
J. Fluid Mech. (2018), vol. 841, pp. 883–924. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.87

883

Unsteady Stokes flow near boundaries: the
point-particle approximation and the method

of reflections

A. Simha1,†, J. Mo2 and P. J. Morrison1

1Department of Physics and Institute for Fusion Studies, University of Texas at Austin,
Austin, TX 78712, USA

2Department of Physics and Center for Nonlinear Dynamics, University of Texas at Austin,
Austin, TX 78712, USA

(Received 12 July 2017; revised 15 December 2017; accepted 14 January 2018)

Problems of particle dynamics involving unsteady Stokes flows in confined geometries
are typically harder to solve than their steady counterparts. Approximation techniques
are often the only resort. Felderhof (see e.g. J. Phys. Chem. B, vol. 109 (45), 2005,
pp. 21406–21412; J. Fluid Mech., vol. 637, 2009, pp. 285–303) has developed a
point-particle approximation framework to solve such problems, especially in the
context of Brownian motion. Despite excellent agreement with past experiments, this
framework produces unsteady drag coefficients that depend on particle density. This
is inconsistent, since the problem can be formulated mathematically without any
reference to the particle’s density. We address this inconsistency in our work. Upon
implementing our modifications, the framework passes consistency checks that it
previously failed. Further, it is not obvious that such an approximation should work
for short-time-scale motion. We investigate its validity by deriving it from a general
formalism based on integral equations through a series of systematic approximations.
We also compare results from the point-particle framework against a calculation
performed using the method of reflections, for the specific case of a sphere near a
full-slip plane boundary. We find from our analysis that the reasons for the success
of the point-particle approximation are subtle and have to do with the nature of the
unsteady Oseen tensor. Finally, we provide numerical predictions for Brownian motion
near a full-slip and a no-slip plane wall based on the point-particle approximation
as used by Felderhof, our modified point-particle approximation and the method of
reflections. We show that our modifications to Felderhof’s framework would become
significant for systems of metallic nanoparticles in liquids.

Key words: low-Reynolds-number flows, micro-/nano-fluid dynamics

1. Introduction
The study of the motion of particles in fluids has wide-ranging applications. Of

interest here are problems that involve calculations of the resistance encountered by

† Email address for correspondence: akarsh@utexas.edu
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a rigid body translating in a viscous incompressible fluid. If the motion of the body
is sufficiently slow, it is often possible to approximate the flow of the fluid by steady
Stokes flow.

The problem of determination of the drag on a sphere in a fluid in the presence of
other boundaries has been long studied in the context of steady Stokes flow – for a
selection of such results, see Lorentz (1907), Faxén (1921), Happel & Brenner (1965),
Alam, Ishii & Hasimoto (1980) and Maul & Kim (1996).

In recent years, a new regime of viscous flow has gained substantial interest,
wherein the Reynolds numbers are small, but the time scales of interest are
comparable to or shorter than the time scale of vorticity diffusion over the boundary.
This is the regime of unsteady Stokes flow (see e.g. Pozrikidis 1992, § 1.1). One
application of this regime is in the study of short-time-scale Brownian motion, the
exploration of which opens doors to the experimental study of statistical mechanics
(see e.g. Franosch et al. 2011; Kheifets et al. 2014; Mo et al. 2015a), aids in the
calibration of precision instrumentation such as optical tweezers (Berg-Sørensen &
Flyvbjerg 2004; Grimm, Franosch & Jeney 2012) and may provide a tool to measure
the viscoelastic properties of complex fluids (Felderhof 2009a) and to probe boundary
conditions on surfaces (Lauga & Squires 2005; Mo, Simha & Raizen 2017). Other
applications include atomic force microscopy and microelectromechanical systems
(Clarke et al. 2006).

As the system can be approximated by linear equations in this regime, it is
typical to study the problem of a particle performing small oscillations about a point.
Despite the linearity, however, these equations can be significantly harder to solve
than the corresponding steady Stokes problems, particularly in situations with reduced
symmetry. For example, while the problem of a sphere translating near a plane wall
may be solved by means of separable eigenfunction expansions in the case of steady
Stokes flow (O’Neill 1964), this is not true with unsteady Stokes flow: the choice of
coordinates that is apt for the symmetry of the problem is the bi-spherical coordinate
system, and the Helmholtz equation obtained by considering harmonic oscillations is
not separable in this coordinate system, although the Laplace equation is (Morse &
Feshbach 1953). Thus, approximation techniques are inevitable.

Felderhof (2005, 2006a, 2009b, 2012) has applied a point-particle approximation
to determine the dynamics of a sufficiently small spherical particle performing small
oscillations in a number of confined geometries. (Although Felderhof’s work includes
generalisations to compressible fluids, we restrict ourselves to incompressible fluids
in this analysis.) In essence, his method involves approximating the spherical particle
by a point force for purposes of calculating the correction to the flow induced by
the confining boundary. This results in a significant simplification of the original
problem to what is, in essence, a Green’s function problem. However, it appears that
Felderhof’s result for a sphere near a plane wall does not reproduce the effective
mass obtained from potential flow calculations (see § 5.1.2 for details). It also leads
to a drag coefficient that depends on the density of the particle, which is inconsistent
with the fact that one may calculate the drag coefficient without any reference
to the particle’s density (§ 2.1). Moreover, it is not obvious that the point-particle
approximation generalises to the case of unsteady Stokes flow. This is because of the
existence of an additional length scale in the unsteady Stokes problem, namely the
frequency-dependent skin depth of the vorticity shed by the particle. In an analysis
of Brownian motion, there are fluctuations of all frequency scales, and therefore this
skin depth cannot always be assumed to be much larger than the particle size.

The first issue is related to determining the strength of the point force that
reproduces the flow field of the sphere in the far field. In the case of steady Stokes
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Unsteady Stokes flow near boundaries 885

flow, as described by Lorentz (1907, § 7), this is simply equal to 6πηvs, where vs is
the velocity with which the sphere translates. In the unsteady case, Felderhof (2005,
equation (2.8)) uses the external force Fext

ω acting on the sphere as the point force
acting on the fluid. However, this produces a result that does not agree in the far field,
and, as we stated earlier, results in a spurious dependence of the drag coefficient on
the density of the particle. In this paper, we show that the point force that reproduces
the flow from a sphere in the far field is the induced force Find

ω described by Mazur
& Bedeaux (1974). Making this change in Felderhof’s theory results in correct values
for the effective mass, and removes the spurious dependence of the drag coefficient
on particle density.

As for the second issue of the existence of two length scales, we show by a
systematic analysis of the approximation that there is a non-trivial reason why
the approximation works in practice, as has been seen through its agreement with
experiments (Jeney et al. 2008; Mo, Simha & Raizen 2015b). To further enhance
understanding of the approximation, we consider the simple case of a no-slip sphere
of radius a located at a distance h from a full-slip plane wall, and compare the
results with an alternative calculation performed using the method of reflections.
This alternative calculation results in a drag coefficient that differs in the factors
multiplying an exponential term. However, in the regime where this exponential term
is important, the particle size is indeed small in comparison with both length scales,
viz. the distance from the wall and the skin depth of vorticity, whereby both methods
produce similar results to leading order at all frequencies.

This paper is organised as follows. In § 2, we review some well-known results
and present our modifications to Felderhof’s point-particle approximation. In § 3,
we set up a general formalism from which we recover our modified version of
Felderhof’s framework through a series of systematic approximations. In § 4, we
present the alternative calculation using the method of reflections for the simple case
of a no-slip sphere near a full-slip plane wall. In § 5, we compare the results from
the two methods, first by examining various limits, and then by numerical evaluation.
Thereafter, in § 6, we apply the results to the hydrodynamic theory of Brownian
motion. We conclude with a discussion in § 7.

2. The point-particle approximation
2.1. Computation of unsteady drag coefficients

We consider here the problem of a small rigid body S of generic shape performing
small translational oscillations in an arbitrary direction at arbitrary frequency ω in
an incompressible fluid of dynamic viscosity η and density ρf . (Note that, in these
problems, it is assumed for simplicity that the boundary of the particle itself does
not change position, but the velocity boundary condition on that boundary changes.
This results in a linear problem, and one would expect it to be good so long as
the amplitude of oscillations is small and gets smaller as the frequency grows (see
e.g. Zwanzig & Bixon 1970; Mazur & Bedeaux 1974). It is also assumed that the
frequency is not high enough that the compressibility of the fluid becomes important.)
The fluid is bounded by various additional stationary surfaces (walls) Wi (which could
have arbitrary shapes). The intention at a later stage will be to specialise S to a sphere,
and then consider a single plane wall W.

In many practical situations, one is interested in determining the net force (which
we shall colloquially refer to as the ‘drag force’) exerted by the fluid on the body. In
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order to do so, we wish to solve the unsteady incompressible Stokes equations,

ρf
∂v

∂t
=−∇P+ η1v,

∇ · v = 0,

 (2.1)

subject to some combination of no-slip or full-slip boundary conditions on ∂S and Wi
(we restrict ourselves to these special cases in this work). Here v(r, t) is the fluid
velocity field and P(r, t) is the pressure field.

We may Fourier-transform equations (2.1) in time to obtain

1vω − α
2vω =

∇Pω
η
,

∇ · vω = 0,

 (2.2)

where we have introduced the notation

α :=

√
−iωρf

η
, Re[α]> 0, (2.3)

for the complex inverse skin depth of vorticity (that this is an interpretation for α
can be seen by taking the curl of the first equation in (2.2)), and vω(r) and Pω(r)
are the Fourier transforms of v(r, t) and P(r, t), respectively. We use the convention
fω =

∫
∞

−∞
dt f (t)eiωt for Fourier transforms throughout this work.

Once the solutions for vω and Pω have been computed, one may compute the drag
force on the body as

Fdrag
ω =

∮
∂S

d2x σ · n, (2.4)

where σ is the stress tensor having components σij(r;ω)=Pωδij+ η(∂ivωj+ ∂jvωi) and
n is the outward unit normal to the surface ∂S. Since the system is linear in the low-
Reynolds-number regime, the drag force Fdrag

ω is a linear response to the velocity uω
of the body, whereby it should be possible to write

Fdrag
ω =−γ (r0;ω) · uω, (2.5)

where γ (r0;ω) is a tensor of drag coefficients. Here, we have explicitly indicated that
the drag coefficients are dependent on the position r0 of the body, although we will
drop this in the future to simplify notation.

Thus, insofar as the approximation of a stationary boundary ∂S is valid, the resulting
drag coefficients should make no reference to the density of the body, and the effects
of the body on the fluid are captured through the boundary conditions at ∂S.

In general, analytically solving these equations in situations where the configuration
of S and Wi does not possess sufficient symmetry poses difficulties, as separable
eigenfunction expansions may not exist. As mentioned earlier, even for the simple
case of a sphere for S and a single plane wall W, the Helmholtz equation (with
complex wavenumber) in (2.2) is not separable in a coordinate system that is suitable
for the symmetry of the boundaries. Thus, it is natural to consider approximation
techniques. The point-particle approximation (Felderhof 2005), matched asymptotic
expansions (O’Neill & Stewartson 1967) and the method of reflections (see e.g.
Happel & Brenner 1965) are some approximation techniques to resort to.
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Unsteady Stokes flow near boundaries 887

2.2. An overview of the point-particle framework of Felderhof
In this subsection, we review Felderhof’s framework for computing particle dynamics
using the point-particle approximation in general terms. Felderhof has applied the
point-particle approximation to a number of situations (see e.g. Felderhof 2005, 2006a,
2009b, 2012), especially in the context of the hydrodynamic theory of Brownian
motion. In this approximation, the body S is replaced by a point force. This is in the
spirit of a multipole expansion (see e.g. Kim & Karrila 2013), the idea being that
in the far field, the stokeslet part of the expansion dominates. Thus, for purposes of
calculating the effects of the walls Wi, it suffices to truncate the multipole expansion
at the stokeslet level. Linearity allows us to superpose the effects of the wall and the
effects local to the body, a step that will later be effected using a generalised Faxén
theorem.

We begin by computing the vector-valued Green’s function for the pressure field
P (with components Pj) and tensor-valued Green’s function for the velocity field G
(with components Gij), arising from a general point force of unit strength at a generic
location r′. The Green’s functions satisfy the equations

1Gij(r | r′;ω)− α2Gij(r | r′;ω)−
1
η
∂iPj(r | r′;ω)= δijδ(r− r′), (2.6)

∂iGij(r | r′;ω)= 0, (2.7)

and also obey the required boundary conditions on the walls Wi. In principle, they
may be computed by using the incompressibility condition in the first equation to get
the Poisson equation for the pressure Pj,

−
1
η
1Pj(r | r′;ω)= ∂jδ(r− r′), (2.8)

and then substituting the solution of the above as a source into (2.6). The resulting
Helmholtz equations with complex wavenumber are then solved to determine Gij. In
practice, the equations are generally solved using eigenfunction expansions and then
applying boundary conditions to determine the coefficients (Jones 2004; Felderhof
2005).

The effect of the boundary conditions on the surface of the body ∂S could in
general be modelled by a force distribution (see § 2.3), which could then be integrated
against the above Green’s function to obtain the velocity field. However, this is
a non-trivial task in the complicated geometries of interest. In the point-particle
approximation, the effect of the body S is instead modelled by a single point force
Find
ω at the location of the body r0 (the problem of choosing this location is akin to

finding a good choice for the origin in any multipole expansion), which reproduces
the flow from the actual body at sufficiently large distances from the body. The
change in the flow caused by the presence of the walls may then be written as

vW(r | r0;ω)= [G(r | r0;ω)−G0(r− r0;ω)] ·Find
ω , (2.9)

where G0 is the free-space velocity Green’s function (i.e. the unsteady Oseen tensor;
see e.g. Kim & Karrila 2013, § 6.2). One may obtain G0 by the same method as
described to compute Gij except with the boundary condition being that the flow
decays at infinity. The result may be written as (Mazur & Bedeaux 1974; Felderhof
2012)

G0(q;ω)=−
1
η
{G(q;ω)1+ α−2

∇∇[G(q; 0)−G(q;ω)]}. (2.10)
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888 A. Simha, J. Mo and P. J. Morrison

Here, G(q;ω)=−(e−α|q|/4π|q|) is the fundamental solution of the Helmholtz equation
with complex α and G(q; 0) is that of the Laplace equation.

We are yet to specify what Find
ω must be to reproduce the flow generated by the

body sufficiently far from it, and we shall do so in § 2.4. Once the effect of the wall
vW is known, a generalised Faxén theorem (§ 2.3) may be used to compute the drag
coefficient.

When using the generalised Faxén theorem in the point-particle approximation, it
suffices to evaluate vW at the location of the particle. This suggests that it is useful
to define the quantity (Felderhof 2005)

R(r0;ω) := lim
r→r0
[G(r | r0;ω)−G0(r− r0;ω)], (2.11)

which Felderhof aptly calls the reaction field tensor.

2.3. The generalised Faxén theorem of Mazur and Bedeaux
Felderhof’s point-particle framework approaches the problem of determining the drag
on a body in the presence of walls by using the formalism of § 2.2 to calculate the
flow generated by a point force in the geometry, and later supposing that this flow
be a background flow in which the body is immersed. In order to determine the drag
experienced by a spherical body suspended in a pre-existing flow, one needs first to
calculate the change in the flow produced by the presence of the body by applying
the appropriate boundary conditions on the body, and then to calculate the drag force
experienced by the body. Generalised Faxén theorems provide a simple way to achieve
this.

The formula for the drag on a stationary rigid sphere suspended in a pre-existing
steady background flow v0(r) was first derived by Faxén (1921). The drag force is
given by a very simple formula – for no-slip boundary conditions on the sphere,
Fdrag
= γsv̄

S
0, where v̄S

0 is the average of the background flow field over the surface
of the sphere and γs = 6πηa is the well-known steady Stokes drag coefficient.

The Faxén (1921) theorem has been generalised to obtain the drag force on a
sphere with a no-slip boundary in incompressible (Mazur & Bedeaux 1974) and
compressible (Bedeaux & Mazur 1974) unsteady Stokes flow. Albano, Bedeaux &
Mazur (1975) have generalised the incompressible version to the case of partial slip
boundary conditions on the sphere, and generalisation to the force density induced on
the sphere has been effected by Felderhof (1976). We review here the incompressible
case for translational oscillations of a no-slip sphere derived by Mazur & Bedeaux
(1974).

Consider an arbitrary background fluid flow described by {v0(r;ω),P0(r;ω)} extant
in R3, which solves the unsteady incompressible Stokes equations with a body force
distribution S0(r;ω) consistent with the background flow, i.e.

1v0 − α
2v0 =

∇P0 − S0

η
,

∇ · v0 = 0.

 (2.12)

Suppose that we now place a no-slip sphere of radius a, which executes small
translational oscillations with velocity uω in the fluid under the influence of some
external force. The fluid flow is altered by the boundary conditions imposed by
the sphere. Since the system is linear, we could think of this as being due to an
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Unsteady Stokes flow near boundaries 889

additional flow {v′(r; ω), P′(r; ω)}. Once again, due to linearity, we expect that this
flow depends linearly on both the boundary condition uω and the background flow
{v0, P0}.

This relationship is expressed readily if we convert the boundary condition into
a source, as is often done in electrodynamics and fluid mechanics. Introducing an
induced force (the notion of induced forces, as described by Mazur & Bedeaux (1974),
is analogous to the notion of bound charges in electrostatics) density Sind(r; ω) that
has support only in the region occupied by the sphere (which we shall assume in this
section to be |r|6 a), we obtain the equations

1v′ − α2v′ =
∇P′ − Sind

η
,

∇ · v′ = 0.

 (2.13)

In the above, we assume that there is no longer a boundary, but fluid filling the region
|r|6 a. A key requirement is that Sind be chosen so the momentum flux through the
boundary in this problem matches that through the sphere oscillating with velocity uω.
We shall additionally require that the total flow v= v0+ v′ be equal to uω in the entire
|r|6 a region.

We may write the formal solution of (2.13) as

v(r;ω)= v0(r;ω)+
∫
|r′|6a

d3r′ G0(r− r′;ω) · Sind(r′;ω), (2.14)

which can be seen to be identical to equation (3.15) of Mazur & Bedeaux (1974) upon
employing (2.10). To find Sind, it appears that one would need to solve the above
integral equation, where the left-hand side is known to be uω inside the spherical
region. However, it turns out that its explicit value is not required for our purposes.
To compute the drag force Fdrag

ω on the sphere, it suffices to compute the integrated
value of Sind over the volume of the sphere, for

Fdrag
ω =

∮
|r|=a

d2r σ · n=
∫
|r|6a

d3r∇ · σ

= −

[
iωmf uω +

∫
|r|6a

d3r Sind(r;ω)
]

(2.15)

as required for the induced force to mimic the presence of the sphere, with mf =

(4/3)πa3ρf being the mass of fluid displaced by the sphere. The last step was effected
by writing

∇ · σ =−∇P+ η1v = ηα2v − Sind − S0, (2.16)

and noting that S0 may be set without loss of generality to 0 in the region r 6 a (by
lumping whatever value it had into Sind), as well as that v has the constant value uω
in the region r 6 a whereby the integral of v over that region is simply uω times the
volume of the sphere.

By various manipulations, it can be shown that averages of (2.14) suffice to
determine

∫
|r|6a d3r Sind, whereby setting v(r;ω)= uω for |r|6 a and averaging (2.14)

over the surface and the volume of the sphere, the desired result for the drag force
is obtained to be

Fdrag
ω =−γ0(ω)uω + γs[(1+ αa)v̄S

0(ω)+
1
3α

2a2v̄V
0 (ω)], (2.17)
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890 A. Simha, J. Mo and P. J. Morrison

where
γ0(ω) := γs(1+ αa+ 1

9α
2a2) (2.18)

is the unsteady Stokes–Boussinesq drag coefficient for a sphere, and v̄S
0 and v̄V

0 denote
the averages of v0 over the surface and volume of the sphere, respectively. The above
result is the generalisation of Faxén’s theorem by Mazur & Bedeaux (1974).

In the point-particle framework of Felderhof, the flow vW calculated using (2.9) is
considered to be the background flow v0. In addition, the surface and volume averages
of v0 are approximated by evaluating vW at the centre of the sphere. Thus, using the
definition (2.11) of the reaction field tensor, we obtain, in the point-particle limit,

Fdrag
ω =−γ0(ω)uω + γs(1+ δ + 1

3δ
2)R ·Find

ω , (2.19)

where we have introduced the notation δ := αa. We must note that, in the adaptation
of the generalised Faxén theorem to Felderhof’s framework, the net flow v= vW + v′

does not necessarily satisfy boundary conditions on the walls, and this is part of the
approximation.

2.4. The appropriate choice of the point force Find
ω

We now wish to address the following question: What must the point force Find
ω

of § 2.2 be, to capture the effects on the fluid due to the presence of the body S?
Felderhof (2005, equation (2.8)) uses the external force Fext

ω that acts on the body by
means of some external agent to keep it oscillating with velocity uω. However, as
some of the momentum delivered by the force Fext

ω goes into accelerating the body S,
it is unlikely that this is equal to the force applied on the fluid. It seems reasonable
that the force must reproduce the momentum transport through the boundary ∂S of
the small body, when the body’s volume is replaced by fluid (see figure 1). This is
the notion of induced force of Mazur & Bedeaux (1974), which, as we described in
§ 2.3, can be used to replace boundary conditions by sources.

In the previous section, we stated in (2.15) an expression for the total induced force
that replaces a spherical boundary oscillating at uω. Based on that, we propose that
the value of the point force must be given by the same net force concentrated at a
point,

Find
ω =−Fdrag

ω − iωmf uω, (2.20)

possibly also for bodies of generic shape. In this equation, we note that no reference
has been made to the properties of the body or the external force acting on it. These
aspects, however, do affect the velocity uω through the equation of motion of the body,

Fext
ω =−Fdrag

ω − iωmpuω, (2.21)

which is in effect equivalent to that used by Felderhof (2005).
This leads to the alternative expression for the net induced force Find

ω ,

Find
ω =Fext

ω + iω(mp −mf )uω, (2.22)

as used by Felderhof (2005, equation (2.4)). While Felderhof’s expression for the
induced force is correct, we believe that his use of the external force to model the
body (as is implied by Felderhof (2005, equation (2.8))) is not, and it is this error that
leads to the spurious dependence of the drag coefficient on the density of the particle.
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Unsteady Stokes flow near boundaries 891

(a) (b)

FIGURE 1. (Colour online) An illustration of the notion of induced forces. The region
occupied by the body (a) is replaced by fluid with a distribution of body forces acting
on it (b). The force distribution is chosen so as to extend the solution of the unsteady
Stokes equations into the region occupied by the body, while keeping the flow in the
region outside the body unchanged. In order to achieve this, the induced force density
must reproduce the same momentum and mass transport through the boundary ∂S as in
the case of the actual body. The incompressibility condition demands that the region of
fluid translate with velocity uωe−iωt (although not necessarily rigidly). The rate of total
momentum transport through the surface ∂S is given by −Fdrag

ω . To conserve momentum,
the net induced force Find

ω must therefore equal −Fdrag
ω plus the momentum delivered into

accelerating the region of fluid (−iωmf uω), whereby we obtain (2.20).

We would recover Felderhof’s proposal of using Fext
ω as the force that represents the

body only if the body had the same density as the fluid.
To establish our proposal for Find

ω , we observe that we may write the velocity field
v produced by the oscillating body at an arbitrary point r using the Green’s function
of equation (2.6) as

v(r;ω)=
∫

S
d3r′ G(r | r′;ω) · Sind(r′;ω), (2.23)

where we have replaced the body S by an appropriate induced force density. As is
typical of multipole expansions, we may expand G in the source point in the far-field
limit (i.e. |r| � 1/|α|, L, where L denotes the size of the body) to obtain

v(r;ω)=
∫

S
d3r′ [G(r | r0;ω)+ (r− r0) · ∇G(r | r0;ω)+ · · ·] · Sind(r′;ω), (2.24)

where r0 is some notion of the centre of the body. Truncating the expansion to the first
term gives the expression for the velocity due to a point force at r0, whose strength
is indeed given by

Find
ω =

∫
S

d3r′ Sind(r′;ω). (2.25)

We further ratify our result for Find
ω by checking it for the case of unbounded

spherical bodies in the following manner: We take the far-field limit (i.e. |r|�1/|α|,a)
of the solution for the flow vS

ω(r, θ) produced by a sphere of radius a at the origin
oscillating with velocity uω (see e.g. Landau & Lifshitz 1987, § 24), and compare it
against the flow vPF

ω generated by a point force Fω at the origin (see e.g. Kim &
Karrila 2013, § 6.2). For conciseness, we compare only the radial component.
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892 A. Simha, J. Mo and P. J. Morrison

Using spherical polar coordinates with the polar axis along uω, and introducing the
notation ε := a/r, we find that the radial component of the velocity field for a sphere
is given by

er · v
S
ω(r, θ)=−uω

2f ′(r)
r

cos θ, (2.26)

where (as given by Landau & Lifshitz 1987, § 24, problem 5)

f ′(r)
r
=

3ε3

2δ2

[
eδ(1−1/ε)

(
1+

δ

ε

)
−

(
1+ δ +

δ2

3

)]
. (2.27)

On the other hand, for an unsteady stokeslet of strength Fω = Fωez, where ez is the
unit vector along the polar axis, we have

er · v
PF
ω =

2αε3

δ3

[
1−

(
1+

δ

ε

)
e−δ/ε

]
Fω

4πη
cos θ. (2.28)

In the far-field limit (ε→ 0+ with δ fixed and finite), we may drop the subdominant
exponential terms of the form e−δ/ε and obtain

f ′(r)
r
∼−

3ε3

2δ2

(
1+ δ +

δ2

3

)
,

er · v
S
ω ∼ uω cos θ

3ε3

δ2

(
1+ δ +

δ2

3

)
,

er · v
PF
ω ∼

4αε3

δ3

Fω
8πη

cos θ.


(2.29)

By setting the latter two expressions equal to each other, we find that

Fω = γsuω

(
1+ δ +

δ2

3

)
= γsuω

(
1+ δ +

δ2

9

)
− iωmf uω. (2.30)

We now identify the first term to be −Fdrag
ω = γ0(ω)uω, whereby we find that Fω is

indeed equal to the induced force Find
ω . We are hence led to conclude that an unsteady

stokeslet of strength Find
ω as defined by (2.20) reproduces the far-field behaviour of

a sphere, which would not be the case for Felderhof’s choice of the external force
Fext
ω . It is not unreasonable to expect from the physical and mathematical arguments

presented earlier that (2.20) also holds for bodies of generic shape.

2.5. From the reaction field tensor to the dynamics of a sphere

We will now follow Felderhof’s approach, except with the modified point force Find
ω

given by (2.20), to arrive at expressions for the drag coefficient and other relevant
quantities characterising the dynamics of a sphere oscillating in a fluid, in terms of
the reaction field tensor R.

We start by using (2.19) and (2.20) to obtain

Find
ω = γs(1+ δ + 1

3δ
2)[uω − R ·Find

ω ], (2.31)
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Unsteady Stokes flow near boundaries 893

where we have used −iωmf = (2/9)γsδ
2 to simplify the expression. The difference

between this expression and that of Felderhof (2005, equation (2.11)) is the use of
Find
ω instead of Fext

ω . We may use this to solve for Find
ω as

Find
ω = γ̃0(ω)[1+ γ̃0(ω)R]

−1
· uω, (2.32)

where we have defined, for convenience,

γ̃0(ω) := γs(1+ δ + 1
3δ

2)= γ0(ω)− iωmf . (2.33)

Thereafter, using the definition (2.5) and plugging (2.32) into (2.20), we obtain the
drag coefficient tensor,

γ(ω)= iωmf1+ γ̃0(ω)[1+ γ̃0(ω)R]
−1. (2.34)

Observe that if we define γ̃(ω) := γ(ω)− iωmf1 as before (so that Find
ω = γ̃(ω) · uω),

the correction of γ̃0 to γ̃ through R has the natural form of a Padé approximant.
The mechanical admittance tensor Yω, characterising the linear response of the

velocity uω of the sphere to the external force Fext
ω acting on it, is defined through

uω = Yω ·Fext
ω . (2.35)

It can be related to the drag coefficient through the equation of motion of the
sphere (2.21) to obtain

Yω = [−iωmp1+ γ(ω)]
−1, (2.36)

which takes the form

Yω = [γ̃0(1+ γ̃0R)−1
− iω(mp −mf )1]

−1 (2.37)

upon using the specific form of the drag coefficient given by (2.34). It is practically
useful to include the effects of a harmonic restoring force −K · (uω/(−iω)) in the
equation of motion (Franosch & Jeney 2009) (see also § 6). The admittance then takes
the form

Yω =

[
−iωmp1+ γ(ω)+

K

−iω

]−1

. (2.38)

It can be seen that our final expression for the admittance (2.37) differs from that of
Felderhof (2005, equations (2.13) and (2.14)). If we work backwards to find the drag
coefficient (using (2.36)) from Felderhof’s admittance instead, we see that the result
depends on mp, and hence the density of the body. This is inconsistent for the reasons
explained in § 2.1, and our proposal of using Find

ω instead of Fext
ω to model the particle

(§ 2.4) resolves this inconsistency, as is seen from the absence of mp in (2.34).

3. The validity of the point-particle approximation
3.1. Is the point-particle approximation valid?

As we have stated earlier, there are two length scales in the problem in addition to
the particle size – the scale of the dimensions of the confining geometry h, and the
scale of the skin depth of vorticity 1/|α|. The point-particle approximation neglects
the size of the particle a in comparison to both these length scales insofar as the
computation of the effect of the wall is concerned, and when computing the surface
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894 A. Simha, J. Mo and P. J. Morrison

and volume averages of the flow that enter the generalised Faxén theorem. It must
be noted that no approximations are made in the generalised Faxén theorem (2.17)
itself when the body is a sphere, except for the previously stated assumption that the
boundary conditions may be applied on the equilibrium boundary of the body (Mazur
& Bedeaux 1974). However, for sufficiently large frequency ω of oscillations, 1/|α|
can become comparable to a. This brings up the question of whether the point-particle
approximation works at high frequencies.

However, the agreement with experiment (Mo et al. 2015b) at frequencies ω ∼
η/(ρf a2) is very good. We explain this intuitively as follows: At these frequencies, the
vorticity shed by the boundaries has a very small skin depth 1/|α|� h and hence the
vorticity from the wall is suppressed exponentially, and the reflected flow field is well
approximated by potential flow. Since the potential satisfies Laplace’s equation, the
multipole expansion and therefore the point-particle approximation works well. At low
frequencies ω� η/(ρf a2), 1/|α| is indeed large compared to a and the approximation
works as expected.

In order to harden the above argument, we shall set up a general formalism
(§ 3.2) for analysing the problem in terms of boundary integral equations, and then
systematically delineate the approximations made in order to recover Felderhof’s
framework in § 3.3. The question then boils down to the validity of a far-field
expansion of the unsteady Oseen tensor over a wide range of frequencies, for which
we provide an argument in § 3.4. In § 3.5 we shall extend the perturbative calculation
to higher orders and recover the Padé-like form for the drag coefficient (2.34).

3.2. General formalism of boundary integral equations
In this subsection, we cast our problem in the general formalism of boundary integral
equations (see e.g. Pozrikidis 1992). In this and the following subsections, we drop
explicit reference to ω, the frequency, for notational simplicity. As before, the linearity
and time translation invariance ensure that the individual frequency components may
be treated separately. The walls will be assumed to be larger in size than the distance
from the particle to any of them. We also assume no-slip boundary conditions on all
interfaces for the purposes of this discussion.

The problem at hand may be restated as follows. Find the drag force

Fdrag =−

[
iωmf u+

∫
S

d3r′S SS(r′S)
]

(3.1)

exerted on the surface of the particle S oscillating with velocity u, by the velocity
field

v(r)=
∫

S
d3r′S G0(r− r′S) · SS(r′S)+

∫
W

d2r′W G0(r− r′W) · SW(r′W), (3.2)

which is assumed to be generated from two induced force distributions, SS and SW ,
which are to be determined from the no-slip boundary conditions. (We assume that
the surfaces involved satisfy the requirements outlined by Pozrikidis (1992, §§ 4.1 and
4.2) for representation of the flow by a single-layer potential, i.e. the surfaces are
Lyapunov surfaces. While the integral condition

∫
D v(r′) · n(r′) d2r′ = 0 is satisfied

for compact D by virtue of non-penetration, it can be shown to hold for each non-
zero frequency component of the unsteady Stokes flow for an infinite wall too – the
flow generated from any finite force distribution decays sufficiently fast so that the
flux through an infinitely large hemispherical surface is zero. In particular, one may
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Unsteady Stokes flow near boundaries 895

explicitly solve for the Green’s function satisfying no-slip conditions on a plane wall
by means of a single-layer potential in the place of the wall.) Here, SS is a volume
force density supported in the volume (inclusive of the surface) of the body S; and
SW is a surface force density supported on the surfaces of the walls W =

⋃
i Wi (while

it would be possible to use a volume force density instead here as well, it does not
make a difference for our purposes). Thus SS and SW satisfy the Fredholm integral
equations of the first kind,

u=
∫

S
d3r′S G0(rS − r′S) · SS(r′S)+

∫
W

d2r′W G0(rS − r′W) · SW(r′W), ∀ rS ∈ S, (3.3)

0=
∫

S
d3r′S G0(rW − r′S) · SS(r′S)+

∫
W

d2r′W G0(rW − r′W) · SW(r′W), ∀ rW ∈W. (3.4)

We remark that, if the Green’s function G that satisfies the boundary conditions on
the walls were known, it would be possible to rewrite the problem purely in terms of
SS as

v(r)=
∫

S
d3r′S G(r | r′S) · SS(r′S),

u=
∫

S
d3r′S G(rS | r′S) · SS(r′S), ∀ rS ∈ S.

 (3.5)

We now proceed to introduce a formal perturbative expansion in a parameter λ,
which represents the ratio of the body size (∼a) to the distance to the walls (∼h).
We begin by introducing expansions for the force distributions,

SS = S(0)S + λS
(1)
S + λ

2S(2)S + · · · ,

SW = S(0)W + λS
(1)
W + λ

2S(2)W + · · · .

}
(3.6)

These expansions induce expansions for the other quantities in the problem,

v = v(0) + λv(1) + λ2v(2) + · · · ,

Fdrag =F(0)
drag + λF

(1)
drag + λ

2F(2)
drag + · · · .

}
(3.7)

In analogy with examples from electrostatics, we expect that the effect of the
induced force SW on the walls is diminished in the region occupied by the body. We
shall further investigate this assumption, restated formally in (3.12), at the end of this
section. To emphasise this, we rewrite (3.3) as

u =
∫

S
d3r′S G0(rS − r′S) · SS(r′S)

+ λ

∫
W

d2r′W
G0(rS − r′W) · SW(r′W)

λ
, ∀ rS ∈ S. (3.8)

We would like a scheme where the velocity field from any O(λk) truncation of the
problem is faithful both near the walls and near the body. The above convention makes
this manifest.
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We may now plug in the expansions and rewrite the problem (3.2), (3.4) and (3.8)
order by order as

v(n)(r)=
∫

S
d3r′S G0(r− r′S) · S

(n)
S (r

′

S)+

∫
W

d2r′W G0(r− r′W) · S
(n)
W (r

′

W), (3.9)

with the boundary conditions on the body S,

u =
∫

S
d3r′S G0(rS − r′S) · S

(0)
S (r

′

S), ∀ rS ∈ S,

0 =
∫

S
d3r′S G0(rS − r′S) · S

(n+1)
S (r′S)

+
1
λ

∫
W

d2r′W G0(rS − r′W) · S
(n)
W (r

′

W), ∀ n > 0, ∀ rS ∈ S,


(3.10)

and the boundary condition on the walls,

0 =
∫

S
d3r′S G0(rW − r′S) · S

(n)
S (r

′

S)

+

∫
W

d2r′W G0(rW − r′W) · S
(n)
W (r

′

W), ∀ n > 0, ∀ rW ∈W. (3.11)

We now proceed to investigate the assumption that

1
u

∫
W

d2r′W G0(rS − r′W) · [λ
kS(k)W (r

′

W)] ∈O(λk+1). (3.12)

First, we note that S(k)W is obtained by solving (3.11) with the knowledge of S(k)S . In
the spirit of multipole expansions, since the free-space Green’s function G0(rW − r′S)
in the first integral of (3.11) is evaluated at a far separation, we may expand it in the
vicinity of the location of the body r0,

G0(rW − r′S) = G0(rW − r0)+ (r′S − r0) · ∇G0(rW − r0)+ · · ·

= G0(rW − r0)+ o(λ), r′S ∈ S. (3.13)

The issue of the validity of such an expansion is subtle and will be addressed in detail
in § 3.4. Using this expansion in (3.11), we have∫

W
d2r′W G0(rW − r′W) · S

(k)
W (r

′

W)=−G0(rW − r0) ·

∫
S

d3r′S S(k)S (r
′

S)+ o(λ). (3.14)

We now state a useful result: if S̃W satisfies the integral equation∫
W

d2r′W G0(rW − r′W) · S̃W(r′W)=−G0(rW − r0) · F̃, ∀ rW ∈W, (3.15)

for arbitrary point r0 and force F̃, then for general r in the domain,∫
W

d2r′W G0(r− r′W) · S̃W(r′W)= [G(r | r0)−G0(r− r0)] · F̃, (3.16)
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Unsteady Stokes flow near boundaries 897

where G(r | r0) is the Green’s function that satisfies no-slip boundary conditions on the
walls. This is easily seen if we set up the problem for the no-slip Green’s function
for the walls by imposing the boundary condition through a surface force distribution
S̃W on the walls.

If we choose for F̃ the force ∫
S

d3r′S S(k)S (r
′

S), (3.17)

we find by comparing (3.14) and (3.15) that∫
W

d2r′W G0(r− r′W) · S
(k)
W (r

′

W)

= [G(r | r0)−G0(r− r0)] ·

∫
S

d3r′S S(k)S (r
′

S)+ o(λ) (3.18)

for any point r in the domain.
Finally, we observe that we may approximate the expression in question as

λk

u

∫
W

d2r′W G0(rS − r′W) · S
(k)
W (r

′

W)

=
λk

u

∫
W

d2r′W G0(r0 − r′W) · S
(k)
W (r

′

W)+ o(λk+1)

=
λk

u
lim

rS→r0
[G(rS | r0)−G0(rS − r0)] ·

∫
S

d3r′S S(k)S (r
′

S)+ o(λk+1)

=
λk

u
R(r0) ·

∫
S

d3r′S S(k)S (r
′

S)+ o(λk+1). (3.19)

Thus, if
1
u

R(r0) ·

∫
S

d3r′S S(k)S (r
′

S) ∈O(λ), (3.20)

then the assumption (3.12) holds. Intuitively, one may expect the above condition to
hold on the grounds that the reaction field tensor is the reflected flow evaluated at
the location of the particle, and this reflected flow must be suppressed at least as 1/h,
h being the distance to the wall, whereas one would expect the remaining terms to
produce a factor of a.

3.3. Formalisation of the point-particle approximation
In this subsection and the next, we seek to formalise the point-particle framework by
explicitly performing all the approximations involved in a systematic manner, using
the formalism developed in the previous subsection. We shall eventually specialise S
to be a sphere while still keeping W arbitrary.

To solve the problem at order n = 0, we begin by noting that the solution to the
first of equations (3.10) is the induced force on the body oscillating with velocity u
in unbounded fluid, whereby

vS(r)≡
∫

S
d3r′S G0(r− r′S) · S

(0)
S (r

′

S), (3.21)

where we have used vS(r) to denote the velocity field generated by the body S
oscillating in unbounded fluid. We must now find S(0)W using (3.11), which is
not analytically tractable without approximation. Therefore, we make the same
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898 A. Simha, J. Mo and P. J. Morrison

approximations that lead to (3.14). As we will see shortly, to compute the drag force
to first order, we do not need to know S(0)W , but only need to be able to compute the
effect of this distribution in the vicinity of the body. Proceeding as we did in § 3.2,
we may therefore write (3.18) for k= 0 as∫

W
d2r′W G0(r− r′W) · S

(0)
W (r

′

W)= [G(r | r0)−G0(r− r0)] ·F(0)
+ o(λ), (3.22)

where we have defined
F(k)
:=

∫
S

d3r′S S(k)S (r
′

S). (3.23)

We may now write (3.10) for n= 1 as

0 =
∫

S
d3r′S G0(rS − r′S) · S

(1)
S (r

′

S)

+
1
λ
[G(rS | r0)−G0(rS − r0)] ·F(0), ∀ rS ∈ S. (3.24)

Our aim is to determine the correction to the drag F(1)
drag resulting from the field v(1).

To determine the drag force, we only need the velocity in the near field of the body,
whereby in (3.9), at any order n, we may discard the contribution from S(n)W , as the
unsteady Oseen tensor multiplying it contributes an extra O(λ) when compared to the
contribution from the first term when the point of evaluation r is close to the body.
As a result, we obtain

v(n)(rS)=

∫
S

d3r′S G0(rS − r′S) · S
(n)
S (r

′

S)+O(λ), ∀ rS ∈ S. (3.25)

Thus, we observe that, at order 0, we may use vS of (3.21) to compute F(0)
drag, which

is simply equal to the drag force on the body oscillating in unbounded fluid; and at
order 1, knowledge of S(1)W is not required for the computation of F(1)

drag.
We now specialise to S being a sphere of radius a and proceed to determine F(1)

drag

for this case. If we set v0(r) := [G(r | r0)−G0(r− r0)] ·F(0) and v(|r|6 a)= 0 in (2.14),
we see that (3.24) is identical to (2.14). Therefore, F(1)

drag is given by the generalised
Faxén theorem of (2.17), whereby we may write

λF(1)
drag = γs[(1+ αa)〈v(1)W 〉S +

1
3α

2a2
〈v
(1)
W 〉V], (3.26)

with
λv(1)W := [G(r | r0)−G0(r− r0)] ·F(0), (3.27)

and 〈 〉S and 〈 〉V denoting surface and volume averages over the sphere, respectively.
We wish to note that the analysis shows that the reaction field tensor is already
O(λ), which may be verified with Felderhof’s expressions for the case of a flat
wall. So the total drag force may be written by adding F(0)

drag = −γ0(ω)u and λF(1)
drag,

recovering (2.17) for the drag up to first order, with v0 = λv
(1)
W .

We now make the approximation of truncating the infinite series to first order,
excluding o(λ) terms. As a side effect, we observe that

λv(1)W = [G(r | r0)−G0(r− r0)] · (F(0)
+ λF(1))+ o(λ). (3.28)

Identifying the parentheses in the above equation with the total induced force to first
order,

Find
ω =F(0)

+ λF(1), (3.29)

we have shown that λv(1)W is identical with vW of (2.9) to lowest order.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

87
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f T
ex

as
 L

ib
ra

ri
es

, o
n 

04
 M

ar
 2

01
8 

at
 0

8:
06

:4
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.87
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Unsteady Stokes flow near boundaries 899

We now investigate the possibility of replacing the surface and volume averages of
λv(1)W by evaluation of (3.27) at r→ r0. Applying the expansion of (3.13) to (3.22)
evaluated for r ∈ S (as done in (3.19)), we see that λv(1)W may indeed be assumed to
have o(λ) variation over the region occupied by the sphere. This justifies replacing
the averages in (3.26) with λv(1)W evaluated as r→ r0, subject to the validity of the
expansion of (3.13).

Finally, we remark that it can be verified by plotting the explicit formulae given by
Felderhof (2005) (see also erratum, Felderhof 2006b) over a wide range of frequencies
that the components of the reaction field tensor for the no-slip sphere–plane-wall
configuration, non-dimensionalised by multiplication with γs, do not significantly
exceed O(a/h). Thus, the reaction field tensor for this particular case satisfies (3.20)
and therefore validates the assumption of (3.12) by the arguments made in § 3.2.

3.4. Far-field expansion of the unsteady Oseen tensor
In this section, we will address the validity of an expansion of the unsteady Oseen
tensor, of the kind described in (3.13). (In this work, we will frequently drop the
adjective ‘unsteady’ to simplify our language. Since our work primarily concerns
unsteady flow, this should not cause confusion. We will explicitly specify so when
we refer to the steady Oseen tensor.)

It is natural to our original problem to non-dimensionalise the Oseen tensor by
γs = 6πηa, given that our notion of forces is best normalised by γsu – this results in
F(0)

drag being O(1) in our book-keeping. However, the Oseen tensor G0(q) is naturally
a function of αq, whereby, for this analysis, it will be convenient to normalise it by
1/α and write

4πḠ
0
(αq) := 4πηG0(q)/α = eqeq

2
(αq)3

[1− (1+ αq)e−αq
]

+ (1−eqeq)
1

(αq)3
[(1+αq+ α2q2)e−αq

− 1], (3.30)

where eq denotes the unit vector along q. In expansions of the form of (3.13), we
write q = qL + qS, where qL denotes a large displacement of O(h) and qS denotes a
small displacement of O(a). Typically, qL is r0 − r′W , where r′W is some point on the
wall, and qS is rS − r0, where rS is some point in the body S. We write

Ḡ
0
(αq)= Ḡ

0
(αqL)+ αqS · ∇αqS

Ḡ
0
(αqL)+ o(αqS), (3.31)

where ∇αqS
denotes a gradient with respect to the quantity αqS. Such an expansion

may be expected to be valid whenever the function is sufficiently slowly varying for
small changes in qS (i.e. changes over the scale of the size of the body). However, for
sufficiently high α, it appears that oscillating terms of the nature ei Im(α)qS would vary
very rapidly – whereby care must be taken to analyse such an expansion. Specifically,
for the Helmholtz Green’s function with a generic wavenumber k, i.e. −eikq/(4πikq),
such an expansion is strictly valid only if |qS|� 1/k and |qS|� |qL|, as is often noted
when considering multipole expansions for electromagnetic radiation (see e.g. Jackson
1999, § 9.1). However, in the Oseen tensor, ik = −α has a negative real part, which
causes significant suppression of the exponentials at large values of α, in comparison
to the terms originating from the fundamental solution of the Laplace equation G(q;0).
Essentially, for large α, the contribution from G(q; ω) becomes subdominant, which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

87
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f T
ex

as
 L

ib
ra

ri
es

, o
n 

04
 M

ar
 2

01
8 

at
 0

8:
06

:4
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.87
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


900 A. Simha, J. Mo and P. J. Morrison

results in the expansion once again being valid for large α. However, it must be noted
that the expansion may not work if the subdominant behaviour is of primary interest,
as could be the case.

We may verify the above intuitive remarks about the expansion by considering the
ratio of the first-order term in the Taylor expansion to the zeroth-order term. To get an
order-of-magnitude estimate, we will treat the longitudinal and transverse components
of Ḡ

0 separately, and specifically set qL= h and qS = a. Then, the desired ratios have
the form

a
h

e−ν(3+ 3ν + ν2)− 3
e−ν(1+ ν)− 1

, (3.32)

and
a
h

e−ν(3+ 3ν + 2ν2
+ ν3)− 3

e−ν(1+ ν + ν2)− 1
, (3.33)

respectively, where we have used the shorthand ν := αh. While a/h is assumed to be
small from the geometry of the problem, no assumptions can be made about α. So we
must check that the parts of the ratios that contain only ν remain . 1. Noting that ν
has the form ((1− i)/

√
2)|ν| and plotting these parts against a large range of values

of |ν| (or alternatively, by analysis), we find that the real and imaginary parts of the
above ratios are bounded and do not significantly exceed 1 throughout the range. This
indicates that the approximation can be expected to work well for all values of α so
long as a/h is small.

Intuitively speaking, this seems to suggest that, at high frequencies, the primary
contribution to the correction of the drag on the particle due to the presence of walls
comes from the pressure, rather than from vorticity diffusion. The skin depth of the
vorticity is then too small for the effects of vorticity diffusion from the wall to be
significant at the location of the particle and vice versa. The effects of vorticity local
to the particle and the wall themselves are, however, important, and they are accounted
for correctly in the framework.

Thus, we have shown that Felderhof’s point-particle framework, with our modified
point force Find

ω , may be expected to work well at all frequencies so long as a/h� 1.
(It must still be the case, however, as stated earlier, that the frequencies be small
enough that the fluid may be considered to be incompressible. Compressibility
becomes important at time scales of the order of τc := a/c, where c is the speed of
sound in the fluid. For micrometre-sized particles in water, this time scale is usually
of the order of nanoseconds.)

3.5. Computing the perturbative expansion to all orders
We begin by rewriting the result of the generalised Faxén theorem (§ 2.3) in a form
that is readily usable in this section. In (2.14), we set v = 0 within the region of
the sphere, and we correspondingly set uω = 0 in (2.17) and use (2.15) to obtain the
following result: If the force distribution S̃ on a sphere of radius a obeys the integral
equation ∫

|r′S|6a
G0(rS − r′S) · S̃(r

′

S) d3r′S =−v0(rS), ∀ |rS|6 a, (3.34)

for some vector field v0(rS) having support in the region of the sphere, then we may
write the net induced force in the region of the sphere as∫

|r′S|6a
S̃(r′S) d3r′S =−γs[(1+ αa)v̄S

0(ω)+
1
3α

2a2v̄V
0 (ω)]. (3.35)
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Unsteady Stokes flow near boundaries 901

We now consider the extension of the calculation performed in § 3.3 to higher orders
for the case where S is a sphere of radius a. By using the result (3.19) in the boundary
condition on the body (3.10), we may write

0 =
∫

S
d3r′S G0(rS − r′S) · S

(n+1)
S (r′S)

+
1
λ

R(r0) ·

∫
S

d3r′S S(n)S (r
′

S), ∀ n > 0, ∀ rS ∈ S. (3.36)

We note that the second term is independent of rS to the lowest order.
By comparing the above equation with (3.34), we see that (3.35) gives us∫

S
d3r′S S(n+1)

S (r′S)=
[
−γ̃0R(r0)

λ

]n+1

·

∫
S

d3r′S S(0)S (r
′

S), (3.37)

which yields a geometric series. This indicates that we may write the net induced
force on the sphere as

Find
ω =

∫
S

d3r′S SS(r′S) =
∞∑

k=0

∫
S

d3r′S λ
kS(k)S (r

′

S)

=

(
∞∑

k=0

[−γ̃0R(r0)]
k

)
·

∫
S

d3r′S S(0)S (r
′

S)

= [1+ γ̃0R(r0)]
−1
·

∫
S

d3r′S S(0)S (r
′

S), (3.38)

provided the geometric series converges.
By comparing the first of (3.10) with (3.34), we find from (3.35) that∫

S
d3r′S S(0)S (r

′

S)= γ̃0u. (3.39)

Thereafter, using (2.15) we find that the drag force to all orders in a/h is given by

Fdrag
ω =−iωmf u− γ̃0[1+ γ̃0R(r0)]

−1
· u, (3.40)

whereby we recover the result (2.34). Thus, it appears that, in the region of
convergence of the geometric series, the results of the point-particle framework
are correct to all orders of perturbation theory.

However, this does not mean that it is exact irrespective of how large a/h is,
since the perturbative process does not necessarily capture the non-perturbative
corrections that lie beyond all orders faithfully, and these can become significant as
a/h→ 1. In fact, in the next section, we will compare the first-order results from the
point-particle approximation against the method of reflections for the simpler case of
full-slip boundary conditions on the wall, and discover that the subdominant (when
a/h� 1) beyond-all-orders terms do differ.

4. Method of reflections – a no-slip sphere near a full-slip plane wall
The method of reflections has been widely used as an approximation method in

the context of steady Stokes flow (see e.g. Happel & Brenner 1965; Kim & Karrila
2013). A proof of the convergence of the iterative process for steady Stokes flows
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902 A. Simha, J. Mo and P. J. Morrison

under certain restrictions exists (Luke 1989), although this has not been extended
to unsteady Stokes flows (to the best of our knowledge) – a formalism of the
sort developed in § 3.2 could serve as a starting point for a proof. The method of
reflections has been used in the context of unsteady Stokes flows for the case of
two spheres with no-slip boundary conditions by Ardekani & Rangel (2006), but
their procedure involves evaluation of the reflected field at the centre of the sphere
at each iteration. Although the procedure converges and produces consistent results,
for our comparative study, we would prefer to investigate a procedure that would
avoid any further approximation beyond truncation of the iterative process, so that
we can be confident that the approximation works at all frequencies of oscillation.
We remark, however, that the analysis of Ardekani & Rangel (2006) seems to be
similar in content to that of § 3.5, whereby we may expect their result to differ only
in corrections that lie beyond all orders.

Here, we consider the same geometry of a small sphere performing small
oscillations near a flat wall, but with the simpler case of free-slip boundary conditions
on the wall. As before, we assume no-slip boundary conditions on the sphere. We
shall truncate the iterative procedure after one reflection from the wall, but without
further approximation, yielding results that are expected to be correct to lowest order
in a/h for arbitrary frequency of oscillation ω. The choice of full-slip boundary
conditions on the wall, as opposed to the more common no-slip/partial-slip boundary
conditions, makes the problem particularly simple, as we may employ the method
of images, and place an image sphere behind the wall in order to satisfy boundary
conditions on the wall. (Full-slip boundary conditions at solid–liquid interfaces
are of increasing practical importance (Vinogradova 1999; Neto et al. 2005), and
can be approximately realised on superhydrophobic surfaces created by means of
nanofabricated structures (see e.g. Choi & Kim 2006) or by increasing the surface
roughness (see e.g. Shibuichi et al. 1996). Further examples may be found in, for
example, Mo et al. (2017).) This simplicity enables exact evaluation of the surface
and volume average integrals that enter the generalised Faxén theorem (§ 2.3) in
closed form.

We break up the problem into two subproblems: one with the sphere oscillating
perpendicular to the wall, and the other with the sphere oscillating parallel to the
wall along any particular direction. In each case, we compute the drag force along
the direction of oscillation.

In anisotropic geometries, in addition to the drag, the sphere may also experience a
force in the directions normal to its motion, which would correspond to off-diagonal
terms in γ(ω).We show that, within the approximations used in this work, these forces
are zero. In the steady case, such effects have been shown to exist when the advective
term of the Navier–Stokes equations is retained in the Oseen approximation (see e.g.
Faxén 1921; Shinohara & Hashimoto 1979).

4.1. Flow around a sphere oscillating in an unbounded fluid
First, we review the well-known problem of a sphere oscillating in an unbounded
fluid. The problem was first solved by Stokes (1851). However, we shall follow the
presentation of Landau & Lifshitz (1987, §24, problem 5), as it is more convenient
for our purposes. (However, we shall use notation that is consistent with the rest of
this work. This involves the changes R→ a, a→ A, b→ B and −ikR→ δ from the
notation used by Landau & Lifshitz (1987) to our notation.) We had already used
some of these results in § 2.4, but the level of detail and notation here is adapted to
the calculation that follows.
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Unsteady Stokes flow near boundaries 903

Using the ansatz vω(r) = ∇ × ∇ × ( f (r)uω) for the velocity field vω(r) generated
by the sphere oscillating with velocity uω, the unsteady incompressible Stokes
equations (2.2) reduce to

12f = α21f , (4.1)

whose solution subject to the no-slip boundary conditions vω|∂S = uω on the surface
of the sphere and decay condition at infinity is f (r) such that

f ′(r)
r
=

1
r3

[
Ae−αr

(
r+

1
α

)
+ B

]
, (4.2)

with the constants

A=
3a2

2δ
eδ,

B=−
3a3

2δ2

(
1+ δ +

δ2

3

)
.

 (4.3)

Here, the origin of the spherical coordinate system (r, θ, ϕ) is at the centre of the
sphere, and the polar axis is along uω. It must be noted that the combination f ′(r)/r is
dimensionless. This is the same function f ′(r)/r from (2.27) written out using different
notation.

From the above, the components of the velocity in the same coordinate system may
be calculated as

er · vω =−2uω
f ′(r)

r
cos θ,

eθ · vω = uω sin θ
[
−

Aα
r

e−αr
−

f ′(r)
r

]
.

 (4.4)

It must be noted that the problem possesses axial symmetry, by which eϕ · vω= 0 and
there is no ϕ dependence for most quantities.

4.2. Image system for a full-slip plane wall: perpendicular oscillations

Let the fluid fill the half-space R+×R2 indexed by cylindrical coordinates ρ > 0, z>
−h, 06ϕ < 2π (h> 0). Let the sphere S of radius a lie at the point ρ= 0, z= 0. The
plane wall W is located at the plane z=−h. For convenience, we introduce additional
coordinate systems: a spherical coordinate system (r, θ, ϕ) with origin at z = 0 and
polar axis along the positive z-axis; and a spherical coordinate system (r′, θ ′, ϕ) with
origin at z = −2h and polar axis along the positive z-axis. Let the sphere oscillate
with velocity uω = +1ez, where ez is the unit vector along the positive z-direction.
The situation is visualised in figure 2, where the blue horizontal arrows represent the
directions of velocities. The red vertical arrows and the angles Θ and Φ are irrelevant
to this section.

The velocity field (4.4) of the sphere does not satisfy the full-slip boundary
conditions on the wall W,

ez · vω|W = 0,
ez · ∇vω,⊥|W = 0,

}
(4.5)
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W

r

S

Y

Z

X

FIGURE 2. (Colour online) Image systems for oscillations perpendicular and parallel to the
wall, and coordinate systems adapted to the geometry. For conciseness, we have shown
both systems in a single figure. The blue horizontal arrows on the spheres, pointing in
opposing directions, indicate the direction of velocities for the perpendicular case. The
red vertical arrows, pointing in the same direction, indicate the same for the parallel case.
The angles Θ and Φ marked in red are relevant only to the parallel case.

where vω,⊥ = vω − (ez · vω)ez, although it satisfies the no-slip boundary conditions on
the sphere S. Thus, we introduce an additional field v(1)ω such that vω + v(1)ω satisfies
full-slip boundary conditions at wall W. While there are indeed pressure fields
associated with each of these velocity fields, it turns out that they are not directly
relevant to our calculations. The field v(1)ω could be regarded as the flow reflected
from the wall. We could consider v(1)ω to be produced by an image sphere S′ centred
at z = −2h and having velocity u′ω = −1ez. By symmetry, the boundary conditions
at W are then satisfied. However, the combined field vω + v(1)ω will not satisfy the
no-slip boundary conditions on ∂S. Instead of computing the next reflected field v(2)ω
that corrects for the boundary conditions on the sphere, we shall simply employ
v(1)ω as the background field in the generalised Faxén theorem (2.17) to calculate the
drag coefficient. The iterative procedure of reflections will be truncated at this point.
Thus, it suffices to calculate the image field v(1)ω . The image field is simply given by
using (4.4) with the replacements uω→−1, θ → θ ′ and r→ r′. However, in order
to employ the generalised Faxén theorem, we would need to average this field over
∂S and S. To do so, the following coordinate conversion formulae are handy,

ρ = r′ sin θ ′ = r sin θ,
z= r cos θ = r′ cos θ ′ − 2h,
r′2 = 4h2

+ r2
+ 4rh cos θ,

r2
= ρ2
+ z2,

r′2 = ρ2
+ (2h+ z)2.


(4.6)

It is also convenient to introduce the non-dimensionalised variables, ξ := r′/(2h), δ=
αa, ε= a/h. Then we may write the dimensionless function F0(ξ) := f ′(r′)/r′, i.e. the
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Unsteady Stokes flow near boundaries 905

function of (4.2) evaluated instead at r′, as

F0(ξ)=
1
ξ 3

[
p e−2δξ/ε

(
1+

2δξ
ε

)
− q
]
, (4.7)

where the constants p := 3ε3eδ/(16δ2) and q := 3ε3(1+ δ + δ2/3)/(16δ2).

4.3. Drag coefficient for perpendicular oscillations
With these preparations, we are ready to calculate the drag force on the sphere for
oscillations perpendicular to the wall. To do so, we need to compute the averages
of the first reflected field v(1)ω =−∇×∇[ f (r

′)ez] on ∂S and S. For this purpose, it is
convenient to leave v(1)ω in this form rather than expand it out as in (4.4). By symmetry,
we observe that the only non-vanishing contribution comes from the z-component

V := ez · v
(1)
ω =−ez · ∇(ez · ∇f (r′))+1f (r′). (4.8)

We begin by computing the average over the surface of a sphere of radius r = aζ
centred about z= 0, given by

V̄S(ζ )=
1

4π

∫ π

0
2π sin θ dθ V, (4.9)

where we have already performed the trivial dϕ integral.
Writing ∇ in the cylindrical coordinate system (we will frequently ignore the ϕ

derivatives in these expressions, as they are zero due to axial symmetry) as

∇= ez

(
∂

∂z

)
ρ

+ eρ
(
∂

∂ρ

)
z

, (4.10)

we find from (4.6) that (∂r′/∂z)ρ = (z+ 2h)/r′, and use this in the expression for V
to obtain

V = −ez · ∇

[
z+ 2h

r′
f ′(r′)

]
+ f ′′(r′)+ 2

f ′(r′)
r′

= −
(z+ 2h)2

r′
d

dr′

[
f ′(r′)

r′

]
+ f ′′(r′)+

f ′(r′)
r′

= −
(z+ 2h)2

r′
d

dr′

[
f ′(r′)

r′

]
+

1
r′

d
dr′
[r′f ′(r′)]. (4.11)

We now observe from (4.6) that, since we are integrating on a surface of constant
r, (1/2) sin θ dθ = −(2r)−1 dz = −(εζ )−1ξ dξ , whereby the integral may be rewritten
in terms of the non-dimensionalised variables as

V̄S(ζ ) =
1
εζ

∫ 1+(1/2)εζ

1−(1/2)εζ
ξ dξ V

=
1
εζ

∫ 1+(1/2)εζ

1−(1/2)εζ
dξ

{
−

1
4

(
ξ 2
−
ε2ζ 2

4
+ 1
)2 d

dξ
[F0(ξ)] +

d
dξ
[ξ 2F0(ξ)]

}
.

(4.12)
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906 A. Simha, J. Mo and P. J. Morrison

The advantage of this form is that the integral may be conveniently evaluated using
integration by parts, and with the definitions

F1(ξ) :=

∫
ξF0(ξ) dξ =−

1
ξ
[p e−2δξ/ε

− q],

F2(ξ) :=

∫
ξF1(ξ) dξ =

[
p
ε

2δ
e−2δξ/ε

+ qξ
]
,

 (4.13)

we have

V̄S(ζ ) = −
2
εζ
[F2(ξ)− ξF1(ξ)]

1+(1/2)εζ
1−(1/2)εζ

=
2
εζ

[
2p e−2δ/ε sinh(δζ )

(
1+

ε

2δ

)
− qεζ

]
. (4.14)

The average V̄S on the surface of the sphere ∂S is just obtained by evaluating the
above at ζ = 1.

We define the volume average of V ,

V̄V
:=

1
4
3πa3

∫ a

0
4πr2 dr V̄S(r/a)

=

∫ 1

0
3ζ 2 dζ V̄S(ζ ), (4.15)

which may be evaluated to obtain

V̄V
=

12p
εδ2

(
1+

ε

2δ

)
e−2δ/ε(δ cosh δ − sinh δ)− 2q. (4.16)

We now rewrite the generalised Faxén theorem (2.17) as

γ R
⊥

γs
=
γ0

γs
−

[
(1+ δ)V̄S

+
δ2

3
V̄V

]
, (4.17)

where we have introduced the superscript R to distinguish the results from the method
of reflections from the other methods considered in this work. We then use the above
to obtain the drag coefficient γ R

⊥
as

γ R
⊥

γs
=

(
1+ δ +

δ2

9

)
+

3ε
8δ2

[
ε2

(
1+ δ +

δ2

3

)2

− e2δ(1−1/ε)(2εδ + ε2)

]
. (4.18)

4.4. Image system for a full-slip plane wall: parallel oscillations

As before, we consider the fluid to fill the half-space R+×R2. Here, we will instead
prefer to use a Cartesian coordinate system (x, y, z) where the half-space occupied
by the fluid corresponds to z > −h (h > 0). Let the sphere S of radius a lie at the
origin of the Cartesian coordinate system. The plane wall W is located at z = −h.
For convenience, as before, we introduce additional coordinate systems: a spherical
coordinate system (r, θ, ϕ) with origin at z=0 and polar axis along the positive z-axis;
a spherical coordinate system (r′, θ ′, ϕ) with origin at z=−2h and polar axis along the
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Unsteady Stokes flow near boundaries 907

positive z-axis; and another spherical coordinate system (R := r′, Θ,Φ) with origin at
z=−2h and polar axis along the positive x-axis. Let the sphere oscillate with velocity
uω=+1ex, where ex is the unit vector along the x-direction. The situation is visualised
in figure 2, where the red vertical arrows represent the directions of velocities. The
blue horizontal arrows are irrelevant to this section.

As before, we introduce an image sphere S′ centred at z=−2h, but to satisfy the
boundary conditions on z = −h, the image sphere must have the same velocity as
the actual sphere, i.e. u′ω =+1ex. We list the relevant coordinate conversion formulae
involving the (x, y, z) and the (R, Θ, Φ) systems below:

R= r′,
x= r′ sin θ ′ sin ϕ.

}
(4.19)

4.5. Drag coefficient for parallel oscillations
We now proceed to calculate the drag force on the sphere for oscillations parallel to
the wall. The first reflected field is now given by

v(1)ω =+∇×∇[ f (R)ex]. (4.20)

The relevant component is the x-component,

V := ex · v
(1)
ω =+ex · ∇(ex · ∇f (R))−1f (R). (4.21)

While there is no immediate reason to preclude the drag force from having a
z-component, we will later show that there is none in the first-reflection approximation
that we compute here.

The average over the surface of a sphere of radius r = aζ centred about z = 0 is
given by

V̄S(ζ )=
1

4π

∫ π

θ=0

∫ 2π

ϕ=0
sin θ dθ dϕ V, (4.22)

as we do not have azimuthal symmetry in this case.
Writing ∇ in the Cartesian coordinate system as

∇= ex

(
∂

∂x

)
y,z

+ ex

(
∂

∂y

)
x,z

+ ez

(
∂

∂z

)
x,y

, (4.23)

we find from the coordinate conversion formulae (4.6) that (∂r′/∂x)y,z= x/r′, and use
this in the expression for V to obtain,

V = ex · ∇

[ x
r′

f ′(r′)
]
− f ′′(r′)−

2f ′(r′)
r′

=
x2

r′
d

dr′

[
f ′(r′)

r′

]
− f ′′(r′)−

f ′(r′)
r′

=
x2

r′
d

dr′

[
f ′(r′)

r′

]
−

1
r′

d
dr′
[r′f ′(r′)]. (4.24)

We now write x = r sin θ cos ϕ in the expression for V and observe that∫ 2π

0 dϕ cos2 ϕ =π, whereby we may reduce (4.22) to

V̄S(ζ )=
r2

4

∫ π

0
dθ sin3 θ

1
r′

d
dr′

[
f ′(r′)

r′

]
−

1
εζ

∫ 1+εζ/2

1−εζ/2
dξ

d
dξ
[ξ 2F0(ξ)], (4.25)
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908 A. Simha, J. Mo and P. J. Morrison

where we have treated the second term in (4.24) as we did in the case of perpendicular
oscillations. For the first integral in the above equation, we note that, since r is
constant, we may write r2 sin3 θ dθ = (r sin θ dθ)r(1 − cos2 θ) = −dz (r2

− z2)/r and
substitute for z in terms of r′ to obtain

r2

4

∫ π

0
dθ sin3 θ

1
r′

d
dr′

[
f ′(r′)

r′

]
=

1
4r

∫ 1+εζ/2

1−εζ/2

dr′

2h
r′2

d
dr′

[
f ′(r′)

r′

]
+

1
2

[
−

1
2r

∫ r

−r

dz
r′
(2h+z)2

d
dr′

[
f ′(r′)

r′

]]
. (4.26)

The second integral in the above expression was previously evaluated for the
perpendicular case, so we may simply use the result. In non-dimensionalised variables,
the first integral has the form

1
2εζ

∫ 1+εζ/2

1−εζ/2
dξ ξ 2 d

dξ
F0(ξ), (4.27)

which may be easily integrated by parts and expressed in terms of F1(ξ). Thus, we
have

V̄S(ζ )=
1
εζ
[(ξ − 1)F1(ξ)− F2(ξ)− ξ

2F0(ξ)]
1+εζ/2
1−εζ/2, (4.28)

which simplifies to

V̄S(ζ )= 2p e−2δ/ε sinh(δζ )
εζ

(
1+

2δ
ε
+
ε

2δ

)
− q. (4.29)

The average V̄S on the surface of the sphere ∂S is just obtained by evaluating the
above at ζ = 1.

As before, the volume average of V may be obtained as

V̄V
=

6p
εδ2

(
1+

2δ
ε
+
ε

2δ

)
e−2δ/ε

[δ cosh δ − sinh δ] − q. (4.30)

We now adapt the generalised Faxén theorem (2.17) as we did in (4.17) to obtain
the drag coefficient γ R

‖
as

γ R
‖

γs
=

(
1+ δ +

δ2

9

)
+

3ε
16δ2

[
ε2

(
1+ δ +

δ2

3

)2

− e2δ(1−1/ε)(4δ2
+ 2εδ + ε2)

]
. (4.31)

We will now show that there is no force along the z-direction to first order. The
z-component of the first reflected field due to parallel oscillations of the sphere is
given by

v(1)xz,ω = ez · ∇(ex · ∇f (r′))− ex · ez1f (r′)

= ez · ∇

( x
r′

f ′(r′)
)
− 0

=
(z+ 2h)x

r′
d

dr′

[
f ′(r′)

r′

]
. (4.32)
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FIGURE 3. (Colour online) Logarithmic plots of the normalised drag coefficient for a
no-slip sphere (radius a) in a viscous fluid near a full-slip plane wall (distance h),
for various values of ε = a/h, obtained using the method of reflections (§ 4) in the
perpendicular direction (4.18), (a) real part and (b) negative imaginary part, and in the
parallel direction (4.31), (c) real part and (d) negative imaginary part. The drag coefficient
is normalised to the steady free-space Stokes drag coefficient γs. The horizontal axis is
the non-dimensionalised frequency of oscillation of the sphere ωτf , where τf = a2ρf /η is
the time scale for vorticity diffusion over the size of the sphere.

Substituting x = r sin θ cos ϕ as before,we see that the surface average V̄S contains
the integral

∫ 2π

0 dϕ cos ϕ = 0. Thus, the surface average vanishes on any spherical
surface centred about z= 0, and consequently the volume integral over the sphere S
also vanishes.

The results from (4.18) and (4.31) are plotted in figure 3 as a function of the non-
dimensionalised frequency ωτf = iδ2, where τf := a2ρf /η is the time scale over which
vorticity diffuses over the size of the sphere (Franosch et al. 2011).

5. Comparison of the point-particle approximation and the method of reflections
In this section, we compare results for the drag coefficient for a sphere near a

full-slip plane wall obtained by the two methods considered earlier, viz. the point-
particle approximation (§ 2) and the method of reflections (§ 4). Where relevant, we
will also compare our modified point-particle approximation with the point-particle
approximation as used by Felderhof (2012).

While we may directly use the expressions for the reaction field tensor from
Felderhof (2012) in (2.34) to compute the drag coefficients in the parallel and
perpendicular directions, it is however useful for purposes of comparison to first put
the expression for the drag coefficient in a form similar to those obtained using the
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910 A. Simha, J. Mo and P. J. Morrison

method of reflections in (4.18) and (4.31). To effect this, we first assume that γsR
is small (which we would expect to be true on physical grounds in the regime of
validity of the point-particle approximation), whereby we may expand (2.34) to first
order in γsR to obtain

γ = γ0(ω)[1− (1+ δ + 1
3δ

2)γsR] − 2
9γsδ

2(1+ δ + 1
3δ

2)γsR + o[γsR]

= γ0(ω)1− γs(1+ δ + 1
3δ

2)2(γsR)+ o[γsR]. (5.1)

(We remark that this form is likely to be inferior for numerical computations, since the
original expression was in the form of a Padé approximant, which has been observed
in many cases to perform better (see § 5.2).)

Plugging in the expressions from Felderhof (2012, equations (3.5) and (3.16)),

γsRzz =
3ε
2

{
−

1
4ν2
[1− (1+ 2ν)e−2ν

]

}
,

γsRxx =
3ε
2

{
−

1
8ν2
[1− (1+ 2ν + 4ν2)e−2ν

]

}
,

 (5.2)

for the components Rzz := ez · R · ez and Rxx := ex · R · ex of R, where ν := αh= δ/ε,
into the above expression, we obtain the expressions

γ P
⊥

γs
≈

(
1+ δ +

δ2

9

)
+

3ε
8δ2

(
1+ δ +

δ2

3

)2

[ε2
− e−2δ/ε(2εδ + ε2)],

γ P
‖

γs
≈

(
1+ δ +

δ2

9

)
+

3ε
16δ2

(
1+ δ +

δ2

3

)2

[ε2
− e−2δ/ε(4δ2

+ 2εδ + ε2)].

 (5.3)

We now compare these against (4.18) and (4.31) to find that the expressions from
the two methods indeed differ, but in the factor in front of the subdominant (as ε→
0+, δ fixed) exponential term e−2δ/ε . We shall show in the following subsections that
in the regimes where the exponential terms actually matter, the two results agree to
first order in ε. Thus, unless the physics under investigation expressly relies on the
subdominant terms, the results from the two methods agree to first order.

5.1. Asymptotic comparison
Since there are two length scales, there are four asymptotic regimes that we may
consider, depending on how α compares with a and h. Of particular interest here
are two regimes – the regime of low frequencies where αh ∼ 1, and that of high
frequencies where αa� 1. The former regime is of interest owing to our discussion
about the subdominant exponential terms (§§ 3.5 and 5). The latter regime is of
interest owing to the discrepancy in effective mass mentioned in the introduction.
It can be easily verified that the results from the method of reflections (4.18) and
(4.31) as well as the modified point-particle approximation (5.3) agree in the regime
of intermediate frequencies αa∼ 1.

5.1.1. Low frequencies
We now consider non-zero but low frequencies, where ν := αh∼ 1 but δ= αa� 1,

i.e. the skin depth of vorticity is comparable to the sphere–wall separation, and is
much larger than the size of the sphere.
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Unsteady Stokes flow near boundaries 911

In the point-particle calculation, no approximation can be made in the expressions
for the reaction field tensor (Felderhof 2012, equations (3.5) and (3.16)) in this regime.
However, we substitute δ= εν in (2.34) and keep terms to first order in ε while noting
that γsR is first order in ε to obtain

γ ∼ γs[1(1+ εν)− γsR], (5.4)

which, upon substitution for the components of R, yields

γ P
⊥

γs
∼ 1+ εν +

3ε
8ν2
[1− (1+ 2ν)e−2ν

] + o(ε),

γ P
‖

γs
∼ 1+ εν +

3ε
16ν2
[1− (1+ 2ν + 4ν2)e−2ν

] + o(ε).

 (5.5)

For the results from the method of reflections, we once again substitute δ = εν

in (4.18) and (4.31) and keep terms to first order in ε, and obtain the same results as
above for γ R

⊥
and γ R

‖
.

Thus, even where the subdominant exponential terms are important, the two results
agree to lowest order in ε.

We may also take the α → 0 limit in the above and, as expected, we recover
expressions that agree with results obtained through image systems for steady Stokes
flows (Frydel & Rice 2006).

5.1.2. High frequencies
We finally consider the range of frequencies ω� η/(ρf a2), where 1/|α| � a� h.

In this regime, we expect that the viscous contributions to the drag coefficient
are negligible compared to the inertial contributions, i.e. the added-mass term. For
instance, in the case of a spherical particle in an unbounded fluid medium, the
drag coefficient in this regime γ0(ω) ∼ γsδ

2/9 = −iωmf /2, which is the added-mass
contribution from the fluid.

The added mass of a particle executing small oscillations in a fluid is usually
obtained by means of potential flow (see e.g. Brennen 1982; Landau & Lifshitz
1987). In this regime, one assumes that the effects of viscosity are negligible, and
calculates the flow using the linearized Euler equations, with the assumption that the
flow is irrotational, i.e. that the velocity may be written as the gradient of a potential.
The incompressibility condition then implies that this potential satisfies Laplace’s
equation. In particular, the added mass of a spherical particle near a plane wall is
a well-studied problem (Lamb 1932; Milne-Thomson 1968; Yang 2010), and the
expressions for the effective masses in this case,

m∗
⊥
=mp +

mf

2

[
1+

3
8

(a
h

)3
]
,

m∗
‖
=mp +

mf

2

[
1+

3
16

(a
h

)3
]
,

 (5.6)

are well known. It must be noted that, owing to the absence of 1vω, the differential
equation is of lower order, whereby fewer boundary conditions are needed for the
potential flow calculation, and thus the added mass obtained from potential flow does
not distinguish between full-slip and no-slip boundary conditions.
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912 A. Simha, J. Mo and P. J. Morrison

It has been pointed out (Mo et al. 2015b) that Felderhof’s expressions do
not agree with these results. As pointed out by Zwanzig & Bixon (1975), the
velocity autocorrelation function for a Brownian particle in an incompressible fluid
asymptotes to kBT/m∗ as t→ 0, where m∗ is the effective mass of the particle in
the fluid. (The apparent contradiction with the energy equipartition theorem, which
reports a kBT/m asymptote, is resolved by including the effects of compressibility.)
This has been verified in unbounded fluid by experiments (Kheifets et al. 2014;
Mo et al. 2015a). However, the results from Felderhof (2005, equation (4.5))
(see also erratum, Felderhof 2006b) suggest values for the added masses as
(mf /2)(1+ a3/(8h3)+ o(a3/h3)) for m∗

⊥
and (mf /2)(1+ a3/(16h3)+ o(a3/h3)) for m∗

‖
.

As we will presently demonstrate, this discrepancy is resolved by our modification of
the point-particle framework described in §§ 2.4 and 2.5.

In our modified point-particle framework, we take the asymptotics of the components
of the reaction field tensor as ν→∞ to obtain

γsRzz ∼−
3ε
8ν2

,

γsRxx ∼−
3ε

16ν2
,

(ν→+∞).

 (5.7)

We then replace δ = εν in (2.34), substitute the above asymptotic forms for the
components of R, and expand to lowest order in ε to obtain

γ P
⊥

γs
∼

1
9
ε2ν2

(
1+

3
8
ε3

)
+ o(ε5),

γ P
‖

γs
∼

1
9
ε2ν2

(
1+

3
16
ε3

)
+ o(ε5),

(ν→+∞).

 (5.8)

Thereafter, identifying ε2ν2/9=−iωmf /2, we obtain added masses consistent with the
effective masses given in (5.6).

For the results from the method of reflections, we take the asymptotic as δ→∞
with fixed ε in (4.18) and (4.31). The subdominant exponential terms drop and we
are left with

γ R
⊥

γs
∼

1
9
δ2

(
1+

3
8
ε3

)
,

γ R
‖

γs
∼

1
9
δ2

(
1+

3
16
ε3

)
,

(δ→+∞),

 (5.9)

which are once again consistent with the results from the modified point-particle
approximation and with calculations from potential flow (Lamb 1932; Milne-Thomson
1968; Brennen 1982).

5.2. Numerical comparison
In this section, we present numerical comparisons of predictions for the drag
coefficients from three methods – the point-particle approximation proposed by
Felderhof (2012), the modified point-particle approximation presented in this work
(§ 2) and the method of reflections (§ 4).

Generally speaking, for purposes of numerical evaluation, it is likely that keeping
the expression for γ(ω) in the form of a Padé approximant as in (2.34) gives better
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Method of reflections Modified PPA
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FIGURE 4. (Colour online) Semi-logarithmic plots comparing the results for the drag
coefficient of a no-slip sphere near a full-slip plane wall (ε = 0.5) from the method of
reflections (§ 4) and the modified point-particle approximation (Modified PPA) (§ 2) in the
perpendicular direction, (a) real part and (b) imaginary part, and in the parallel direction,
(c) real part and (d) imaginary part. In each case, the free-space drag coefficient γ0(ω)
has been subtracted in order to clearly highlight the small differences, and the coefficients
have been normalised by γs. The inset in (c) shows a log–log plot of the real parts of
the normalised drag coefficients in the parallel direction without subtraction of γ0.

results. In the context of the method of reflections for the steady Stokes equations,
Happel & Brenner (1965, chap. 7) suggest the use of a geometric series extrapolation
to account for higher-order reflections in the absence of any further information, which
essentially amounts to turning the result from the method of reflections into a Padé
approximant. We also noted this when we computed the perturbative result to all
orders in § 3.5. Several experiments have employed the Padé form of the steady drag
(Mo et al. 2015b; Schäffer, Nørrelykke & Howard 2007, figure 2) with good results.

However, in order to appropriately compare and highlight the differences between
the theories, it is necessary that we compare results expressed in similar forms. In
the plots that follow, when comparing the method of reflections against the modified
point-particle approximation (figure 4), we use the form of (5.3) for the point-particle
approximation. When comparing the modified point-particle approximation against that
of Felderhof (2012) (figures 5 and 6), we shall use the original forms from (5.10)
and (2.34).

We obtain the drag coefficients from Felderhof’s point-particle framework by
setting the expression for the admittance from Felderhof (2012, equation (2.9)) equal
to (2.36):

γF(ω)= iωmp1+ (−iωmp + γ0)

[
1+

(
1+ δ +

δ2

3

)
γsR

]−1

. (5.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

87
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f T
ex

as
 L

ib
ra

ri
es

, o
n 

04
 M

ar
 2

01
8 

at
 0

8:
06

:4
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.87
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


914 A. Simha, J. Mo and P. J. Morrison

Felderhof’s PPA Modified PPA
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FIGURE 5. (Colour online) Semi-logarithmic plots comparing the results for the drag
coefficient of a no-slip sphere near a full-slip plane wall (ε = 0.5) from the point-particle
approximation of Felderhof (2012) (Felderhof’s PPA) and the modified version of
the point-particle approximation described in § 2 (Modified PPA) in the perpendicular
direction, (a) real part and (b) imaginary part, and in the parallel direction, (c) real part
and (d) imaginary part. In each case, the free-space drag coefficient γ0(ω) has been
subtracted in order to clearly highlight the differences, and the coefficients have been
normalised by γs. Since the drag coefficient (5.10) from Felderhof’s PPA depends on the
density of the particle ρp, we set ρp = 19ρf (which is approximately the case for gold
particles in water) to highlight the differences. The inset in (c) shows a log–log plot of the
real parts of the normalised drag coefficients in the parallel direction without subtraction
of γ0.

We observe that, unlike the other results, the drag coefficient depends on the mass of
the particle mp, which does not cancel out even if we expand to first order in γsR. The
drag coefficients from the modified point-particle framework are calculated from (2.34)
using the expressions for the reaction field tensor from Felderhof (2012, equations
(3.5) and (3.16)), which we have reproduced in (5.2).

Figure 4 compares the real and imaginary parts of drag coefficients for a no-slip
sphere near a full-slip wall obtained from the method of reflections, and from the
modified point-particle approximation for the case of ε = a/h = 0.5. The free-space
drag coefficient γ0(ω) has been subtracted in order to clearly show the difference
between the methods. The inset in panel (c) shows a log–log plot of Re(γ‖/γs),
i.e. without subtraction of the free-space drag coefficient, exemplifying the excellent
agreement between the two methods even for the large value of ε.

Figure 5 compares the real and imaginary parts of drag coefficients for a no-slip
sphere near a full-slip wall obtained from Felderhof’s point-particle approximation,
and from the modified point-particle framework, for the case of ε= 0.5 and ρp= 19ρf .
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FIGURE 6. (Colour online) Semi-logarithmic plots of the percentage error between the
drag coefficients for a no-slip sphere near a full-slip plane wall obtained from Felderhof’s
PPA and the modified PPA and calculated as 100 % |γ F

− γ P
|/|γ P
|, for various values of

particle density ρp (ε = 0.5), (a) in the perpendicular direction, and (b) in the parallel
direction to the wall.

If the liquid is water, this density corresponds roughly to that of gold particles. As
before, the free-space drag coefficient γ0(ω) has been subtracted in order to clearly
highlight the disagreement between the methods at high frequencies. The inset in
sub-figure (c) shows a log–log plot of Re(γ‖/γs), i.e. without subtraction of the free-
space drag coefficient, showing that there is still visible disagreement between the
two methods for large ρp/ρf . The relative error between these two approximations,
calculated as |γ F

− γ P
|/|γ P
| and expressed as a percentage, is plotted in figure 6

for different values of ρp. (If the liquid is water, the values 2, 4 and 19 for ρp/ρf

roughly correspond to particles made of silica glass, barium titanate glass and gold,
respectively. These are common choices in optical tweezers experiments.) The error is
zero when ρp = ρf , and the errors become larger as ρp deviates from ρf .

Figure 7 shows the high-frequency behaviour of the imaginary components of the
drag coefficients from Felderhof’s version, and from the modified version of the point-
particle approximation on a log–log scale. A line corresponding to the added-mass
contribution predicted from potential flow (Milne-Thomson 1968) is shown. The plots
show the agreement of the modified point-particle approximation with the potential
flow results at high frequencies.

6. Application to Brownian motion

As discussed earlier, the short-time-scale aspects of Brownian motion are relevant
to fundamental science, to microrheology and to the calibration of instruments such as
optical tweezers, as thermal fluctuations play a significant role in these applications.
In this section, we discuss the application of these drag coefficient results to the
problem of equilibrium Brownian motion of a spherical particle near a full-slip
flat wall. We will also present the results for a no-slip wall from the modified
point-particle approximation, owing to its practical importance and relevance to
the discussion in Mo et al. (2015b, § II). In both cases, we will analyse only the
translational motion, and ignore the rotational motion of the particle. Section 6.1
includes a brief self-contained review of the theory. More detailed expositions of a
general nature may be found in Li & Raizen (2013) for example. In § 6.2, we present
a numerical analysis of the results as applied to Brownian motion.
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FIGURE 7. (Colour online) Logarithmic plots of −Im(γ − γ0)/γs for a no-slip sphere near
a full-slip plane wall obtained from the modified (solid orange) and from Felderhof’s
original (dashed blue line) point-particle approximation against non-dimensionalised
frequency ωτf . The region of slope 1 of these lines represents the regime where the term
corresponding to the increase in added mass due to the boundary is dominant. The dotted
orange line plots the added mass correction from potential flow calculations. Values ε=0.5
and ρp = 19ρf are chosen to highlight the difference. It is observed that the modified
point-particle approximation reproduces the results from potential flow at high frequencies.

6.1. Brief review of the hydrodynamic theory of Brownian motion
The long-time-scale aspects of Brownian motion in a gas are well modelled by
employing the steady Stokes drag as a dissipation model. However, in a dense fluid,
Brownian motion is heavily influenced by the inertia of the fluid. Since the Reynolds
number in many practical applications is very low (∼10−4), it suffices for many
purposes to retain only the ∂v/∂t and drop the advective term. Thus, unsteady Stokes
friction provides a good model for the dissipation (Zwanzig & Bixon 1970; Clercx
& Schram 1992). Of particular importance are the long-time power-law tails of the
velocity autocorrelation function, which may be explained using the unsteady Stokes
friction.

We note that to the approximation that γ(ω) is diagonal, the equation of motion of
the Brownian particle decouples into its Cartesian components, so we may treat the
motion perpendicular to and that parallel to a wall separately. This also holds true
for the resulting predictions for statistical properties of the particle, such as power
spectra and autocorrelation functions. We also note that in our calculation of γ(ω),we
used the generalised Faxén theorem of Mazur & Bedeaux (1974), which assumes
that the particle’s boundary does not execute significant motion, whereby boundary
conditions are applied on a stationary surface. This assumption would be valid if the
particle were confined by a tight potential (Clercx & Schram 1992; Franosch & Jeney
2009), which is fortunately indeed the case in many of the aforementioned practical
applications. Therefore, adding a harmonic restoring force to the equation of motion
of the body bestows our model with theoretical consistency as well as enhances its
practical application. For simplicity, we shall assume that the tensor K of restoring
force coefficients is diagonal in the basis suggested by the geometry of the sphere
and wall.

Once the admittance (2.38) is known, the velocity autocorrelation function (VACF)
Cv(t) of the Brownian particle may be calculated by inverting a Green–Kubo relation
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to obtain (Franosch & Jeney 2009, equation (19))

Cv(t)=
2kBT

π

∫
∞

0
dω cos(ωt)Re[Yω]. (6.1)

The position autocorrelation function Cx(t) may be computed in a similar manner
by using the mechanical susceptibility Yω/(−iω) in place of the admittance in (6.1).
Whereas the cosine transform in (6.1) may be computed analytically for the case
of a sphere in an unbounded medium, one has to resort to numerical evaluation in
most other cases. An algorithm for quadrature of oscillatory integrals such as a Filon–
trapezoid rule (Tuck 1967; Franosch & Jeney 2009) may be used.

The (two-sided) power spectral density of position (Sx) and velocity (Sv) fluctuations
may also be computed through (Franosch & Jeney 2009; Mo et al. 2015b)

Sx(ω)=
2kBT
ω2

Re[Yω],

Sv(ω)= 2kBT Re[Yω].

 (6.2)

Assuming γ(ω) and K are diagonal,the mean-squared displacement (MSD) of the
Brownian particle may be defined as

〈1x2
i (t)〉 := 〈[xi(τ + t)− xi(τ )]

2
〉 (6.3)

for each component xi of the position x(t) of the particle. Here 〈 〉 denotes averaging
over the ensemble of possible Brownian trajectories. The mean-squared displacement
may be related to the position autocorrelation function through

〈1x2
i (t)〉 = 2[kBT/K ii − Cx,ii(t)], (6.4)

where K ii and Cx,ii denote the i, i components of the diagonal tensors K and Cx,
respectively.

An alternative way to describe the Brownian motion of the particle is to use a
stochastic equation of motion (often called a generalised Langevin equation) for the
particle,

[−iωmp1+ γ(ω)− K/(iω)]uω =Fth
ω , (6.5)

which we have written above in the frequency domain. The Langevin force Fth
ω

represents the effects of thermal fluctuations in the fluid, and is typically modelled
by a stationary stochastic process. In the Einstein–Ornstein–Uhlenbeck model of
Brownian motion, which uses the steady Stokes drag, this stochastic process
is assumed to be white Gaussian noise. However, this choice is inconsistent
with the fluctuation–dissipation theorem when the damping in the equation is
frequency-dependent. The theorem instead demands a coloured noise with a
(two-sided) spectrum given by (Balakrishnan 1979; Franosch et al. 2011)

SF(ω)= 2kBT Re[γ(ω)]. (6.6)

6.2. Numerical analysis of Brownian motion near a flat wall
We now apply the results for the drag coefficient obtained from the method of
reflections and the point-particle approximation – both Felderhof’s version and in our
modified form – to Brownian motion. Our focus will be to compare the results from
these three theories.

It has been experimentally observed (Mo et al. 2015b) that the point-particle
approximation using expression (2.34) performs surprisingly well for large values of
ε ≈ 0.5, i.e. when the particle is one diameter away from the wall. Motivated by this,
when comparing predictions for Brownian motion from the various theories (§ 6), we
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cast the expressions from the method of reflections in the (Padé-like) form suggested
by (2.34) (see also § 5.2),

γ R
⊥,‖

γs
=

iωmf

γs
+

(γ̃0/γs)
2

γ̃0/γs −Ξ⊥,‖(ε, δ)
+ o[Ξ⊥,‖], (6.7)

where the correction terms for the full-slip wall are given by

Ξ⊥(ε, δ)=
3ε
8δ2

[
ε2

(
1+ δ +

δ2

3

)2

− e2δ(1−1/ε)(2εδ + ε2)

]
,

Ξ‖(ε, δ)=
3ε

16δ2

[
ε2

(
1+ δ +

δ2

3

)2

− e2δ(1−1/ε)(4δ2
+ 2εδ + ε2)

]
.

 (6.8)

We may now use the expressions for the admittance and the drag coefficients from
the three theories and compare the predictions for the Brownian motion of a no-slip
spherical particle near a full-slip flat wall. We denote the components of the various
diagonal tensors by ⊥ and ‖, just as we have done for the drag coefficient tensor. To
make connection with experiment, we will use exemplary parameters that are typical
of optical tweezers experiments (see Jeney et al. 2008; Mo et al. 2015a,b). The same
methods of numerical computation of the theoretical predictions described in § IV of
Mo et al. (2015b) are employed here. It must be noted that it is not clear which
of the two methods – the modified point-particle approximation, or the method of
reflections – performs better in practice, without higher-order calculations or evidence
from sophisticated experiments.

Figure 8 compares predictions for the statistical properties of Brownian motion
(temperature T= 295 K) of a harmonically confined (trap stiffness K= 100 pN µm−1)
spherical silica glass (density ρp = 2.0ρf ) particle (diameter 2a = 3 µm) near
(ε = a/h = 0.5) a full-slip wall in water (density ρf = 1000 kg m−3, viscosity
η = 10−3 Pa s) in the perpendicular direction to the wall from three theories
for the drag coefficient – Felderhof’s point-particle approximation, the modified
point-particle approximation and the method of reflections. Also shown for comparison
are the predictions using the free-space drag coefficient γ0(ω). Panel (a) shows
the mean-square displacement (MSD), (b) shows the (one-sided) power spectral
density of velocity fluctuations 2S⊥v , (c) shows the velocity autocorrelation function
C⊥v (t) = 〈u⊥(τ )u⊥(t + τ)〉 and (d) shows the (one-sided) power spectrum of the
Langevin force 2S⊥F .

Figure 9 compares predictions for the same statistical properties of Brownian motion
for the same system, in the parallel direction to the full-slip wall from the same three
theories. As before, (a) shows the MSD, (b) shows the velocity PSD, (c) shows the
VACF and (d) shows the PSD of the Langevin force.

While it seems a formidable task to implement the method of reflections without
approximation in the case of a no-slip wall, the calculation using the point-particle
approximation is tractable and has been accomplished by Felderhof (2005) (see also
erratum, Felderhof 2006b). Felderhof’s results for the reaction field tensor may be
employed in (2.34) to obtain predictions for the case of a no-slip wall that retain the
benefits of our modification (see Mo et al. 2015b).

Figure 10 shows the predictions for the VACF from the same three theories for the
same temperature and geometry, but for gold (ρp ≈ 19.3 × 103 kg m−3) particles in
acetone (ρf ≈ 790 kg m−3) confined with a trap stiffness of K = 200 pN µm−1. The
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FIGURE 8. (Colour online) Logarithmic plots of predictions for the statistical properties
of the Brownian motion of a silica glass sphere of 2a = 3 µm diameter confined by a
harmonic trap of stiffness K = 100 pN µm−1 at a distance of h= 3 µm from a full-slip
plane wall in water, in the direction perpendicular to the wall. The solid red line shows the
predictions using Felderhof’s point-particle approximation without modification (Felderhof
2012). The dashed green line shows predictions from the point-particle approximation
with our modifications (§ 2). The dotted blue line shows predictions from the method of
reflections (§ 4). The dot-dashed black line shows the predictions for a similar particle
in unbounded fluid, i.e. in the absence of a wall. Panel (a) shows the mean-squared
displacement (MSD) 〈1x2

⊥
(t)〉 as a function of time; (b) shows the one-sided power

spectral density (PSD) of velocity fluctuations 2S⊥v ; (c) shows the absolute value of the
velocity autocorrelation function C⊥v (t), normalised by C⊥v (0) = kBT/m∗

⊥
; and (d) shows

the one-sided power spectral density of the Langevin force 2S⊥F . The cusps in panel
(c) correspond to zero crossings, and are a result of the presence of the harmonic trap.
The method of reflections and point-particle approximation agree very well for these
parameters, despite the large value of ε = 0.5.

large ratio ρp/ρf =24.4 is chosen to emphasise the dependence of the predictions from
the theory of Felderhof (2005, 2006b, 2012) on the particle density (the other two
theories do not involve ρp). Panels (a) and (b) show the results for a full-slip wall
in the perpendicular and parallel directions respectively. Panels (c) and (d) show the
results for a no-slip wall (the method of reflections is omitted in this case).

It may thus be seen that in the regime of typical (ρp ≈ 2ρf ) experiments using
optical tweezers, it is difficult to distinguish between the theories, explaining the
agreement of the previous experiments (Jeney et al. 2008) with the theory of
Felderhof (2005). The experiment of Mo et al. (2015b) uses the modified point-
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FIGURE 9. (Colour online) Logarithmic plots of predictions for the statistical properties
of the Brownian motion of a silica glass sphere of 2a = 3 µm diameter confined by a
harmonic trap of stiffness K = 100 pN µm−1 at a distance of h= 3 µm from a full-slip
plane wall in water, in the direction parallel to the wall. The solid red line shows the
predictions using Felderhof’s point-particle approximation without modification (Felderhof
2012). The dashed green line shows predictions from the point-particle approximation
with our modifications (§ 2). The dotted blue line shows predictions from the method of
reflections (§ 4). The dot-dashed black line shows the predictions for a similar particle
in unbounded fluid, i.e. in the absence of a wall. Panel (a) shows the mean-squared
displacement (MSD) 〈1x2

‖
(t)〉 as a function of time, (b) shows the one-sided power

spectral density of velocity fluctuations 2S‖v , (c) shows the absolute value of the velocity
autocorrelation function C‖v(t), normalised by C‖v(0)= kBT/m∗

‖
, and (d) shows the one-sided

power spectral density of the Langevin force 2S‖F. The cusps in panel (c) correspond to
zero crossings, and are a result of the presence of the harmonic trap. The method of
reflections and point-particle approximation agree very well for these parameters, despite
the large value of ε = 0.5.

particle approximation, but once again does not constitute an experimental validation
of any theory owing to the experimental uncertainty being larger than the discrepancy
between the theories. In the context of such systems, the modification would be of
importance to high-precision measurements at sufficiently high frequencies, possibly
including lock-in measurements and precision measurements of statistical quantities
with significant averaging.

Systems of gold and other metallic micro/nanoparticles in liquids are common in
experiments, not only in those involving optical tweezers (see e.g. Svoboda & Block
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FIGURE 10. (Colour online) Semi-logarithmic plots of the predictions for the velocity
autocorrelation function (VACF) of a 3 µm diameter gold (ρp = 19.3 × 103 kg m−3)
sphere in acetone (ρf = 790 kg m−3), harmonically confined (K = 200 pN µm−1) at a
distance of h = 3 µm from a flat wall at a temperature T = 295 K. The solid red line
shows the predictions using Felderhof’s point-particle approximation without modification
(Felderhof 2005, 2006b, 2012). The dashed green line shows predictions from the modified
point-particle approximation (§ 2). The dotted blue line in panels (a) and (b) shows
predictions from the method of reflections (§ 4). The dot-dashed black line shows the
predictions for a similar particle in bulk fluid, i.e. in the absence of a wall. Panels (a)
and (b) show the results for a full-slip wall in the perpendicular and parallel directions
respectively, and (c) and (d) show the same for a no-slip wall. The discrepancy between
Felderhof’s version of the point-particle approximation and our modified version indicates
that our modifications would be important to systems of metallic particles in liquids.

1994; Hajizadeh & Reihani 2010), but also in other fields, given the wide array of
applications of gold nanoparticles (Sardar et al. 2009). Based on the results presented
in figure 10 for gold microspheres in acetone, we believe that our modification of the
point-particle approximation would be very significant to such systems.

7. Discussion

In summary, our analysis shows that the modifications we introduced in § 2
are necessary to have theoretical consistency in the predictions of Felderhof’s
point-particle approximation for the unsteady dynamics of a spherical particle in
a liquid medium. As shown in § 6, the differences due to these modifications are too
small to have been detected by previous experiments involving glass particles, but
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922 A. Simha, J. Mo and P. J. Morrison

would be significant to experiments involving metallic micro/nanoparticles suspended
in liquids.

Owing to the presence of three length scales in the problem, the validity of the
point-particle approximation in the context of unsteady Stokes flows needed further
scrutiny. Our formalisation of the point-particle approximation in § 3, culminating
in (3.40), shows that it is perturbatively consistent, and the comparison in § 5
between (5.3) and the results of the method of reflections (4.18) and (4.31) suggests
however that it may not capture all non-perturbative corrections. However, we have
shown in §§ 5.1 and 5.2 that these non-perturbative corrections are small over the
entire range of frequencies, explaining the excellent agreement with experiment.

Further work would use the point-particle approximation, with renewed confidence,
in different geometries, potentially explaining the correction due to the curvature of a
cylindrical boundary observed in Mo et al. (2015b). Other avenues include developing
similar frameworks to address rotational motion.
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