for other initial conditions.

The third term is the result of the interaction between

the two terms. It is also where the damping of the perturba-

tion to the distribution function comes from. Neither term

individually damps the distribution function, but their inter-

action does.

This term is modulated by a factor which varies from 2

at t¼ 0 to 1/2 as t!1. The time scale over which this hap-

pens is 1/�, so it will be close to 2 until the perturbation has

almost entirely decayed.

If we define the decay time, tD, for this equation to be

the time for the perturbation to the distribution function to

decay to 1/e of its original value, and then approximate the

modulating factor to be 2, we find

�1 ¼ � 1

6
k2v2

t �t3
D ) tD ¼

6

k2v2
t �

� �1=3

: (49)

Since this goes as ��1=3, this time is much shorter than the

time scale associated with the collisions by themselves.

Callen also found an effective damping rate which scales as

the (parallel) collision frequency to the 1/3 when considering

a similar problem.8

D. Advection-diffusion crossover

We can take our solution and plug it back into each of

the terms of (44). Doing so will tell us when each of the

terms dominates—when advection dominates the damping

and when collisions dominate the damping.

It is easy to evaluate the terms in (46) on the solution

A gk½ � ¼ iku gk; (50)

D gk½ � ¼
�

ð1þ 2�tÞ2
2

u2

v2
t

� 1

2
v2

t k2t2ð1þ �tÞ2
 

�ð1þ 2�tÞ þ 2ikutð1þ �tÞ
!

gk ; (51)

whence we can calculate the ratio of the diffusion term to the

advection term. Nondimensionalizing the result using

e ¼ �=kvt; s ¼ kvtt, and n ¼ u/vt gives

D gk½ �
A gk½ �

¼ �i e

nð1þ 2esÞ2
2n2 � 1

2
s2ð1þ esÞ2

�

�ð1þ 2esÞ þ 2insð1þ esÞ
�
: (52)

In Fig. 1, we plot the magnitude of the ratio of (52) for vari-

ous nondimensionalized times and velocities to see when

each term dominates and when the two terms are compara-

ble. For this plot, we fix e ¼ 0.1.

The advection term dominates for small times and

large velocities. The collision term dominates for large

times and small velocities. For sufficiently large velocities,

the collisions start becoming important again, but the dis-

tribution function is so small at these velocities that this is

not significant.
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E. Other initial conditions

The perturbation to the distribution function could be a

very different temperature than the equilibrium temperature

that appears in the collision operator. Let us choose as an ini-

tial condition in u a Gaussian with a different initial thermal

velocity, say vI,

gkðu; 0Þ ¼
1ffiffiffi
p
p

vI
e�u2=v2

I : (53)

The calculation proceeds as before. Upon defining

a :¼ v2
I =v

2
t , we find

gðu; tÞ ¼ 1ffiffiffi
p
p

vt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2�t
p exp � u2

v2
t ðaþ 2�tÞ

"

� ikut
aþ �t

aþ 2�t
� 1

12
v2

t k2�t3 2aþ �t

aþ 2�t

#
: (54)

This has the same asymptotic behavior as before, but the

time it takes for the modulation factors to transition from

close to unity to close to 1/2 is now a/�. This transition is

observable if this time is shorter than the decay time, i.e.,

a
�

� tD )
vI

vt
�

�

kvt

� �1=3

: (55)

In order to measure the modulation of the phase mixing

term, you have to use initial conditions with thermal veloci-

ties much smaller than the equilibrium thermal velocity.

We could also consider initial conditions in u that are a

polynomial times a Gaussian. The calculation proceeds as

before—the only difference is that there is now a polynomial

multiplying everything. The solution will also be (48), multi-

plied by some polynomial in u and t.
An appropriately chosen set of polynomials, such as the

Hermite polynomials, will form a complete basis. Any other

bounded function that decays quickly enough in velocity can

be written as a superposition of these functions. Our analysis

of the solution in Sec. III C also applies for many initial

conditions.

F. Realistic initial conditions

Gaussian initial conditions in velocity are not physically

realistic in u space. The initial conditions (47) are commonly

used in kinetics because they represent a purely spatial per-

turbation to the distribution function. We have transformed

the velocity coordinate, so we should use different initial

conditions for the advection-diffusion equation, viz.,

gk
� ðuÞ ¼ G�1 fk

�

ðvÞ
h i

¼ G�1 1ffiffiffi
p
p

vt
e�v2=v2

t

� �
: (56)

We assume that the thermal velocity for the equilibrium is

the same as the thermal velocity of the initial conditions. We

have already calculated �I (31) and �R (32). Thus, the initial

condition of (56) in G�1-transformed space is

gk
� ðuÞ ¼

1ffiffiffi
p
p

vt
e�u2=v2

t 1þ 2x2
P

k2v2
t

 !

A2 þ B2
; (57)

where

A :¼
ffiffiffi
p
p 2x2

P

k2v2
t

u

vt
e�u2=v2

t ;

B :¼ 1þ 2x2
P

k2v2
t

þ 2x2
P

k2v2
t

u

vt
Zðu=vtÞ : (58)

We will use (57) in Sec. III G.

G. Numerically comparing advection and diffusion

Instead of trying to deal with the initial conditions (57)

analytically, we solved the advection-diffusion equation with

FIG. 1. The magnitude of the ratio of the collision term to the advection term, plotted as a function of non-dimensional time and velocity, respectively.
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the entire collision operator (A3) numerically using a finite

difference method. Our code is written in MATLAB, and is

simple enough to be run on a personal laptop.

A Gaussian equilibrium distribution function

f0ðvÞ ¼
1ffiffiffi
p
p

vt
e�v2=v2

t ;

with units in velocity and position where vt¼ 1 and k¼ 2p
were chosen. In the code, we used 200 cells in x with peri-

odic boundary conditions and 200 cells in v that range

between 62.5vt with Dirichlet boundary conditions. In our

units of time, the collision frequency is �¼ 0.1 and the

plasma frequency is xP¼ 5. Our time step was 0.01 and we

ran the advection-diffusion equation until t¼ 2, at which

point the initial perturbation had almost completely decayed.

The decay time (49) for these parameters is tD¼ 1.15. The

non-dimensional parameters for this run are

kvt

�
¼ 20p ;

xP

�
¼ 50: (59)

To construct the realistic initial conditions (57), we used

MATLAB’s built in Hilbert transform to numerically apply

the G�1-transform to Gaussian initial conditions in the origi-

nal coordinates. Any other initial conditions for the original

coordinates could be similarly numerically G�1 transformed.

After finding the solution, we numerically apply the G-trans-

form to get the solution in the original velocity coordinate.

We emphasize that our finite difference solution of the

advection-diffusion equation did not include the shielding

term since it should be small. This assumption is checked

below.

We can compare the sizes of various terms in both the

original coordinates and in the G�1-transformed coordinates.

In both velocity coordinates, there is a time derivative, an

advection term, and a Fokker-Planck collision operator.

Even though the terms look the same, the solution is differ-

ent in the two coordinates, so we will get different results

when we evaluate the term on the solution. The original

coordinates also have a term from the electric field and the

transformed coordinates also have the shielding term.

We take the solution for the advection-diffusion equation

and evaluate it on all of the terms in both coordinates. The

shielding term, evaluated on the solution calculated without

it, should be small. We also G-transform the shielding term

evaluated on the solution back into the original coordinates,

so we can see how significant what we neglected is there.

We L1 integrate all of these terms in both position and

velocity and plot the resulting magnitudes of each as a func-

tion of time in Fig. 2.

For small times, the advection term is dominant in both

the original and transformed coordinates. In the original

coordinates, the electric field term is the same order of mag-

nitude as the advection term. One way that we could have

reached the (local) advection-diffusion equation is by drop-

ping the electric field terms and not G-transforming. We see

here that this plan is illegitimate. Increasing the plasma

frequency increases the significance of the electric field at

small times.

For large times, the collision term is dominant in both

the original and transformed coordinates. This is unsur-

prising since the advection term creates small scale struc-

tures in velocity space. The collision operator has the

highest order velocity derivative in the equation, so it

becomes more significant when there is lots of small scale

structure.

At an intermediary time, there is a crossover where col-

lisions replace advection as the dominant term.

The shielding term is always at least an order of magni-

tude lower than the other terms. This gives us confidence

that neglecting it is reasonable.

FIG. 2. The time dependence of each of the terms of the collisional Vlasov

equation, L1 integrated in position and velocity. (a) In the G�1-transformed

coordinates, there are four terms: a time derivative, an advection term, a

Fokker-Planck collision operator, and a shielding term. Neglecting the

shielding term when finding the solution is justified since the shielding term

is always at least an order of magnitude smaller than the dominant term. (b)

In the original coordinates, there are four terms: a time derivative, an advec-

tion term, a Fokker-Planck collision operator, and an electric field term. We

also G-transformed the shielding term evaluated on the solution to see how

significant the dropped term is. It is always at least an order of magnitude

below the dominant term.
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H. Introducing the shielding term as a perturbation

Since we know that the shielding terms and part of the

collision operator will be small compared to the other terms,

we can stick a small parameter, d, in front of these terms and

write the solution g as a series in this parameter,

gk ¼ g
ð0Þ
k þ dg

ð1Þ
k þ d2g

ð2Þ
k þ � � � : (60)

The resulting hierarchy of equations reads

@g
ð0Þ
k

@t
þ ikug

ð0Þ
k ¼ D g

ð0Þ
k

h i
; (61)

@g
ð1Þ
k

@t
þ ikug

ð1Þ
k ¼ D g

ð1Þ
k

h i
þ S0 g

ð0Þ
k

h i
; (62)

@g
ð2Þ
k

@t
þ ikug

ð2Þ
k ¼ D g

ð2Þ
k

h i
þ S0 g

ð1Þ
k

h i
;

..

.
(63)

where D and S0 are defined in Sec. III B.

The zeroth order equation is the one solved above. All

of the equations of other orders are inhomogeneous versions

of the one solved above. The only addition is a known func-

tion of velocity, determined by the lower order solutions,

added to the right-hand side.

The initial conditions of the higher order terms are all

taken to be zero, i.e., the initial conditions are entirely

included in the zeroth order equation.

Upon Fourier transforming in velocity space, u! g, let-

ting ĝ :¼ F½gðnÞk � and Ŝ :¼ F½S0½gðn�1Þ
k �� gives

@ĝ

@t
þ k

@ĝ

@g
þ 1

2
�v2

t g
2ĝ ¼ ŜðgÞ: (64)

We solve (64) using the method of characteristics, leading to

the following set of differential equations for t(r, s), g(r, s),

and ĝðr; sÞ:

dt

ds
¼ 1;

dg
ds
¼ k; (65)

dĝ

ds
¼ � 1

2
�v2

t g
2ĝ þ ŜðgÞ; (66)

tðr; 0Þ ¼ 0 ; gðr; 0Þ ¼ r ; ĝðr; 0Þ ¼ 0: (67)

These equations are straightforward to solve. The first two

are trivial,

tðr; sÞ ¼ s; gðr; sÞ ¼ ksþ r: (68)

Next, we plug these into the equation for ĝðr; sÞ, and solve it

using an integrating factor. Since we explicitly know what

g(r, s) is, we can evaluate the integrals in the exponentials.

We cannot evaluate the integral ds00 unless we specify explic-

itly what F½S0½gð0Þk �� is. Thus

d

ds
ĝ e
��v2

t
2

Ðs
0

g2ðs0Þds0

" #
¼ e

��v2
t
2

Ðs
0

g2ðs0ÞÞds0

ŜðgðsÞÞ;

ĝðr; sÞ ¼ e
�

v2
t
2

Ðs
0

g2ðs0Þds0ðs
0

e
�� v2

t
2

Ðs00
0

g2ðs000Þds000

Ŝðgðs00ÞÞ ds00;

¼ exp
�v2

t

6k
ðk3s3 þ 3k2s2r þ 3ksr2Þ

� �

�
ðs
0

exp � �v
2
t

6k
ðk3s003 þ 3k2s002r þ 3ks00r2Þ

� �

� Ŝðks00 þ rÞ ds00 : (69)

We now invert (68) to get s(t, g) and r(t, g)

s ¼ t; r ¼ g� kt; (70)

and substitute these in to get ĝðg; tÞ. Note that we do not sub-

stitute anything in for s00 since it is the integration variable.

From this point onward, we refer to it as s. With the above,

we obtain

ĝðg; tÞ ¼ exp
�v2

t

6k
ð3g2kt� 3gk2t2 þ k3t3Þ

� �

�
ðt
0

exp � �v
2
t

6k
ð3g2ks� 3gk2s2 þ k3s3Þ

� �

� Ŝðgþ kðs� tÞÞ ds : (71)

Finally, the inverse Fourier transform of (71) in velocity

space yields g
ð1Þ
k ðv; tÞ. We will not write this out explicitly

since our expressions are long enough already.

The higher order corrections can be done using exactly

the same technique.

I. Other collision operators

The strategy for any collision operator is the same. We

show that the commutator between the collision operator and

the G-transform is small, so neglect it. The dramatic simplifi-

cation of the left hand side only creates a small correction of

the right-hand side.

If we choose some local collision operator with a finite

number of velocity derivatives, say

Qn gk½ � :¼ c
@n

@vn
gk þO

@

@v

� �n�1

gk; (72)

then we may consider how this collision operator acts on the

G-transform.

Qn G gk½ �
� � ¼ c

@n

@vn
ð�Rgk þ �IH gk½ �Þ þ O

@

@v

� �n�1

gk;

¼ �Rc
@ngk

@vn
þ �IH c

@ngk

@vn

� �
þO @

@v

� �n�1

gk;

¼ G c
@ngk

@vn

� �
þO @

@v

� �n�1

gk;

¼ G Qn gk½ �
� �þO @

@v

� �n�1

gk: (73)

The commutator between Qn and G is O½@=@v�n�1gk. As

long as the original collision operator is multiplied by a
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small collision frequency, this shielding term will always be

much smaller than either the advection term or the collision

term. It can be neglected. Problems could arise only when gk

is close to the kernal of Qn and the velocity is small.

IV. GYROKINETICS AND DRIFT-KINETICS

A three-dimensional highly magnetized plasma is often

approximated by gyrokinetic or drift-kinetic equations.19–21

We consider small electrostatic perturbations around an

equilibrium with slab geometry—the equilibrium has no

electric field and the magnetic field is constant and pointed

in the z direction. The motion of the ions is driven by an

equilibrium density and temperature gradient in the x direc-

tion, while the motion of the electrons is determined by qua-

sineutrality. Since most of the particles’ motion is gyration

about the magnetic field, we can integrate over the gyrophase

and use the adiabatic invariance of the magnetic moment to

reduce the number of velocity dimensions to one: the veloc-

ity along the magnetic field lines. To make this approxima-

tion, we have to assume that the equilibrium fields do not

vary on a length scale shorter than the Larmor radius and

that the relevant time scales are long compared to the

Larmor frequency. The perturbed quantities are allowed to

vary on a length scale comparable to the Larmor radius, so

the ~E � ~B nonlinearity is significant.

The system obtained by the above approximations is the

subject of ongoing numerical studies.29,30 Specifically, the

equations, in three spatial dimensions, one velocity dimen-

sion, and time, are

@f

@t
þ v

@f

@z
þ @u
@z

vFM þ
1

2
qivt u; f½ �x;y ¼ C f½ � þ v; (74)

where qi ¼ mvt=ðeBÞ

u ¼ ZTe

Ti

ð
f dv ; FM ¼

1ffiffiffi
p
p

vt
e�v2=v2

t ; (75)

and

v ¼ � qivt

2

@u
@y

� �
1

Ln
þ v2

v2
t

� 1

2

 !
1

LT

 !
FM; (76)

with Ln, LT being the length scales for density and tempera-

ture gradients, respectively. The nonlinear Poisson bracket

term of (74) is the perpendicular advective derivative, i.e.,

~V? � r?f ¼ 1

2
qivt ẑ �r?uð Þ � r?f ;

¼ 1

2
qivt u; f½ �x;y: (77)

A. G-transforming gyro-/drift-kinetics

The gyrokinetic and drift-kinetic equations can be sim-

plified using a slightly simple form of the G�1-transform. In

drift-kinetics, quasineutrality replaces the Poisson equation,

so there are no derivatives in the relationship between u andÐ
f dv. We do not have to Fourier transform this equation in

position before applying the G�1 transform; the �0s are inde-

pendent of k.

The only change is in the definition of �I

�IðvÞ :¼ p
ZTe

Ti
vFMðvÞ: (78)

The rest of the G-transform and its inverse for gyrokinetics

are the same as before (16)–(18).

The gyrokinetic equations are extremely similar. Instead

of evaluating the fields at the gyrocenter, the fields are evalu-

ated at a gyroradius away from the gyrocenter. This introdu-

ces some additional dependence on the perpendicular spatial

directions to the Poisson equation. �I will reflect this as well

�IðvÞ ¼
p vFMðvÞ e�k2

?

Ti

ZTe
þ 1� e�k2

? I0ðk?Þ
; (79)

where I0 is the zeroth order modified Bessel function. This

does depend on k?, but it does not require you to Fourier

transform in the parallel spatial direction.

We will focus on the drift-kinetic equations because

they are simpler and the calculations proceed similarly.

We take the G�1-transform of all terms of (74) and real-

ize that the spatial and time derivatives commute with the

G�1-transform, as does any function of only space and time,

such as u. We define g :¼ G�1½f � and consider each term of

(74). The first term is simple. The second term can be dealt

with using Hilbert transform property (11)

G�1 vf½ � ¼ �R

j�j2
uf � �I

j�j2
uH f½ � þ 1

p

ð
�

R

f dv

� �
;

¼ u G�1 f½ � � �I

pj�j2
ð

R

f dv : (80)

The third term can be dealt with by recognizing that vFM is

only a constant away from �I and that H½�I� ¼ �R � 1

G�1 vFM½ � ¼ Ti

pZTe
G�1 �I½ � ¼

Ti

pZTe

�I

j�j2
: (81)

The sum of these two terms of (74) simplify. Note that the

�0s depend only on velocity, so they commute with spatial

derivatives

@

@z
G�1 vf½ � þ @u

@z
G�1 vFM½ �

¼ u
@g

@z
� �I

pj�j2
@

@z

ð
R

f dv0 þ ZTe

Ti

@

@z

ð
R

f dv0
Ti

pZTe

�I

j�j2

¼ u
@g

@z
: (82)

The nonlinear Poisson bracket term of (74) involves some-

thing that depends only on space acting on f, thus the G�1-

transform acts directly on f. This term also involves u,

which is proportional to the integral of f, and we need to

express u in terms of g. The Hilbert transform property

(12) gives
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ð
R

f dv ¼
ð

R

G g½ � dv ¼
ð

R

ð�Rgþ �IH g½ �Þ dv;

¼
ð

R

ðgþ H �I½ �gþ �IH g½ �Þ dv;

¼
ð

R

g dv : (83)

Thus, we see that the density, or the velocity integral of any-

thing else, is the same in both the original velocity coordi-

nates and in the G�1-transformed velocity coordinates. Also,

u remains unchanged

G�1 1

2
qivt u; f½ �x;y

� �
¼ 1

2
qivt

ZTe

Ti

ð
R

g du ; g

� �
x;y

: (84)

We use the Fokker-Planck collision operator on the right-

hand side of (74). This is convenient because its interaction

with the G�1-transform has already been determined in Sec.

III. As before, after G�1-transforming, we get the Fokker-

Planck collision operator plus the shielding term, and the

shielding term is small and can be neglected.

The source term, v, is some particular function of veloc-

ity. After G�1-transforming, it becomes a new particular

function of u. Call it �vðuÞ.
The G�1-transformed drift-kinetic equations are

@g

@t
þ u

@g

@z
þ 1

2
qivt

ZTe

Ti

ð
R

g du ; g

� �
¼ C g½ � þ S g½ � þ �vðuÞ:

(85)

Equation (85) is the main result of this paper. We have

shown that if the source and collisions are neglected, the par-

allel electric field can be exactly eliminated. Also, in the case

of collisions, the shielding term is small, so one can eliminate

the electric field and retain the use of C alone. Thus one can

solve a simpler equation in u and then G-transform back to

the original velocity coordinates after the calculation of the

dynamics is finished.

This calculation is typically done using Hermite polyno-

mials to discretize velocity space. We include an explicit cal-

culation of the G�1-transform of the Hermite polynomials in

Appendix B.

One of the problems in gyro-/drift-kinetics is the relative

importance of Landau damping and dissipation due to turbu-

lence in the directions perpendicular to the magnetic field.

Landau damping dominates when the parallel streaming time

is large compared to the nonlinear correlation time.29,31

Otherwise, the perpendicular turbulence suppresses Landau

damping. Landau damping is suppressed when the perpendic-

ular nonlinearity creates structures in velocity space which

anti-phase-mix (like the plasma echo) and return energy from

fine velocity scales to the spatial dependence of the distribu-

tion function and fields.30 In future work, we hope to use the

G-transform to further illuminate this gyrokinetic behavior.

B. u-fluid equations

One technique for solving gyro-/drift-kinetics is to take

moments in velocity space. The resulting hierarchy of

equations are known as the gyrofluid equations. More specif-

ically, define the zeroth, first, second, and third moments of

the gyrokinetic distribution fluid, respectively,

q :¼
ð

R

f dv ; j :¼
ð

R

v f dv ;

P :¼
ð

R

v2 f dv; Q :¼
ð

R

v3 f dv; (86)

then take the corresponding moments of (74) to obtain fluid

equations.

The zeroth moment of (74) gives

@q
@t
þ @j

@z
¼ �qivt

2Ln

@u
@y

; (87)

where the moment of the third term of (74) is zero since vFM

is an odd function of velocity. The nonlinear term is zero

since it reduces to the perpendicular Poisson bracket of

something with itself. The collision operator is a total deriva-

tive and it decays as v!1, so its integral is zero. The

source term is an explicit function of velocity which can be

evaluated.

The first order moment of (74) is

@j

@t
þ @P

@z
þ v2

t

2

@u
@z
þ qivt

2

ZTe

Ti
q; j½ �x;y ¼ ��j: (88)

Note, the third term of (88) is an explicit function of velocity

that can be evaluated and the nonlinear term reduces to the per-

pendicular Poisson bracket of the zeroth and first moments.

From integration by parts, the collision operator reduces to lin-

ear drag, while the source term, being an even function of

velocity, vanishes.

Notice that if all of the fluid variables are uniform in space

and time, (88) reduces to Ohm’s Law: E ¼ �@u=@z / j.
Proceeding, the second order moment of (74) is

@P

@t
þ @Q

@z
þ qivt

2

ZTe

Ti
q;P½ �x;y

¼ �2� P� v2
t

2
q

� �
� qiv

3
t

4

1

Ln
þ 1

LT

� �
@u
@y

: (89)

Note, the moment of the third term of (74) vanishes since

v3FM is an odd function of velocity, while the nonlinear term

reduces to the perpendicular Poisson bracket of the zeroth

and second moments. With integration by parts, the collision

operator becomes the first term on the right-hand side, and

the source term is an explicit function of velocity that can be

evaluated.

We could continue taking higher moments, with the usual

hierarchy where the nth equation is coupled to the ðnþ 1Þth
moment through the advection term. To close the fluid equa-

tions, we have to make additional assumptions, for example,

we could assume that the third moment is some specified func-

tion of the lower moments: Q ¼ Qðq; j;PÞ.
Alternatively, we can write fluid equations in the trans-

formed velocity coordinate. These we call the u-fluid equa-

tions. That is, instead of taking the velocity of moments of

(74), we take u moments of (85).
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In (83), we saw that the zeroth moments in u and v of

any function are the same. We will now prove similar results

for the first and second moments of any function.

For the first moment, considerð
R

u G g½ � du ¼
ð

R

ðu �R gþ u �I H g½ �Þ du: (90)

Focusing on the second term on the right-hand side of (90),

we apply the Hilbert transform property (12) to move the

Hilbert transform off of g. Then, we apply the Hilbert trans-

form property (11) to separate u from �I. The correction term

is zero since �I is a total derivative. Thereforeð
R

u �I H g½ � du ¼ �
ð

R

H u �I½ � g du;

¼ �
ð

R

u g H �I½ � du� 1

p

ð
R

g du

ð
R

�I du0;

¼ �
ð

R

u g H �I½ � du ; (91)

andð
R

u G g½ � du ¼
ð

R

ðu ð1þ H �I½ �Þ g� u g H �I½ �Þ du;

¼
ð

R

u g du : (92)

Now let f ¼ G�1½g� in (92), yieldingð
R

u G�1 f½ � du ¼
ð

R

u g du;

¼
ð

R

u G g½ � du ¼
ð

R

u f du: (93)

Therefore, the first moment of any function is invariant

under G�1 transforms.

For the second moment, we will prove something simi-

lar to (93), by consideringð
R

u2 G g½ � du ¼
ð

R

ðu2 �R gþ u2 �I H g½ �Þ du: (94)

First focus on the second term of (94). We apply property

(12) to move the Hilbert transform off of g, then property

(11) twice to separate u from �I, yieldingð
R

u2 �I H g½ � du ¼ �
ð

R

g H u2�I

� �
du;

¼ �
ð

R

g u H u�I½ � du� 1

p

ð
R

g du

ð
R

u0 �I du0

¼ �
ð

R

g u2 H �I½ � du� 1

p

ð
R

u g du

ð
R

�I du0

� 1

p

ð
R

g du

ð
R

u0 �I du0 : (95)

The second term of the above is zero since �I is a total deriv-

ative. The integral of �I in the last term can be explicitly

evaluated for any definition of �I: (17), (78), or (79). We

focus on (78) and find

1

p

ð
R

u0 �I du0 ¼ 1

p

ð
R

u0 p
ZTe

Ti
u0FM du0;

¼ ZTe

Ti

ð
R

ðu0Þ2FM du0 ¼ ZTe

Ti

v2
t

2
:

Once again, let g ¼ G�1½f �. Recall that the zeroth moment of

any function is invariant under G�1, soð
R

u2 G g½ �du¼
ð

R

u2 �R gdu�
ð

R

u2 H �I½ �gdu�ZTe

Ti

v2
t

2

ð
R

gdu;

¼
ð

R

u2 gdu�ZTe

Ti

v2
t

2

ð
R

gdu ; (96)

ð
R

u2 G�1 f½ � du ¼
ð

R

u2 f duþ ZTe

Ti

v2
t

2

ð
R

f du: (97)

The transformed second moment is equal to the original sec-

ond moment plus a correction proportional to the zeroth

moment. If we continue this pattern, we find that each trans-

formed moment is equal to the original moment plus some

corrections proportional to lower order moments with the

same parity.

Define the second and third u moments as

�P :¼
ð

R

u2 g du; �Q :¼
ð

R

u3 g du: (98)

Note that because of (83) and (93), the zeroth and first

moments remain unchanged. The second u moment is related

to the original moment according to

�P ¼ Pþ ZTe

Ti

v2
t

2
q: (99)

This same relationship holds between the two pressures (as

opposed to the second moments) because the difference

between the second moment and the pressure depends only

on the first and zeroth moments, both of which are invariant

under G-transforms.

Beginning with the zeroth moment of (85), the first two

terms are simple, as before. The nonlinear term is zero since it

reduces to the perpendicular Poisson bracket of something

with itself. Using the argument (83), the zeroth u moment of

the right-hand side must be the same as the zeroth v moment.

The collision operator’s contribution and the source term’s

contribution are the same as before. We get exactly (87) again.

We next consider the first order moment of (85). The

first term and second terms are obvious, while the nonlinear

term reduces to the perpendicular Poisson bracket of the

zeroth and first moment.

When dealing with the source term, it will be helpful to

utilize parity. We note that typically the equilibrium distribu-

tion function is even, derivatives and Hilbert transforms by

(13) reverse parity, �I / @f0=@v (or �I / vFM) is odd, and

�R ¼ 1þ H½�I� is even. Thus, the G-transform and its inverse

also preserve parity. Because the source term of (76) in the

original coordinates is even, the G�1-transformed source

term �vðuÞ is also even. The first moment of any even func-

tion is zero, so we get no contribution from the source.
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Proceeding to the collision and shielding terms, we can

deal with them using (93)ð
R

uðC g½ �þS g½ �Þdu¼
ð

R

uG�1 C G g½ �
� �� �

du¼
ð

R

uC G g½ �
� �

du;

¼�
ð

R

u
@

@u

v2
t

2

@

@u
G g½ �þuG g½ �

� �
du;

¼��
ð

R

v2
t

2

@

@u
G g½ �þuG g½ �

� �
du;

¼��
ð

R

uG g½ �du¼��
ð

R

ugdu;

¼��j : (100)

Putting it all together, we find the first moment (85) is

@j

@t
þ @

�P

@z
þ 1

2
qivt

ZTe

Ti
q; j½ �x;y ¼ ��j: (101)

We look for something corresponding to Ohm’s law in

vain. The only way that all of the u fluid quantities can be

uniform in space and time is if j is zero. The G�1-transform

removes the electric field, so there is nothing to balance the

equilibrium u current against.

Finally we consider the second order moment of (85).

The first and second terms are again trivial and the nonlinear

terms are again a Poisson bracket.

Equation (97) allows us to determine the second

moment of the G�1-transformed source termð
R

u2 G�1 v½ � du ¼
ð

R

u2 v duþ ZTe

Ti

v2
t

2

ð
R

v du;

¼ �qiv
3
t

4

@u
@y

1

Ln
1þ ZTe

Ti

� �
þ 1

LT

� �
:

We can now use (97) and then (83) and (96) to deal with

the collision and shielding terms simultaneously. Recall that

the collision operator is a total derivative, so the integral of it

acting on anything over all space is zero. Thus,ð
R

u2ðC g½ � þ S g½ �Þ du

¼
ð

R

u2 G�1 C G g½ �
� �� �

du;

¼
ð

R

u2 C G g½ �
� �

duþ ZTe

Ti

v2
t

2

ð
R

C G g½ �
� �

du;

¼ �
ð

R

u2 @

@u

v2
t

2

@

@u
G g½ � þ u G g½ �

� �
du;

¼ �v2
t

ð
R

G g½ � du� 2�

ð
R

u2 G g½ � du;

¼ �v2
t

ð
R

g du� 2�

ð
R

u2 g duþ 2�
ZTe

Ti

v2
t

2

ð
R

g du;

¼ �v2
t 1þ ZTe

Ti

� �
q� 2� �P : (102)

Finally, the second moment of (85) is

@ �P

@t
þ @

�Q

@z
þ 1

2
qivt

ZTe

Ti
q; �P
� �

x;y

¼ �2� �P � v2
t

2
1þ ZTe

Ti

� �
q

 !

� qiv
3
t

4

@u
@y

1

Ln
1þ ZTe

Ti

� �
þ 1

LT

� �
:

Once again, we get a hierarchy of coupled equations.

These equations could be used as an alternative to gyrofluid

equations. They are simpler because we have eliminated the

parallel electric field.

The challenge is that we do not intuitively understand

what the u moments mean. We cannot transform back to the

usual gyrofluid variables because we have already integrated

over the velocity. This also makes it more difficult to deter-

mine an appropriate closure. Some closures are similar. If a

barotropic closure is appropriate for the original moments,

then a barotropic closure is also appropriate for the u
moments because the difference between the two pressures

only depends on the density (99). However, the u pressure

would not be expected to have a single polytropic index,

even if the original pressure does. Also, other closure ideas

may apply (e.g., those of Ref. 32). Once we have developed

some intuition about dynamics in u space from gyrokinetic

models, we will be better able to interpret and use these new

gyrofluid equations.

V. CONCLUSION

We described how the one dimensional linearized

Vlasov-Poisson system can be exactly solved using the G-

transform, an integral transform based on the Hilbert transform

that removes the electric field term. In terms of this integral

transform, Landau damping appears as the Riemann-Lebesgue

Lemma: a rapidly oscillating function integrates to zero.

The G-transform can be used for any kinetic theory with

one velocity dimension. Given that efficient Hilbert trans-

form algorithms exist, it is numerically easy to implement.

We analyzed how the G-transform interacts with the

Fokker-Planck collision operator. The commutator between

the G-transform and the collision operator gives rise to an

additional term, which we call the shielding term. The shield-

ing term was shown to be small. If there is no small scale

structure in velocity space, then the collision term and the

shielding term are small since they are multiplied by a small

parameter, the collision frequency. If there is a small scale

structure in velocity space, then the collision term is signifi-

cant since it contains the highest order velocity derivative.

The shielding term is still unimportant since its velocity deriv-

atives are all lower order than the collision term.

If we drop the shielding term, then the resulting

advection-diffusion equation can be exactly solved. We wrote

an explicit solution for simple initial conditions and used it to

determine when advection dominates and when collisions

dominate the equation (Fig. 1). We then numerically solved

the advection-diffusion equation for more realistic initial con-

ditions and showed that our conclusions are not substantially

different from the simple initial conditions (Fig. 2). We then
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discussed how the shielding term could be included as a

perturbation.

Although we focused on the Fokker-Planck collision

operator, similar arguments also apply for any other collision

operators that are local in v. The shielding term will be small

because it is multiplied by a small parameter and has only

lower order velocity derivatives than the collision term. If

future work, we intend to extend this argument to more com-

plicated collision operators, such as the one dimensional lin-

earized Landau-Boltzmann operator33,34 and pitch angle

scattering.35

The most fruitful applications of the G-transform will

likely be found in gyro-/drift-kinetics, which have one veloc-

ity dimension while still capturing much of the relevant

physics for tokamak and space plasmas. For this system the

G-transform is slightly modified: since the Poisson equation

has been replaced by quasineutrality, the G-transform no lon-

ger has spatial dependence. It removes the linear electric

field term, leaves the nonlinearity unchanged, and only

modifies the collision operator by a small perturbation (85).

We compared gyrofluid equations found by taking

moments in both the original velocity space and in the trans-

formed u space. There is nothing corresponding to Ohm’s

law in the transformed gyrofluid equations: the electric field

has been removed, so the only things that can balance the

first u moment are spatial and time derivatives of other u
moments.

Gyrokinetic codes often use Hermite polynomials times

a Gaussian as a basis in velocity space. We give an explicit

expression for the transformed basis elements (B9).

We are currently working to include the G-transform in

gyrokinetic codes. Numerically, computing the G-transform

involves computing a Hilbert transform and storing the real

and imaginary parts of the plasma dielectric function. Since

the transform removes the linear electric field, it removes the

coupling between each Hermite polynomial and the zeroth

Hermite polynomial. Hermite polynomials are only coupled

to their neighbors through the advection term. The perpen-

dicular nonlinearity coupling of different perpendicular

wave numbers remains unchanged.

One of the interesting features of gyrokinetics is that the

importance of Landau damping to the dissipation rate can

change dramatically depending on the nonlinearity. We hope

to use the G-transform to inform a model with only a few

modes that shows the same behavior.
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APPENDIX A: COMPARING COLLISION OPERATORS

After G-transforming the Fokker-Planck collision opera-

tor, we get the same collision operator plus some corrections

which we call the shielding terms. The shielding terms are

expected to be small because they are multiplied by the small

parameter � and do not contain the highest order velocity

derivative. Two of the terms in the collision operator are also

the same order of magnitude of the shielding operator. We

have a choice between dropping everything but the second

velocity derivative term or just dropping the shielding term.

Both equations can be solved analytically for general initial

conditions.

If we drop everything except the second velocity deriva-

tive, the resulting equations,

@gk

@t
þ iku gk ¼ �

v2
t

2

@2gk

@u2
; (A1)

with initial conditions gk
� ðuÞ, have the solution

gkðt; uÞ ¼
1ffiffiffi

p
p

vt

ffiffiffiffiffiffiffi
2�t
p

ð
du0 gk

� ðu0Þ exp � i

2
kðuþ u0Þt

�

�ðu� u0Þ2

2v2
t �t

� 1

24
k2v2

t �t3

#
; (A2)

when we plug in Gaussian initial conditions (47), we get the

solution analyzed before (48).

If we drop the shielding terms, but keep the entire colli-

sion operator, the resulting equations,

@gk

@t
þ iku gk ¼ �

v2
t

2

@2gk

@u2
þ u

@gk

@u
þ gk

� �
; (A3)

with initial conditions gk
� ðuÞ, have the solution

gkðt; uÞ ¼
1ffiffiffi

p
p

vt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2�t
p

ð
du0 gk

� ðu0Þ

� exp �i
k

�
ðuþ u0Þ 1� e��t

1þ e��t

�

� ðu� u0e��tÞ2

v2
t ð1� e�2�tÞþ

k2v2
t

�2

1� e��t

1þ e��t
� �t

2

� �#
: (A4)

To compare these solutions, expand (A4) for small �t.

1� e�2�t � 2�t; (A5)

1� e�t

1þ e�t
¼ tanh

�t

2

� �
� �t

2
� �

3t3

24
; (A6)

when we substitute these in and drop anything higher than

first order in �, we find that (A4) agrees with (A2).

We know that the solutions will decay at a rate given by

(49), which is much shorter than 1/�. By the time �t gets

close to one, the perturbation will have already decayed to

close to zero.

Some of the terms we drop also contain velocity. For

example, we drop iku�2t3=24. This term could become large

at sufficiently large velocities

u �
24

k�2t3
: (A7)

Since � is a small parameter, this will be large compared to

vt until well past the decay time. Since any reasonable initial

condition decays at large velocity, the distribution function

here will be negligibly small.
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The two solutions are almost equal whenever the distri-

bution function is significantly different from zero. Since the

shielding terms are the same order of magnitude as the dif-

ference between these two collision operators, this analysis

gives further indication of the legitimacy of dropping them.

APPENDIX B: HERMITE POLYNOMIALS

Many gyrokinetic codes use Hermite polynomials multi-

plied by a Gaussian as a basis for velocity space. To use the

G-transform to simplify gyrokinetic codes, we will need to

know how to G�1-transform Hermite polynomials.

We define the Hermite polynomials as

HnðfÞ :¼ ð�1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n! 2n ffiffiffi

p
pp ef2 d

df

� �n

e�f2

: (B1)

There are multiple normalizations used for the Hermite poly-

nomials. Changing the normalization does not substantially

change our results.

The derivatives of the Gaussian can be written explicitly

using the Hermite polynomials. Define the constants out

front to be an

d

df

� �n

e�f2 ¼ ð�1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n! 2n

ffiffiffi
p
pq

HnðfÞ e�f2

;

¼: anHnðfÞ e�f2

: (B2)

Note that an ¼ �
ffiffiffiffiffi
2n
p

an�1.

There is a simple expression for the derivative of a

Hermite polynomial

d

df
HnðfÞ ¼

ffiffiffiffiffi
2n
p

Hn�1ðfÞ: (B3)

Iterate this to get the expression for an arbitrary derivative of

a Hermite polynomial. For any integers n, m with m � n,

d

df

� �m

HnðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m n!

ðn� mÞ!

s
Hn�mðfÞ: (B4)

There is an explicit recurrence relation for Hermite

polynomials

anþ1Hnþ1 ¼ �2n an�1Hn�1 � 2f anHn: (B5)

G�1-transform the Hermite polynomials, multiplied by a

Gaussian. Use Hilbert transform property (10). Recognize

the plasma Z function (14) when it appears

G�1 1

an

dn

dfn e�f2

� �
¼ 1

an

�R

j�j2
dn

dfn e�f2� �I

j�j2
H

dn

dfn e�f2

� � !
;

¼ 1

an

�R

j�j2
dn

dfn e�f2� �Iffiffiffi
p
p
j�j2

dn

dfn ZðfÞ
 !

:

(B6)

The derivative of the plasma Z function is given by (15).

The expression for an arbitrary derivative of the plasma Z

function can be proved by induction

dnZ

dfn ¼ anHnðfÞZðfÞ � 2
Xn�1

j¼0

aj
d

df

� �n�1�j

HjðfÞ: (B7)

Combine (B7) with (B4) to get an expression for the deriva-

tives of the plasma Z function explicitly in terms of Hermite

polynomials. Plug in the explicit expression for aj (B2). Note

that the derivatives in the sum will only be nonzero if

n� 1� j � j, i.e., j 	 n�1
2

dnZ

dfn ¼ anHnðfÞZðfÞ � 2
Xn�1

j	̂n�1
2

ð�1Þj j!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�1

ð2j� nþ 1Þ!

s
HjðfÞ :

(B8)

We can now get an expression for the G�1-transform of

the Hermite polynomials in terms of a Gaussian, the plasma

Z function, and Hermite polynomials in the new velocity

coordinate

G�1 1

an

dn

dfn e�f2

� �
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�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�1

ð2j� nþ 1Þ!

s
HjðfÞ : (B9)

Note that the G�1-transform of the Hermite polynomials

only involves other Hermite polynomials of lower order, so

it will not cause any problems when you truncate the

Hermite series.
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