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Integrability technique for fluid flow induced deformation of a boundary hair
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The deformation of a dense carpet of hair due to Stokes flow in a channel can be
described by a nonlinear integrodifferential equation for the shape of a single hair, which
possesses several solutions for a given choice of parameters. Although it was posed in a
previous study and it bears a resemblance to the pendulum problem from mechanics, this
equation has not been analytically solved until now. Despite the presence on an integral
with a nonlinear functional dependence on the dependent variable, the system is integrable.
We compare the analytically obtained solution to a finite-difference numerical approach,
identify the physically realizable solution branch, and briefly study the solution structure
through a conserved energylike quantity. Time-dependent fluid-structure interactions are a
rich and complex subject to investigate, and we argue that the solution discussed herein
can be used as a basis for understanding these systems.
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I. INTRODUCTION

Beds of hairlike structures interacting with fluids are prevalent in organisms on both micro
and macro lengthscales. Their ubiquity in complex and simple organisms is an indication of their
versatility. Indeed, there is great diversity in the functionality at either of these lengthscales.

For example, geckos utilize hairlike setae on their feet to promote adhesion to surfaces [1], cricket
filiform hairs play a mechanosensitive role [2], and the papillae on hummingbird tongues are used
as a “nectar mop” [3]. They serve important roles in nutrient absorption [4,5], surface protection
and flow control [6–9], surface adhesion [1,10–12], and fluid entrainment [3,13,14]. They function
as mechanosensors, detecting fluid flows [2,7,15–19], predators [20,21], and electric fields [22].

With the improvement of existing manufacturing techniques and the creation of new protocols
[23–29], studies have investigated a diverse assortment of systems involving artificial hairs. For
example, recent studies have investigated the design potential of hair beds: Hairs placed in a
microfluidic channel have been shown to function as pumps [27,30,31], rectifiers [32,33], and
micromixers [34–36] making them a design consideration in laboratory-on-chip devices.

Earlier work [32] used the theory of Kirchoff rods to describe the bending of hairs in a channel
when subject to shear flow. These authors assumed that the hairs possess linear, isotropic material
properties, but undergo finite displacements. The latter consideration makes the problem nonlinear
[37], and as a result, in Ref. [32] the problem was solved numerically.
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While there are many numerical methods to deal with such nonlinearities, numerical approaches
will only go so far. Biological-scale simulation of hair-beds has yet to be achieved efficiently [38].
There are several reasons for this. Such systems involve many hairs [33] that are free to respond
to the ambient fluid flows generated by both external forcing and their neighbors. Additionally,
consideration of the hair’s inertia makes the governing system of equations stiff [37]. Despite
this, large-scale simulation of hairs has been achieved in the graphics community by application
of an assortment of optimization techniques [39,40]. However, these techniques have the tradeoff of
realism [41].

To further understand these systems, we focus on and solve just the time-independent problem
posed in [32] for the profiles of a cantilevered hair-bed subject to shear flow through a channel. We
investigate both physical and nonphysical classes of solutions and how to consistently single out the
former from the latter.

The paper is organized as follows. In Sec. II, we introduce the basic model and examine how
our problem differs from previous studies. We see that the problem arises naturally as a boundary
value problem, for which a method for analytical solution is described and implemented in Sec. III.
Next, we examine the phase space and discuss how a self-consistency condition associated with
the problem influences the solution-structure in Sec. IV. It is here that we also consider the case of
angled hairs. We discuss common numerical approaches to solving this class of problem in Sec. V,
comparing one such implementation to our solution. We conclude our work with a summary in
Sec. VI.

II. PROBLEM FORMULATION

We consider the problem of a cantilevered hair, attached at a flat horizontal boundary, subject
to Stokes flow. In this formulation, the hair is represented as a plane curve in Cartesian coordinates
with R = x(s)x̂ + z(s)ẑ, where x̂ and ẑ are unit vectors. The unit tangent is given by T̂ = sin θ (s) x̂ +
cos θ (s) ẑ, so that T̂ · ẑ = cos θ , and with this parametrization the curvature is given by dθ/ds. The
quantity h(s) = ∫ s

0 cos θ (s′) ds′ represents the height of the hair at position s, with h(L) being the
total height.

Let us next focus on the configuration of a hair obtained from moment balance in equilibrium.
For an infinitesimal cylindrical section of the hair, this balance yields

M(s + ds) − M(s) + dr × Fint(s) = 0, (1)

where M(s) = EIθ ′(s)ŷ is the bending moment, dr = dsT̂(s), and Fint(s) is the net internal force
on the rod segment. For the purpose of this model, the hairs are packed sufficiently dense such that
the internal force is derived solely from the fluidic shear stress at the hair-tip.

By assuming Stokes flow with a no-slip boundary condition at the hair-tips, the shear stress is
found to be ηv

H−h(L) x̂, where H , η, and v are the channel height, viscosity, and boundary velocity,
respectively. An illustration of the system is shown in Fig. 1, with all relevant parameters presented
in Table I. The internal force is this stress times an area:

Fint = πa2

φ

ηv

H − h(L)
x̂.

The first term, πa2

φ
, is a characteristic control area covering both the hair-tip and the neighboring

fluid. Next, the stress exerted on the hair by the fluid depends on the hair height, or more specifically,
the clearance length between the hair-tip and upper channel wall, which is the reason for the
denominator H − h(L): a vertical hair would be impacted by a maximum force, while the force
is diminished as it entrains in the horizontal direction. A most interesting feature of this formulation
is that the relaxed state that results is self-referential because of this denominator; i.e., the solution
depends on itself and, as we will see, this gives rise to a self-consistency condition.
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FIG. 1. Illustration of how the fluid-hair system is modeled. Dashed and solid profiles show hairs in an
undeformed and a deformed configuration, respectively. The model assumes the fluid velocity becomes zero at
the hair-tip, exerting a shear stress ηv

H−h(L) on the hair.

From Eq. (1) and the definition of M, we “divide” by ds to obtain

EI
d2θ (s)

ds2
= −πa2

φ

ηv cos θ (s)

H − ∫ L
0 cos θ (s′) ds′ , (2)

which is the equation that will be solved in the course of this paper. We refer the reader to [32,37]
for further details regarding its derivation.

Equation (2) can be transformed into the compact nondimensional form

d2θ̂

dσ 2
= −ω2

ε cos θ̂ (3)

by introducing

θ̂ (σ ) = θ (s), σ = s

L
, ε = L

H
, and ω2 = πa2L2ηv

EIHφ
, (4)

and

ω2
ε = ω2

1 − ε
∫ 1

0 cos θ̂ (σ ) dσ
. (5)

TABLE I. Important system parameters and their associated units.

H Channel height [L]
L Hair length [L]
a Hair radius [L]
φ Packing fraction
δ Hair-hair centerline spacing [L]
E Elastic modulus [M][T ]−2[L]−1

I 2nd area moment of hair’s cross-section [L]4

η Dynamic viscosity [M][L]−1[T ]−1

v Imposed fluid velocity [L][T ]−1

θ Angle between the local tangent and the vertical
s Arc length measured from the base of the hair [L]
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FIG. 2. The hair boundary value problem is mathematically equivalent to that of a pendulum if θ is shifted
by π/2 and σ → t .

The natural boundary conditions for (3) are the following:

θ̂ (0) = θ̂0 and
d θ̂

dσ

∣∣∣∣
σ=1

= θ̂ ′
1 = 0, (6)

where θ̂0 is the angle of attachment of the hair, and θ̂ ′
1 = 0 means that the hair at its tip has zero

curvature. The latter condition can be obtained from the moment balance in Eq. (1). At the end of
the hair, there is no upstream (s > L) contribution to the balance, implying that M̂(1) ≡ EI θ̂ ′

1ŷ is
infinitesimally small. With these definitions, we see that our system has only two dimensionless
parameters, ε and ω, in addition to the choice of θ̂0. We will drop the “hats” moving forward to
avoid clutter.

This system differs in some ways from the standard pendulum problem of mechanics. For
example, we have the trivial difference that there is a shift in the definition of the angle—instead
of having sin θ on the right-hand side of (3), we have cos θ . However, there are two essential
differences: first, instead of the usual initial value problem, in light of (6), we have a boundary
value problem; and second, the system has the self-referential feature mentioned above, i.e., in
order to know the effective frequency ωε of (5) one must first obtain the entire “orbit” θ (σ ) to get
a self-consistent solution. Although these differences complicate the problem significantly, we will
see that the problem remains integrable. We will see that the self-consistency condition together
with the boundary value nature of the problem lead to a sort of quantization and a further reduction
of parameters.

A “potential” for (3) can be obtained by setting d2θ/dσ 2 = −dV/dθ , where V (θ ) = ω2
ε sin θ .

The Hamiltonian of this system, which we will call E , takes the form

E = 1

2

(
dθ

dσ

)2

+ ω2
ε sin θ. (7)

Because ωε does not depend explicitly on σ , the timelike variable, conservation of energy, dE/dσ =
0, follows immediately. Observe that the curvature, dθ/dσ , determines a quantity analogous to the
pendulum kinetic energy for this system.

As noted above and indicated in Fig. 2, the potential in the pendulum problem is − cos θ and
the pendulum oscillates about θ = 0. However, the boundary value problem for the hair is different
because the pendulum potential − cos θ is shifted by π/2 from the hair’s potential, sin θ . Thus, the
hair problem is analogous to a pendulum starting at θ = θ0, a distance up the potential well, that is
then projected further up the well with an initial velocity that is enough for it to hit its turning point
at dθ/dσ = 0. Therefore, the goal is to determine the initial value of dθ/dσ corresponding to a
time (length) for this to occur. To transform our problem to the pendulum problem, we will shift θ

by π/2, i.e.,

θ̄ = θ + π

2
⇒ sin(θ ) = − cos(θ̄ ), (8)
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and therefore

E = 1

2

(
d θ̄

dσ

)2

− ω2
ε cos θ̄ . (9)

This angle shift is convenient because it allows us to write the solution in the standard form for the
pendulum in terms of elliptic integrals, which is a first step toward showing integrability.

III. SOLUTION INTEGRABILITY

Given the formulation of Sec. II, we may begin by following the elementary procedure for
reducing the pendulum to quadrature. Using the double-angle formula, cos θ = 1 − 2 sin2(θ/2),
solving (9) for d θ̄/dσ , and integrating gives

±ωε

k
σ =

∫ θ (σ )/2+π/4

θ0/2+π/4

dχ√
1 − k2 sin2 χ

, (10)

where χ = θ/2 and

k2 = 2ω2
ε

E + ω2
ε

. (11)

The choice in sign in (10) determines whether θ ′
0 is positive or negative. While we are primarily

interested in hairs with positive base-curvature (corresponding to the positive sign), we include both
possibilities for completeness. This quadrature, analogous to that of the pendulum, is the first step
toward obtaining integrability of our hair problem.

Before proceeding, there is one issue that must be checked, viz. that
√

1 − k2 sin2 χ does not
become imaginary; that is, we want to check that k2 sin2 χ < 1 for χ within the limits of integration,
and that this is maintained as the upper limit of the integral of (10) extends all the way to θ (1), which
we will denote by θ1. For the most part, we expect physical solutions to have

0 � θ1 � π/2, (12)

which we can verify after the solution is obtained, so that according to (7), E > 0. Thus, upon
writing ξ = E/ω2

ε , (11) becomes k2 = 2/(1 + ξ ) with ξ � 0. Consequently,

1 � k2 � 2, (13)

and this by itself is insufficient to guarantee k2 sin2 χ < 1, However, because of the second boundary
condition of (6) and conservation of the energy of (9),

ξ = sin θ1 ⇒ 0 � ξ � 1. (14)

Next, using (12) and the fact that sin2 χ achieves its maximum when θ = θ1, we obtain

sin2(θ1/2 + π/4) = (1 + sin θ1)/2, (15)

which follows from elementary trigonometry identities. Therefore with (14), we have

k2 sin χ � 2

1 + ξ

1

2
(1 + sin θ1) = 1

1 + ξ
(1 + ξ ) = 1. (16)

Thus the quadrature integral of (10) is well behaved even with k2 > 1, which is consistent with what
we would physically expect.

Proceeding, we can invert and obtain the explicit solution by writing the integral of (10) in terms
of elliptic integrals. First, we split the integral as follows:

±ωε

k
σ =

∫ θ (σ )/2+π/4

0

dχ√
1 − k2 sin2 χ

−
∫ θ0/2+π/4

0

dχ√
1 − k2 sin2 χ

, (17)
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and notice that the second integral of (17) is an incomplete elliptic integral of the first kind, which
we move to the left-hand side, yielding

±ωε

k
σ + F

(
θ0

2
+ π

4

∣∣∣∣ k2

)
= F

(
θ (σ )

2
+ π

4

∣∣∣∣ k2

)
. (18)

Equation (18) can be inverted by utilizing Jacobi elliptic functions. In particular, the Jacobi
amplitude function (see, e.g., [42]) is the inverse of F , i.e.,

am(F(φ | k2) | k2) = φ. (19)

From now on we will drop the k2 from the arguments and write am(φ) for am(φ | k2) and F(φ)
for F(φ | k2), unless a different parameter is used. Using (19), (18) can be inverted to obtain the
following solution:

θ (σ ) = 2 am
(

±ωε

k
σ + F

(
π

4
+ θ0

2

))
− π

2
. (20)

Evaluation of the Hamiltonian of (9) at σ = 0 gives

E = 1
2 (θ ′

0)2 + ω2
ε sin θ0, (21)

where θ ′
0 = dθ (0)/dσ . Using (11) and (21) we see that (20) gives θ (σ, θ0, θ

′
0, ωε ), as expected for

the solution of the initial value problem. To solve the boundary value problem where θ ′
1 = 0, we use

the identity d am(u)/du = dn(u) and hence

dθ (σ )

dσ
= ±2

ωε

k
dn

(
±ωε

k
σ + F

(
π

4
+ θ0

2

))
, (22)

and therefore the boundary condition gives

θ ′
1 = ±2

ωε

k
dn

(
±ωε

k
+ F

(
π

4
+ θ0

2

))
= 0. (23)

Because elliptic integrals and functions usually consider the range 0 � k2 � 1, while we have (13),
we use the identity

dn(u | k2) = cn(ku | k−2) (24)

to write the boundary condition of (23) in the form

cn
(

±ωε + kF
(

π

4
+ θ0

2

∣∣∣∣ k2

) ∣∣∣∣ k−2

)
= 0. (25)

Equation (25) gives a condition relating θ ′
0 to ωε for fixed θ0. Because of the periodic nature of

cn(u), these are quantized according to

±ωε + kF
(

π

4
+ θ0

2

∣∣∣∣ k2

)
= (2n + 1)K(k−2), n ∈ Z, (26)

where K(k−2) = F(π/2 | k−2).
To summarize, we collect all our parameters together,

k2 = 2

1 + ξ
, ξ = E

ω2
ε

, E = 1

2
(θ ′

0)2 + ωε
2 sin θ0.

Note that for fixed and given ωε and θ0, the above analysis tells us what θ ′
0 must be to hit our

boundary condition θ ′
1 = 0.

So far we have followed a conventional and straightforward path leading to the solution of (20).
Except for the shift in phase and the boundary value nature of this solution, it is standard for a
one-degree-of-freedom Hamiltonian system: it depends on two parameters related to possible initial
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conditions θ0 and θ ′
0 via E and one parameter ωε , which we have treated as a given constant. We

proceed now by examining in general terms the boundary value nature of our problem with the
imposition of the self-consistency constraint of (5).

Consider a general system of differential equations of the form

d2θ

dσ 2
= f (θ, λ), (27)

where λ is a parameter. Often one uses a shooting method to solve the boundary value problems for
equations of this type, i.e., a sequence of initial conditions are integrated numerically for choices
of the parameter λ until the desired boundary condition is reached. This procedure usually selects
out discrete values for λ, which for linear systems would be eigenvalues. However, if one has an
analytical solution to the initial value problem, as we do, this can be used to relate initial and final
values. A condition that relates derivatives at the end points, here taken to be σ = 0 and 1, follows
immediately upon integrating (27), i.e.,

θ ′
1 − θ ′

0 =
∫ 1

0
f (θ, λ) dσ. (28)

Self-consistency means that the parameter λ depends functionally on the solution θ (σ ). For our
problem at hand, the role played by λ is ωε , and this self-consistency requires the solution of (20)
be consistent with the ωε as calculated from (5) with the insertion of (20). As a first step toward
imposing this self-consistency constraint, analogous to (28), we integrate (3) to obtain an expression
for the height of the hair in terms of an initial condition, viz.,

θ ′
0 = ω2

ε

∫ 1

0
cos θ (σ ) dσ = ω2 h1

1 − εh1
= 1

ε

(
ω2

ε − ω2), (29)

where θ ′
0 = dθ (0)/dσ , and h1 is the dimensionless height of the hair, the dimensional height being

h1L. The last equality of (29) follows upon eliminating h1 using (5). The hair problem is complicated
because the quantity ω2

ε depends on the solution of the boundary value problem (5) to give (29).
Fortuitously, this quantity only depends on h1. For general problems of this nature of the form of
(28), these two quantities would not in general depend on a single parameter like this.

Evidently, we must calculate h1. In fact, we can explicitly calculate h(σ ), the height of the hair
at parameter value σ (see the Appendix),

h(σ ) =
∫ σ

0
cos θ (σ ′) dσ ′

= 2

kωε

[√
1 − k2 sin2(π/4 + θ0/2) − dn

(
±ωε

k
σ + F(π/4 + θ0/2)

)]
. (30)

Next, we write ωε in terms of ω and ε by inserting the last equality of (29) into (21), giving

ω2
ε ∓ ε

√
2E − 2ω2

ε sin θ0 = ω2. (31)

Thus the self-consistent solution of our boundary value problem is fully determined by the follow-
ing:

θ (σ ; θ0, ε, ω) = 2 am

(
±ωε

√
ξ + 1

2
σ + F

(
π

4
+ θ0

2

∣∣∣∣ k2

) ∣∣∣∣∣ k2

)
− π

2
, (32)

where 0 � σ � 1 is our dimensionless parameter and

0 = ±ωε + kF
(

π

4
+ θ0

2

∣∣∣∣ k2

)
− (2n + 1)K(k−2), (33)
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FIG. 3. Phase portraits for a selected set of 0 � ξ � 1, a scaled measure of the energy, and their corre-
sponding profiles. ξ = 1 corresponds to the separatrix. Trajectories start at θ (0) = 0 and end at θ ′(1) = 0.

ω2
ε = ω2 ± εωε

√
2ξ − 2 sin θ0, (34)

k2 = 2

ξ + 1
. (35)

Note, kF(ϕ | k2) = F(ϕ̄ | k−2), where sin ϕ̄ = k sin ϕ [see Eq. (8.127) of [43]], can be used when
evaluating (33). Here (33) with (35) determines ωε as a function of θ0 and ξ , which with (34)
determines ξ as a function of θ0, ε, and ω. We note in passing that the variable ξ is related to the
physically perspicuous variable h1 according to

ξ = ω2

2

h1

(1 − εh1)2 + sin θ0.

In Sec. IV we will evaluate (32) for various cases. We will see that for physically realizable
solutions of interest, we must set n = 0 in (33) and select the + branch. In practice, we use root
finding to solve (33) and (34).

IV. PHASE SPACE INTERPRETATION

Because (3) is isomorphic to the differential equation for a pendulum, it is helpful to interpret
our analytical solutions in terms of motion in the pendulum phase space. In this section we do this,
first for hairs with θ0 = 0 and then for θ0 �= 0.

A. Vertical hairs: θ0 = 0

Figure 3 shows several different trajectories, corresponding to different values of ξ , for the case
in which θ0 = 0. Here, only the solutions that stop when they intersect θ ′

1 = 0 once are shown,
but we do observe other solutions corresponding to trajectories completing one or several orbits,
especially at higher values of ξ .

Observe, ξ = E/ω2
ε and E are both measures of the system’s energy (Hamiltonian) since they

only differ by a proportionality constant once self-consistency is enforced. We prefer to use ξ in the
following figures and analysis because −1 � ξ � 1, while E is unbounded. In addition, our analytic
solution is written more concisely in terms of ξ . Figure 3 shows the phase space with energy surfaces
parametrized by ξ . Note, because ξ is used and because the ordinate is θ ′/ω2

ε , the energy surfaces are
not nested as usual. In Fig. 3, as ξ → 1 the orbit approaches the separatrix and ξ = 0 corresponds
to the undeformed hair where θ (σ ) ≡ 0.
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FIG. 4. The problem of a cantilevered hair with a point load at its end is isomorphic to the equation of
motion for a pendulum with the initial conditions θ (t = 0) = 0 and θ̇ (t = 1) = 0. Because multiple different
orbits can satisfy these conditions for a given choice in parameters (e.g., the blue and black orbits of the figure),
both the cantilevered hair and the pendulum problem posed above are not unique.

Within the pendulum analogy, ωε acts as a natural frequency. The boundary conditions θ0 = 0
and θ ′

1 = 0 describe a pendulum trajectory starting at θ = 0 and ending when θ̇ = 0 in a time T . The
largest possible initial velocity that satisfies these conditions corresponds to a phase-space trajectory
entirely confined to the first quadrant. At a threshold natural frequency, other starting velocities can
also satisfy the “initial” conditions, but they must correspond to orbits that exit the first quadrant.

Figure 4 depicts two orbits for a given choice of parameters. The first (black) starts at θ0 = 0
with some θ̇0 �= 0 and the trajectory evolves until θ̇1 = 0. On the other hand, the red orbit reaches
its first maximum when θ̇ (t = 1/3) = 0 and it oscillates in the other direction until finally reaching
θ̇1 = 0. When not equal to zero, the branch index n [shown in Eq. (32)] selects out these lower
period orbits. In addition to these two solutions in our example above, there are two more with an
opposite sign in θ̇0. This choice in direction is reflected by the ± sign in our solution. Lastly, note
that for the sake of clarity, we have drawn Fig. 4 without the π/2 angle shift that is present, but the
principles discussed in this paragraph are unchanged when accounting for this shift (the orbits of
interest remain bounded whether or not there is an angle shift).

For the hairs, choices of n �= 0 and/or negative curvature branches correspond to “twirling”
profiles (see Fig. 5). These orbits are not physically realizable for simple shear flow experiments for
either of two reasons:

(i) Hair profiles intersect the surface they are mounted on (or also themselves). This is possible
because the model does not consider hair-surface interactions.

(ii) The assumption that shear stress is concentrated at the hair-tip breaks down because the
hair-tip is no longer the portion exposed to shear flow.

These solutions are an important consideration nevertheless because numerical algorithms can
be susceptible to converging to them.

All accessible solutions for a discrete list of ε values and a range of ω2 are plotted in Fig. 5. In
panel (a) we plot the energy E (a measure of θ ′

0) versus ω2 for the values of ε color-coded in panel
(c). The blue curve corresponds to ε = 0, the case in which self-consistency vanishes, while the
orange curve shows the distortion caused as ε approaches unity. This plot makes it clear that the
pendulum analogy alone is insufficient to capture predictions of the basic model. Panel (b) shows
that the solutions of the self-consistent boundary value problem are completely collapsed when the
similarity variable ξ is used instead of E . In this plot of ξ versus ω2

ε there is only a single curve. The
black lines in this plot depict representative hair profiles: for small ω2

ε the hair bends only slightly
while there is a scaling change for ω2

ε � 1 as the hair bends significantly. In addition, for larger ω2
ε

we obtain the twirling profiles where the solid and dashed lines of panel (b) indicate positive and
negative base curvature, respectively. Panel (c) shows that the physically realizable branch can be
partially collapsed by plotting ξ versus ω2/(1 − ε). In the case of the physically realizable solutions,
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FIG. 5. Plots of solutions of the boundary value problem posed in Sec. II for the case θ0 = 0 depending
on the two parameters, ω2 and ε. (a) Uncollapsed dependence of the energy (Hamiltonian) E on the two
input parameters. (b) Fully collapsed solution space in terms of the similarity variables ξ = E/ω2

ε vs ω2
ε ,

with representative hair profiles. Here, solid and dashed lines indicate positive and negative base curvature,
respectively. Note, ω2

ε is a quantity that depends transcendentally on ω2 and ε. For weak and strong forcing, we
see the predicted scalings of ξ ≈ ω2

ε /2 and ξ → 1, respectively, with the crossover occurring near ω2
ε /2 ≈ 1.

(c) Partial collapse of the solution space is seen using the abscissa ω2/(1 − ε), showing physically realizable
branches with an explicit function of the input parameters. To avoid clutter, only the first three branches (and
their negative curvature counterparts) are plotted in this panel.

the dependence on ε is most apparent for small forcing where the hair height is maximal. For this
case (e.g., small imposed fluid velocity v 
 1), h1 → 1, i.e., the hair is nearly vertical with θ ≈ 0.
Thus from (29), θ ′

0 ≈ ω2
ε , which with (21) gives

ξ = θ ′2

2ω2
ε

+ sin θ ≈ θ ′2

2ω2
ε

≈ ω2
ε

2
. (36)

This explains the linear dependence and slope observed in panel (b) of Fig. 5 for small ω2
ε . For

large forcing where ω2 → ∞, the height of the hair asymptotically approaches zero, i.e., θ1 ≈ π/2
and ξ ≈ sin θ1 ≈ 1, which explains the asymptote of panel (b) of Fig. 5. In this limit, ω2

ε → ω2

and the ε-dependence vanishes. Finally, one expects the crossover between weak and strong forcing
behavior to occur near ω2

ε /2 ≈ 1, and indeed this is the case.
The self-consistency condition captures the fact that hairs deform to reduce drag. This effect

is controlled by the hair length to channel height ratio, ε. Figure 5(a) reveals that increasing ε

corresponds to an increase in the system’s Hamiltonian, E . Through rearrangement of Eq. (31) to
ω2

ε = ω2 + ε
√

2E (here, the physically realizable branch has been selected), we see that as ε grows,
the forcing parameter ω2

ε must also increase.
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FIG. 6. ξ vs ωε plotted using Eq. (32) for different values of θ0. Hairs with a negative base-angle have
negative energy at low ω, and transition to positive energy as ω increases. Figure created with ε = 0.61.

B. Angled hairs: θ0 �= 0

Next, we plot ξ versus ωε for different values of θ0 in Fig. 6. For negative θ0, shear flow is against
the grain. As the forcing increases, hairs reorient to align with the fluid velocity until θ1 = 0, which
corresponds to ξ = 0. Further increasing the forcing parameter brings the system into the flow
alignment regime, scaling the same for all θ0.

On the other hand, increasing θ0 results in flow with the grain. Flow alignment can be achieved
with a smaller forcing parameter (compared to θ0 = 0), and the dependence of ξ on ω2/(1 − ε)
approaches a horizontal line.

V. HAIR PROFILES, DISCUSSION, AND COMPARISONS

Recall from Sec. II, the unit tangent is given by R′ = T̂, which implies x′(σ ) = sin θ (σ ) and
z′(σ ) = cos θ (σ ). Thus, given our solutions of Sec. III for θ (σ ), we can plot z versus x for the hair
profiles. In this section, we compare hair profiles obtained by our analytic solutions with those
obtained by direct numerical integration. A standard numerical method for nonlinear boundary
value problems is to use a shooting code, whereby initial values are incremented until the desired
boundary value is obtained. In [32] such a shooting code with a standard ordinary differential
equation algorithm was used to integrate the pendulum equations of (2), with an adaptation allowing
for the θ -dependence in ωε . Another approach is to make a central difference approximation to the
second derivative of (2), representing θ along the centerline of the hair by a mesh of N segments
with values θi (i = 1, 2, . . . , N). This gives a sequence of algebraic equations with the boundary
conditions built into the first and last equation. Coupling of the equations is provided by both
the differencing and the self-consistency through ωε . An example of this procedure is given in
[44], where the more complicated problem of a filament subject to three-dimensional dynamical
behavior is solved by discretizing in both space and time. Associated with this method is a root
finding problem, which for the time-independent case involves solving N equations for each mesh
value θi. Because there is not a concise description of how each of θi asymptotically scales with the
forcing parameter, ω, convergence to physical solutions is not always guaranteed.

In Fig. 7 a set of profiles is shown, comparing our analytic solution with numerical solutions
obtained by using the mesh discretization described above. At low forcing, both approaches
converge to the same physical solution. At high forcing when the hair becomes more streamlined,
the numerical solution fails to converge accurately. The reason for this discrepancy is currently
unknown. As shown in Fig. 8(a), increasing the mesh segment number further does not significantly
reduce the error in hair height. In Fig. 8(b), we see that error is most concentrated towards the base
of the hair for strongly deformed configurations.
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FIG. 7. Comparison of numerical and analytic solutions for a variety of E . Solid and dashed curves indicate
numerical and analytic solutions, respectively. A discretization method was used for the numerical routine with
an initial estimate of θi = 0 for the outer figure and θi = −0.1 for the inset.

Even though there is a root finding problem associated with our analytic solution, it is a single
equation (compared to N for the numerical approach). Because of this, and the fact that we know
how E scales in both deformed and undeformed regimes, our analytic method is both simpler to
implement and faster to compute than numerical approaches.

FIG. 8. Convergence of the finite-difference approach to the analytical solution, where �θ ≡ θanalytic −
θnumeric, �h(L) ≡ hanalytic(L) − hnumeric(L), and legend labels correspond to the value of ω2/(1 − ε). In panel
(b), solid and dashed lines are solutions with N = 20 and 80 mesh segments, respectively. Error due to the
discretized nature of the numerics is most apparent at the base of the hair (i.e., small σ ), dropping off as the
curvature decreases towards the hair-tip. Increasing mesh segment number has a marginal effect on improving
convergence.
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We have observed that the analytic solution is about two orders of magnitude faster (0.005 versus
0.5 s for a finite-difference simulation with a mesh size of 80) than the numerical procedure. There is
not much difference in obtaining a single solution using either approach in terms of speed. However,
problems that involve solving (3) iteratively can benefit significantly from the analytic approach. For
example, optimization of the system’s rectification properties and solving weakly time-dependent
problems [ωε → ωε (t )] are potentially computationally expensive tasks.

Given a shear stress, what are the profiles of a bed of hairs, which can be dense yet noninteract-
ing? Our solution presented in (32) provides an answer to this question. The inverse problem, where
the profiles are used to infer the shear stress, is utilized in a recently developed imaging technique.
In [45,46], a bed of flexible micropillars is used to detect near-wall shear stress and velocity
fields in turbulent flow. The pillars act as waveguides allowing the tip deflection to be measured
when illuminated from below. Our analytic method could be used to derive simple expressions for
tip-deflection, which can be utilized in the linear, low deformation regime. Greater flow-detection
sensitivity can be achieved by increasing the flexibility of the pillars and operating them in the
nonlinear regime [46].

Lastly, we argue that our analytic solution can be used as a basis for understanding problems
where the fluid flow has a slow time dependence. In this regime, a hair cycles through its steady-state
profiles, and fluid flows within the hair bed can be neglected.

VI. SUMMARY

In this work, we obtained a solution to a differential equation describing the profile of a hair bed
immersed in shear flow. This problem differs from previous treatments of cantilevered rods in that
the forcing parameter has a functional dependence on the dependent variable, θ (σ ). This aspect of
the model captures the fact that hairs deform to reduce the fluid induced drag. As interesting as
they are, many of these solutions are not physically realizable, and an advantage of our analytic
work is that we can select the desired branch. To contrast this, shooting codes and other numerical
approaches cannot be guaranteed to converge to this class of solution.

We then compare the analytic solution to a central difference based numerical scheme that
performs reasonably well for the range of loading tested, but we can encounter a convergence issue
when the curvature at the base is large.

Future work could explore an adiabatic extension of this model to describe time-dependent
channel flows.
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APPENDIX: CALCULATION OF h(σ )

We wish to calculate h(σ ) of (30). To this end, let

θ (σ ) = 2[am(u) − π/4] with u := ωε

k
σ + F

(
π

4
+ θ0

2

)
. (A1)

Using elementary trigonometry identities, we obtain

cos θ (σ ) = cos[2 (am(u) − π/4)] = 1 − 2 sin2[am(u) − π/4], (A2)

sin(am(u) − π/4) =
√

2

2
(sn(u) − cn(u)), (A3)
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with the identities sn(u) = sin (am(u)) and cn(u) = cos (am(u)). Thus,

2 sin2(am(u) − π/4) = (sn(u) − cn(u))2 = 1 − 2cn(u)sn(u), (A4)

using sn2(u) + cn2(u) = 1. So 1 − 2 sin2(u) = 2cn(u)sn(u), from which, with

cn(u)sn(u) = − 1

k2

d

du
dn(u), (A5)

we obtain ∫ σ

0
cos θ (σ ′) dσ ′ = − k

ωε

2

k2

∫ u

u0

d

du′ dn(u′) du′ = 2

kωε

(dn(u0) − dn(u)) (A6)

using dσ = k du/ωε , where u0 = F(π/4 + θ0/2). Finally, we use

dn(F(φ | k2)) =
√

1 − k2 sin2 φ (A7)

to obtain the result of (30).
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