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The recently proposed low degree-of-freedom model of Moffatt and Kimura [1,2] for describing the 
approach to finite-time singularity of the incompressible Euler fluid equations is investigated. The 
model assumes an initial finite-energy configuration of two vortex rings placed symmetrically on two 
tilted planes. The Hamiltonian structure of the inviscid limit of the model is obtained. The associated 
noncanonical Poisson bracket [3] and two invariants, one that serves as the Hamiltonian and the other 
a Casimir invariant, are discovered. It is shown that the system is integrable with a solution that lies on 
the intersection for the two invariants, just as for the free rigid body of mechanics whose solution lies 
on the intersection of the kinetic energy and angular momentum surfaces. Also, a direct quadrature is 
given and used to demonstrate the Leray form for finite-time singularity in the model. To the extent the 
Moffatt and Kimura model accurately represents Euler’s ideal fluid equations of motion, we have shown 
the existence of finite-time singularity.
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1. Introduction

One approach to the pedigreed quest for determining the exis-
tence or nonexistence of finite-time singularity in the Euler and 
Navier-Stokes equations of fluid dynamics (see, e.g., [4] for an 
overview) is to analyze them with very specialized initial condi-
tions. Because the vorticity at a singularity must diverge [5], effort 
has been spent on understanding the behavior of interacting local-
ized de-singularized vortex tubes, leading to the study of vortex re-
connection and its role in turbulence. Various configurations have 
been proposed and investigated numerically for reconnection in 
classical turbulence (e.g., [6–8]), quantum turbulence (e.g., [9–11]), 
and for the existence of singularity (e.g., [12–16]).

The present work investigates the reduced model of Moffatt 
and Kimura [1,2] that describes the interaction of two circular vor-
tex rings. To the extent this model accurately represents Euler’s 
ideal fluid equations of motion, we have shown the existence of 
finite-time singularity. Explicitly, we have shown that within the 
proposed limits of applicability of this model there exist solutions 
that blow up in finite time.

Section 2 describes the Moffatt and Kimura (MK) model. This 
is followed by Sec. 3 where the Hamiltonian structure of the MK 
model is given, which is essential for our analysis. Here we dis-
cover two constants of motion for the MK model. One invariant 
serves as the Hamiltonian for its noncanonical Hamiltonian formu-
lation (flow on a Poisson manifold; see [3]), while the other turns 
out to be a Casimir invariant. The Hamiltonian formulation allows 
us, in Sec. 4, to obtain geometrical intuition about the solution 
space by examining the intersection of the level sets of the two 
invariants, akin to the visualization afforded by the constancy of 
the energy and angular momentum magnitude for the Euler equa-
tions that describe the free rigid body. Also in this section we show 
how to reduce the MK system to quadrature and obtain for special 
initial conditions explicit solutions that have exact Leray scaling, 
which is representative of the finite-time singularity. Conditions 
for singularity within the range of applicability of the derivation 
given in Refs. [1,2] are presented. In Sec. 5 we summarize our re-
sults and mention some future avenues. Appendices are provided 
that exhibit additional features of our results.

2. The Moffatt-Kimura system

The MK system is a three-dimensional system of ordinary dif-
ferential equations that describes the evolution of two initially 
circular vortices of radius R and circulations ±�, located symmet-
rically on planes x = ±z tanα, with pitch angle α, in an (x, y, z)
Cartesian coordinate system. The system is written in dimension-
less form using the space scale R , time scale R2/�, and effective 
Reynolds number R� = �/ν =: 1/ε >> 1. Here ν is the usual kine-
matic viscosity of the fluid. It is assumed that the vortices have 
Gaussian cores of radius measured by δ, a separation measured by 
s, and a curvature given by κ , which evolve in terms of the dimen-
sionless time according to

˙(δ2) = ε − c2
κδ2

s
, (1)

ṡ = −c2κ
[

ln
( s

δ

)
+ β1

]
(2)

κ̇ = c1
κ

s2
, (3)

subject to the inequality constraints for applicability

δ < s < 1/κ , (4)

which are assumed in the derivation. Roughly speaking, these in-
equalities assure that the vortex cores, with size measured by δ, 
2

are small enough so that cores do not overlap as the rings merge, 
i.e., as their separation given by s decreases, and that portions of 
the rings are sufficiently far away, as measured by 1/κ , to allow 
far field expansion. The constants appearing in Eqs. (1), (2), and 
(3) are given by

c1 = cosα sinα

4π
and c2 = cosα

4π
, (5)

and the parameter β1 depends on the vortex core, with the value 
β1 = 0.4417 for a Gaussian core profile.

If the MK system is to be a reduction that inherits the non-
canonical Hamiltonian structure of Euler’s fluid equations (see e.g. 
[3]) then it will have a Hamiltonian form upon setting the ε = 0. 
Thus we investigate

δ̇ = − c2

2

κδ

s
(6)

ṡ = −c2 κ
[

ln
( s

δ

)
+ β1

]
(7)

κ̇ = c1
κ

s2
. (8)

For later use we record here the equation of motion for x := s/δ,

ẋ = − c2κ

δ
(
 − 1/2) , (9)

which is easily verified. Here, for convenience, we have defined


 := ln
( s

δ

)
+ β1 = ln(x) + β1 . (10)

The smallest value of 
 consistent with inequality (4) occurs when 
δ = s; thus,


 ≥ β1 or 
 − 1/2 ≥ β1 − 1/2 = −0.0583 , (11)

where the Gaussian value of β1 = 0.4417 is used in the second 
expression. We note here that


 = 1/2 at x∗ = e1/2−β1 ≈ 1.0600 . (12)

3. Hamiltonian structure

3.1. Generalities

Hamiltonian systems are usually written in terms of canonically 
conjugate sets of variables, a configuration space coordinate and its 
conjugate momentum. The noncanonical Hamiltonian description 
is one where the form in terms of canonical variables is not nec-
essary and replaced by algebraic properties of the Poisson bracket. 
The terminology noncanonical Hamiltonian was introduced in the 
context of the ideal fluid and magnetohydrodynamics in [17], but 
the ideas date back to the work of Sophus Lie. (See, e.g., [3,18,19]
for review.)

Given an n-dimensional phase space with coordinates z =
(z1, z2, . . . , zn), a system of ordinary differential equations has 
noncanonical Hamiltonian form if there exists a Poisson bivector 
J , an antisymmetric second rank contravariant tensor, and a con-
served phase space function H(z) such that the equations can be 
written as follows:

żi = {zi, H} = J i j ∂ H

∂z j
i, j = 1,2, . . .n , (13)

where repeated indices are summed and the Poisson bracket de-
fined on functions of the coordinate z,

{ f , g} = ∂ f
i

J i j ∂ g
i

(14)

∂z ∂z
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is bilinear, antisymmetric, and most importantly satisfies the Jacobi 
identity,

{ f , {g,h}} + { f , {g,h}} + { f , {g,h}} = 0 , (15)

for all functions f , g, h. Unlike for the canonical description, the 
tensor J , the Poisson tensor, may depend on the coordinate z. It 
generates the Hamiltonian vector field as depicted on the right-
hand side of the second equality of (13). In coordinates, (15) is 
equivalent to the vanishing of the following purely antisymmetric 
three-tensor:

Sijk = J i� ∂ J jk

∂z�
+ J j� ∂ J ki

∂z�
+ J k� ∂ J i j

∂z�
≡ 0 , (16)

a quantity that is checked in practice.
When det J �= 0, an old theorem of Darboux, based on the al-

gebraic properties of the Poisson bracket, implies that there is a 
coordinate change from the noncanonical coordinates z to a set of 
canonically conjugate coordinates. However, when det J = 0 this 
is not possible because of degeneracy, i.e., the existence of special 
functions C , called Casimir invariants, that satisfy {C, f } = 0 for all 
phase space functions f . Thus, Casimir invariants are built-in to 
the phase space, for they will be conserved by a system generated 
by any Hamiltonian function. In the coordinates z, C is a Casimir 
invariant if it satisfies

J i j ∂C

∂z j
= 0 . (17)

Noncanonical Hamiltonian systems possess the rich geometri-
cal structure of so-called Poisson manifolds, where through every 
point of the phase space manifold is a conserved canonical Hamil-
tonian subspace, i.e., the manifold is foliated by symplectic leaves 
(see, e.g., the seminal reference [20] and the recent contribution 
[21]). We will see in practical terms how an interesting Poisson 
manifold emerges from the MK system.

For three-dimensional systems, like the MK system, the Poisson 
tensor J has the form

J =
⎡
⎣ 0 V 3 −V 2

−V 3 0 V 1
V 2 −V 1 0

⎤
⎦ (18)

for some vector V(z) = (V 1, V 2, V 3), and it can be shown easily 
that (15), for the Jacobi identity, is satisfied if V(z) satisfies

V · ∇ × V = 0 . (19)

Thus, for three-dimensional systems there is a convenient way to 
check the Jacobi identity. Because antisymmetric matrices have 
even rank, J must have rank 2 or 0. The latter of course would 
generate trivial dynamics – of interest is the case of rank 2 where 
there is a single Casimir invariant, and condition (17) can be writ-
ten compactly as

V × ∇C = 0 . (20)

Relations (19) and (20) play central roles in our discovery of the 
Hamiltonian structure of the MK system.

3.2. The Hamiltonian and Poisson bracket

Given the equations of motion of a system, like (6), (7), and 
(8), and a constant of motion, one can seek a Poisson tensor by 
matching to the equations of motion while enforcing the Jacobi 
identity. Thus we seek a suitable invariant, one that physically we 
expect to be an energy-like quantity. Using the structure of the 
3

MK system and some insight we find (6), (7), and (8) conserve the 
following:

H = 1

δ2

[
ln

( s

δ

)
+ β1 − 1

2

]
= 1

δ2

[

 − 1/2

]
, (21)

which can be shown directly. From (21) we obtain

s = δ eδ2 H−β1+1/2 . (22)

Again, as with (11), the threshold for inequality (4) occurs when 
δ = s, yielding

H > (β1 − 1/2)/δ2 = −0.0583/δ2 , (23)

where again the Gaussian value of β1 is used in the equality.
In terms of the coordinates z = (δ, s, κ), the analog of equation 

(13) for the MK system takes the form⎡
⎣ δ̇

ṡ
κ̇

⎤
⎦ =

⎡
⎣ 0 V 3 −V 2

−V 3 0 V 1
V 2 −V 1 0

⎤
⎦

⎡
⎣ ∂ H/∂δ

∂ H/∂s
∂ H/∂κ

⎤
⎦ , (24)

which upon making use of the MK equations of motion (6), (7), 
and (8), and the candidate Hamiltonian (21), we obtain the follow-
ing equation for the Poisson tensor:⎡
⎣−c2 δκ/(2s)

−c2 κ 


c1 κ/s2

⎤
⎦ =

⎡
⎣ 0 V 3 −V 2

−V 3 0 V 1
V 2 −V 1 0

⎤
⎦

⎡
⎣−2
/δ3

1/(sδ2)

0

⎤
⎦ . (25)

Thus, the goal is to solve (25) for a V = (V 1, V 2, V 3) that satisfies 
(19).

It follows immediately from (25) that

δ̇ = −c2 δκ/(2s) = V 3/(sδ2) and ṡ = −c2 κ
 = 2V 3
/δ3 ;
(26)

thus,

V 3 = −c2κδ3/2 (27)

works for both equations of (26). The remaining equation yields 
the expression,

κ̇ = c1κ/s2 = −2V 2
/δ3 − V 1/(sδ2) . (28)

Thus, it appears there is freedom in the choices of V 1 and V 2 to 
satisfy (19), the Jacobi identity. Upon setting

V 1 = −c1κδ2/s − 2V 2
s/δ , (29)

we seek to find a V 2 that ensures (19) is satisfied. A direct calcu-
lation implies

V · ∇ × V = − c2

2
κδ3 ∂V 2

∂δ
− c2 κsδ2


∂V 2

∂s
+ c1

κδ2

s

∂V 2

∂κ

+ V 2

(
−c1

δ2

s
+ c2

2
κδ2 − c2 κδ2


)
+ c1c2

2

δ5κ2

s2
,

(30)

and the goal is to find a V 2 such that (30) vanishes.
Upon inserting the following into (30),

V 2 = κδA(x) , (31)

where recall x := s/δ and using

∂k V 2 = δA(x) , ∂s V 2 = κ A′(x) , ∂δ V 2 = κ A(x) − κxA′(x)
(32)
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(30) becomes

V · ∇ × V = −c2κ
2δ3

[
xA′

(

 − 1

2

)
+ 
A − c1

2x2

]
. (33)

Thus, the Jacobi identity is satisfied provided we can find a solu-
tion A(x) to

xA′
(


 − 1

2

)
+ 
A − c1

2x2
= 0 , (34)

where recall 
(x) is given by (10). If such a function A is found, 
then the MK system is Hamiltonian with a bracket defined by

V 1 = −c1
κδ2

s
− 2κ
s A(x) , V 2 = κδ A(x) , and

V 3 = − c2

2
κδ3 .

(35)

Thus, we proceed to solve for A. In the light of the inequality 
(4), 
 is seen to be a positive monotonic function with the inverse

x = e
−β1 . (36)

Consequently, we can use 
 as the independent variable and 
rewrite (34) as

d

d


(
e


√

 − 1/2 A

)
= c1

2x2

e


√

 − 1/2

= c1e2β1

2

e−


√

 − 1/2

.

(37)

Here we have assumed 
 −1/2 ≥ 0. In light of (11) this may not be 
true; thus, we will return and consider the case where 
 −1/2 ≤ 0.

Antidifferentiating both sides gives

A = e−


√

 − 1/2

c1e2β1−1/2

2


−1/2∫
e−�

√
�

d� . (38)

Then, with the definition of the incomplete gamma function

γ (σ , u) =
u∫

0

u′σ−1e−u′
du′ , (39)

and the identity

γ (1/2, u) = √
πerf(

√
u) = 2

√
u∫

0

e−u′2
du′ , (40)

with erf being the error function, we obtain

A = c0
e−


√

 − 1/2

+
√

πc1

2
e2β1−1/2 e−


√

 − 1/2

erf
(√


 − 1/2
)

,

(41)

where c0 ∈ R is the integration constant. Upon inserting (41) into 
the expressions of (35), we have a one-parameter family of Poisson 
brackets. It is convenient to choose c0 = 0, giving

A =
√

πc1

2 x

eβ1−1/2

√

 − 1/2

erf
(√


 − 1/2
)

, (42)

which is valid for 
 − 1/2 ≥ 0, but we will see it is also valid 
for 
 − 1/2 < 0. Observe, the choice c0 = 0 gives us regularity 
at 
 = 1/2. Inserting (42) into the equations of (35) defines the 
noncanonical Poisson bracket that we will use for 
 ≥ 1/2.

Now consider the case where 
 ≤ 1/2, which occurs for

0 ≤ 1/2 − 
 ≤ 1/2 − β1 − ln x ≤ 1/2 − β1 , (43)
4

where we assume x ≥ 1 consistent again with (4). Instead of (37), 
consider

d

d


(
e


√
1/2 − 
 A

)
= − c1e2β1

2

e−


√
1/2 − 


, (44)

where (34) has been used. Integrating both sides from 
 = 1/2
leads to

A = c1 e2β1−1/2 e−
 M(1/2,3/2,1/2 − 
) , 
 ≤ 1/2 , (45)

where

M(1/2,3/2, z) = 1

2

1∫
0

ezt

√
t

dt = 1

2
√

z

z∫
0

eu

√
u

du , (46)

is the Kummer function [22], which is sometimes called the con-
fluent hypergeometric function of the first kind and denoted by 
1 F1(1/2; 3/2; z). Inserting (45) into the equations of (35) defines 
the noncanonical Poisson bracket defined for β1 ≤ 
 ≤ 1/2.

A comparison of (42) and (45) follows from the identity

erf(z) = 2z√
π

M(1/2,3/2,−z2) , (47)

which implies
√

π

2

1√

 − 1/2

erf
(√


 − 1/2
)

= M(1/2,3/2,1/2 − 
)) .

(48)

Because erf(ix) for x ∈R is pure imaginary, like 
√


 − 1/2 for 
 <
1/2, we can analytically continue the expression in terms of the 
error function through zero to pure imaginary values yielding a 
real quantity. Thus, expression (42) can be used for both 
 ≥ 0
and 
 < 0.

3.3. The Casimir invariant

Given the Hamiltonian structure of Sec. 3.2 we know immedi-
ately that the MK system must possess another constant of motion, 
the Casimir invariant. A little thought reveals the Casimir must 
have the form

C = c2

2
κ + λ(x)

δ
. (49)

In the present context, (20) is equivalent to⎡
⎣ 0 V 3 −V 2

−V 3 0 V 1
V 2 −V 1 0

⎤
⎦

⎡
⎣ ∂C/∂δ

∂C/∂s
∂C/∂κ

⎤
⎦

=
⎡
⎣ 0 V 3 −V 2

−V 3 0 V 1
V 2 −V 1 0

⎤
⎦

⎡
⎣−λ/δ2 − sλ′/δ3

λ′/δ2

c2/2

⎤
⎦ = 0 (50)

The first equation gives

0 = − c2

2
κδ3 λ′

δ2
− κδA

c2

2
⇒ λ′ = −A , (51)

while the second gives after some manipulation

0 = − c2κδ

2

(
λ − xA + c1

x
+ 2Ax


)
. (52)

Because of the Jacobi identity, the third equation must automati-
cally be solved by the above, which can be verified directly. Thus 
we have
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Fig. 1. Plots of A/c1 (blue) and λ/c1 (orange) vs. x = s/δ. Recall λ′ = −A(x) [cf. 
Eq. (53)].

λ′(x) = −A(x) (53)

λ(x) = Ax(1 − 2
) − c1

x
= −2Ax(
 − 1/2) − c1

x
, (54)

where A solves (34). Upon differentiating (54) we see that if A
satisfies (34), then (53) is automatic for a solution of (54). In par-
ticular, using (42) we obtain

λ(x) = −√
πc1 eβ1−1/2

√

 − 1/2 erf

(√

 − 1/2

)
− c1

x
, (55)

where use has been made of xe−
 = e−β1 . Fig. 1 displays plots of 
both A/c1 of (42) (upper) and λ/c1 (55) (lower) as functions of x, 
beginning with its critical value of x = s/δ = 1, revealing that both 
are relatively simple monotonic functions consistent with inequal-
ity (4).

Thus to summarize, the Casimir, a second invariant, is given 
by

C = c2

2
κ + λ(x)

δ

= c2

2
κ − √

πc1 eβ1−1/2 1

δ

√

 − 1/2 erf

(√

 − 1/2

)
− c1

s
,

(56)

where we have inserted λ from (55) in (56) and used x = s/δ. We 
remind the reader that (56) is valid for 
 < 1/2 as well as for 

 ≥ 1/2.

Because of inequality (4), not all values of (56) are permissi-
ble. To understand the permissible range, we rewrite (56) as fol-
lows:

s

c1
C − c2

2c1
κs = F (
) , (57)

where

F (
) = √
π e
−1/2

√

 − 1/2 erf

(√

 − 1/2

)
+ 1 > 0 . (58)

As noted in (11), the smallest allowable value of 
 is β1, and it is 
not hard to show that F (
) obtains its minimum value at β1, at 
which it is positive. Thus we see, the Casimir must satisfy

C <
c2

2
κ (59)

to be consistent with the inequality (4).
5

4. The nature of the solution, reduction to quadrature, and 
analysis

4.1. Geometrical solution

Given that we have a three-dimensional system with two con-
stants of motion, the solution space can be visualized by exam-
ining the intersection of the level sets of the Hamiltonian H of 
(21) with those of the Casimir C of (56). This is a direct ana-
log of how the stable and unstable trajectories of the free rigid 
body, as governed by Euler’s equations, are understood in terms of 
the intersection of the angular momentum spheres with the en-
ergy ellipsoids. The same situation occurs for other noncanonical 
Hamiltonian systems such as the Kida problem of fluid mechan-
ics [23] and the rattleback toy [24], and indeed a large class of 
flows on Poisson manifolds [21]. Thus, by plotting level sets of 
(21) and (56) the nature of trajectories is revealed and, in addi-
tion, one can delineate the accessible phase space consistent with 
(4).

Fig. 2 displays contours of the Hamiltonian H of (21). Since H is 
independent of the variable κ it has translational symmetry along 
the κ axis and, as can be seen in Fig. 2(a), has a sheet-like topol-
ogy for positive values of the variables. Level sets corresponding 
to different signs of H have opposite curvature in the s − δ plane, 
with there being a region of negative values of H consistent with 
(23) and (4). This ‘negative energy’ interval is shown in Fig. 2(b) 
for δ < 1. For all values of H , the sheets become tangent to the 
H = 0 plane with a slope given by s = δe1/2−β1 . Consequently, if δ
and s approach zero, they do so in a clear and universal way in-
dependent of H̊ , the initial value of the Hamiltonian constant of 
motion.

In Figs. 3, 4, and 5 we show two views of contour plots of 
the Casimir of (56) for three values of the vortex ring tilt angle 
α ∈ {π/4, π/6, π/90}. Observe that these surfaces are again sheet 
like but with more interesting structure, no longer having the κ
independence of the H-surfaces.

The case where α = π/90 corresponds to nearly parallel vor-
tices. For this case c1 ≈ 5 × 10−5 << 1 and (3) implies κ is nearly 
constant. For this case the trajectory lingers in the flat regions of 
Fig. 5 and the dynamics is approximately governed by

δ̇ = − c2

2

κ̊δ

s
(60)

ṡ = −c2 κ̊
[

ln
( s

δ

)
+ β1

]
, (61)

with c2 ≈ 0.0796. Because H is independent of κ , it is not a sur-
prise that (21) is still conserved by (60) and (61). This leads to the 
quadrature discussed in Appendix C, where the ‘κ-clock’ is pro-
portional to ordinary time. As s gets small, κ becomes activated, 
demonstrating the importance of the local induction velocity for 
developing curvature.

Now consider the roles played by the H and C surfaces. As a 
specific example, consider the case with the initial conditions

δ̊ = 0.01 < s̊ = 0.10 < κ̊ = 1 . (62)

With the values of (62) and a choice for the vortex ring tilt angle 
α, the solution lies on the intersection of the level sets with

H̊ = 22442.9 and C̊ = −6.40628 , for α = π/9 ,

(63)

where again we use β1 = 0.4417. Thus, these initial conditions and 
corresponding initial values of H̊ and C̊ are consistent with (4). 
This particular intersection is displayed in Fig. 6. Observe how the 



P.J. Morrison and Y. Kimura Physics Letters A 484 (2023) 129078

Fig. 2. Contour plots of the Hamiltonian H of (21). (a) H̊ = −.50 (orange), H̊ = 0 (blue), H̊ = 1 (green), H̊ = 10 (magenta), and H̊ = 100 (lavender). (b) Closeup plots of s
vs. δ at arbitrary κ . Note the region to the left of δ = 1 for the case where H̊ = −0.0583 (orange) compared to the case s = δ (blue) with the inset showing the difference 
(orange-blue), showing that s > δ to the left. The other curve with H̊ = 0.005 (green) is added for comparison.

Fig. 3. (a) View of the level sets of the Casimir C for α = π/4. (b) Same as (a) but rotated.
curve of intersection approaches increasingly large values of κ as 
both δ and s approach zero.

In Fig. 7 we plot multiple intersections of the H and C contours. 
From this figure we see how κ diverges for a variety of initial con-
ditions, behavior that is in fact generic.

Yet another picture of the singularity emerges if we eliminate δ
between (21) and (56), giving the expression

c2κ

2C
= 1 −

√
H

C

λ(x)√

(x) − 1/2

= 1 + c1
√

H/C√

(x) − 1/2

×
(√

π eβ1−1/2
√


 − 1/2 erf
(√


 − 1/2
)

+ 1

x

)

=: 1 + c1
√

H

C
K [x] . (64)
6

This formula is well defined for H <0 because δ =√
H/(
−1/2) >

0. Fig. 8 shows the function K with the singularity occurring at 
x∗ ≈ 1.0600.

The reader may wonder what would happen to the Casimir if 
we retained the term of (41) with the integration constant c0. It 
turns out that this merely adds a term proportional to 

√
H to the 

Casimir and thus just shifts the value of C , and thus has no conse-
quence other than changing the numerical value of C for the same 
plots.

4.2. Reduction to quadrature

Let us now consider exact integration of the system. Suppose 
(δ̊, ̊s, κ̊) represent an arbitrary initial condition at time t̊ with cor-
responding initial values of our two invariants H̊ = H(δ̊, ̊s, κ̊) and 
C̊ = C(δ̊, ̊s, κ̊). Because H = H̊ for all time, (21) can be used in (56)
to obtain
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Fig. 4. (a) View of the level sets of the Casimir C for α = π/9. (b) Same as (a) but rotated.

Fig. 5. (a) View of the level sets of the Casimir C for α = π/90. (b) Same as (a) but rotated.
C̊ = c2

2
κ − c1eβ1−1/2

√
π H̊ erf

(
δ
√

H̊
)

− c1

s
, (65)

where recall this formula is well-defined when H̊ < 0 because it 
analytically continues to the expression of (45). Next, using (22) to 
eliminate s we obtain

C̊ = c2

2
κ − c1eβ1−1/2

√
π H̊ erf

(
δ
√

H̊
)

− c1

δ
e−δ2 H̊+β1−1/2 .

(66)

Solving (66) for κ is immediate

c2

2
κ = C̊ + c1eβ1−1/2

√
π H̊ erf

(
δ
√

H̊
)

+ c1

δ
e−δ2 H̊+β1−1/2 .

(67)

With (22) and (67), we obtain from (6), the following:
7

δ̇ = − c2

2

κδ

s
= − c2

2
κ e−δ2 H̊+β1−1/2

= −
(

C̊ + c1eβ1−1/2
√

π H̊ erf
(
δ
√

H̊
)

+ c1

δ
e−δ2 H̊+β1−1/2

)
e−δ2 H̊+β1−1/2 , (68)

which leads immediately to the quadrature

t̊ − t = e−2β1+1

δ∫
δ̊

eδ′2 H̊ δ′ dδ′

δ′ e−β1+1/2C̊ + c1

√
π H̊δ′ erf

(
δ′√H̊

)+ c1e−δ′2 H̊
.

(69)
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Fig. 6. Plot of the intersection of the level set H̊ = 22442.9 (orange) with that of C̊ = −6.40628 (blue) for α = π/9. These values correspond to the initial conditions of (62). 
In (a) κ ranges to 100, while in (b) we zoom out to κ ranging to 1000 to give a more global perspective on the shape of the surfaces.

Fig. 7. Intersections of the level sets of H and C for the initial conditions of (62) with α = π/9. In (a) we set C̊ = −6.40628 and show contours for H̊ ∈
{5, 000; 15, 000; 20, 100; 30, 000; 45, 000}, while in (b) we set H̊ = 22442.9 and show contours for C̊ ∈ {−10, −9, −8, −7, −6, −4}.

Fig. 8. Plots of the function K of (64) vs. x, depicting the singularity that occurs for 
κ at x∗ ≈ 1.0600.

Although unwieldy, integration of (69) gives δ as a function of 
time, and via (22) and (67) we obtain s and κ as functions of time, 
with the latter diverging.

From (69) we see that if there is a finite-time singularity where 
δ → 0, then it occurs at a time t∞ in accordance with the following 
formula:

t∞ = t̊

+ e−2β1+1

δ̊∫
0

eδ′2 H̊ δ′ dδ′

δ′ e−β1+1/2C̊ + c1

√
π H̊δ′ erf

(
δ′√H̊

) + c1e−δ′2 H̊
.

(70)

For H̊ �= 0, we see from (21) that at a singularity where δ → 0, we 
must have 
 − 1/2 → 0. As noted in (23), the smallest initial value 
of H that satisfies (4) is H̊∗ = (β1 − 1/2)/δ̊2, which is negative; 

˚ ˚ ∗
if H > H , then (4) is satisfied initially. If δ decreases and it ini-
8
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tially satisfies s > δ, then it will satisfy it throughout its evolution 
because δ = s e−δ2 H̊+β1−1/2.

4.3. Exact solutions with Leray scaling

Evidently, the integral of (69) is dramatically simplified with the 
choice H̊ = 0. With this choice, (22) implies

s = δe−β1+1/2 (71)

and equations (6) and (7) become identical upon setting


 = ln(s/δ) + β1 = 1/2 ,

a choice consistent with the inequality of (4). Given that for Gaus-
sian core profiles β1 = 0.4417 (see [1]), we have

e−β1+1/2 = 1.0600 ⇒ s > δ . (72)

Thus inequality (4) is satisfied, although only barely. Proceeding, 
the MK system reduces for H̊ = 0 to

ṡ = − c2

2
κ and κ̇ = c1

κ

s2
, (73)

with the Casimir becoming

C = c2

2
κ − c1

s
, (74)

which follows from (65).
Before considering arbitrary initial C̊ , we consider the easily 

tractable case where both H̊ = 0 and C̊ = 0. This implies

sκ = 2c1/c2 = 2 sinα . (75)

Therefore if we choose

2 sinα < 1 or α <
π

6
, (76)

then the other part of the inequality (4) is satisfied, viz. s < 1/κ . 
Note, the value of α = π/4 chosen in [1,2] does not satisfy this 
inequality. Using (75) in the κ̇ equation of (73) gives

κ̇ = c2
2

4c1
κ3 , (77)

which is easily integrated to obtain

− 1

2κ2 + 1

2κ̊2 = c2
2

4c1
(t − t̊) (78)

and the exact solution

κ−1 =
√

c2
2

2c1
(t∞ − t) =

√
cotα

8π
(t∞ − t) , (79)

where

t∞ = t̊ + 2c1

c2
2κ̊

2
= t̊ + 8π tanα

κ̊2
. (80)

As expected, smaller values of κ take longer to diverge.
The rest of the solution is obtained from (75) and (71), i.e.,

s = 2κ−1 sinα = 2 sinα

√
cotα

8π
(t∞ − t)

=
√

sin(2α)

4π
(t∞ − t) = δe1/2−β1 . (81)

It is a simple matter to insert the solutions of (79) and (81) into 
(6), (7), and (8) to verify directly that they are indeed an exact 
solution, one that satisfies the inequalities of (4).
9

Now consider the more general case C̊ �= 0. Solving (74) for s
and inserting into (73) gives

κ̇ = κ

c1

(c2

2
κ − C̊

)2 = c2
2

4c1
κ

(
κ − 2C̊/c2

)2
, (82)

which is easily integrated to obtain the exact solution,

ln
(

1 − 2C̊/c2

κ

)
+ 2C̊/c2

κ (1 − 2C̊/c2
κ )

− ln
(

1 − 2C̊/c2

κ̊

)

− 2C̊/c2

κ̊ (1 − 2C̊/c2
κ̊ )

= − C̊2

c1
(t − t̊) . (83)

Because the model only makes sense if δ, s, and κ are all greater 
than or equal to zero, we must have c1/s = κc2/2 − C ≥ 0 or 
1 − 2C/(κc2) ≥ 0, which in fact according to (59) is true for all 
allowable values of H̊ .

Assuming the physical initial conditions satisfy κ̊ > 2C̊/c2, we 
see the κ̇ > 0, so κ continues to grow, with divergence occurring 
at the finite time

t∞ = t̊ + c1

C̊2

⎛
⎝ln

(
1 − 2C̊/c2

κ̊

)
+ 2C̊/c2

κ̊ (1 − 2C̊/c2
κ̊ )

⎞
⎠ , (84)

an approximation to (70) but a generalization to (80). This is de-
picted in Fig. 9(a),

The quantity t∞ can also be written as a function of κs, which 
makes it convenient for assessing initial conditions compatible 
with (4). Using (74) we obtain

t∞ = t̊ + c1

C̊2

(
ln(X) + 1

X
− 1

)
, (85)

where

X = 2c1

c2κ̊ s̊
= 2 sinα

κ̊ s̊
. (86)

Observe from Fig. 9(a) there is blow up for all values of C̊ , but only 
values consistent with s̊ < 1/κ̊ are acceptable. Thus,

1

s̊κ̊
> 1 ⇒ 2 sinα

s̊κ̊
> 2 sinα . (87)

Therefore after choosing 2 sinα < 1, only blowup times to the right 
of this value in Fig. 9(b) are consistent with (4).

As for the case C̊ = 0, given the solution of (83) for κ , we im-
mediately obtain the solutions for s and δ from (74) and (71), 
respectively,

s = 2c1/c2

κ − 2C̊/c2
= δ e−β1+1/2 . (88)

At late times, expansion of (83) again gives

κ−1 ∼
√

c2
2

2c1
(t∞ − t) , (89)

in agreement with the Leray scaling suggested in [1] and proven 
above in (79) and (81). Note, in (79), the constant C̊ only appears 
via t∞ . The zero energy case is special in that it is tractable, but 
the Leray scaling is ubiquitous. Inserting (79) into (88) we obtain 
for late times

s = δ e−β1+1/2 ∼ √
2c1(t∞ − t) (90)

and so κs ∼ 2c2/c1 as for the case with C̊ = 0.
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Fig. 9. Plots of the blowup times for H̊ = 0, C̊ �= 0, (a) according to Eq. (84) where τ = (t∞ − t̊)C̊2/c1 vs. 2C̊/(c2κ̊) and (b) according to Eq. (84) where τ = (t∞ − t̊)C̊2/c1 vs. 
X = 2 sinα/(κ̊ s̊).
4.4. General analysis

Let us now return to (69) and consider the general solution. Be-
cause C̊ is arbitrary, it follows immediately from (68) that there 
is a family of equilibrium points of δ when the righthand side 
vanishes. However, by (67), all of these correspond to κ = 0 (see 
Appendix A for an analysis). Also note, for κ > 0, δ̇ < 0 and so 
even when H̊ �= 0, we expect a solution where δ approaches zero. 
If indeed δ → 0, then (22) implies

s ≈ δe−β1+1/2 +O(δ3) (91)

for all H̊ ; i.e., as for H̊ = 0, δ must go to zero with s along the line

s = δe−β1+1/2 , (92)

while from (67) κ must diverge as

c2

2
κ = C̊ + c1

δ
eβ1−1/2 . (93)

Note, the sign of the righthand side of (68) is definite provided 
C̊ > 0 and δ > 0.

Let us explore further the behavior for small δ. To this end we 
use

erf(
√

y) = 2√
π

∞∑
n=0

(−1)n yn+1/2

n! (2n + 1)
,

for small y ∈R+ , 
√

y erf(
√

y) ∈ Cω , and the identities are

d

dx
erf(x) = 2√

π
e−x2

and erf(x) = d

dx

(
x erf(x) + e−x2

√
π

)
.

(94)

Upon multiplying (68) by δ and defining u = δ2/2, it takes the 
form

u̇ = u
1
2 g(u) − f (u) (95)

where f , g ∈ Cω(R) are defined by

f (u) = e−2H̊u+2β1−1c1

(√
2π H̊u erf

(√
2H̊u

)
+ e−2H̊u

)
(96)

g(u) = −e−2H̊u+β1−1/2
√

2 C̊ , (97)

and satisfy
10
Fig. 10. Plots of f̄ = e−x(
√

πx erf(
√

x) + e−x) (blue), ḡ = 0.10 × e−x (orange), and 
f /g = √

πx erf(
√

x) + e−x (green) vs. x = 2H̊u. Note, √u∞ ∼ f (u∞)/g(u∞) are the 
equilibria points corresponding to κ = 0.

f (0) = c1e2β1−1 and g(0) = −√
2 C̊ eβ1−1/2 . (98)

Using (94) we see that the function f (u) is positive and monotoni-
cally decreasing, while the function g(u) has a sign determined by 
the sign of C̊ , and is at least monotonic for small argument.

The functions f and g are depicted in Fig. 10.
Thus, near u = 0 the MK system behaves as

u̇ = u
1
2 g(0) − f (0) (99)

Because u
1
2 g(0) − f (0) is not Lipschitz on u ∈ [0, ε] with ε > 0, 

we do not have the usual ODE existence theorem to rely on (see 
e.g. [25]). If u(0) = ů > 0 is small, then u̇(0) = ů

1
2 g(0) − f (0) < 0, 

because c1 > 0, and u should decrease. However, the Lipschitz con-
dition for uniqueness is a sufficient but not a necessary condition. 
Thus, further analysis is necessary, but indeed (99) does have a 
unique solution. To see this let u1 and u2 be two solutions that 
coincide at some time. A measure of their difference

D =
(√

u1(t) − √
u2(t)

)2
(100)

satisfies Ḋ = 0 for all time, so they must coincide.

From (99) we see there is a family of equilibrium points given 
by

√
u0 = f (0) = c1eβ1−1/2

√
˚

(101)

g(0) 2 C
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which only exists for C̊ > 0. However, these are merely the κ = 0
solutions mentioned above. In Appendix A it is seen that lineariza-
tion about any of these equilibrium solutions yields a spectrum 
with two zero eigenvalues and one unstable (positive) eigenvalue. 
This implies κ will grow so as to decrease the radius of curva-
ture.

In any event, it is a simple matter to integrate (99), yielding

2

g(0)

[
u

1
2 + f (0)

g(0)
ln

(
1 − u

1
2 g(0)/ f (0)

)]
= t + const , (102)

which, upon expanding, gives for small u

δ ∼ √
2 f (0)(t∞ − t) = eβ1−1/2

√
2c1(t∞ − t) , (103)

the solution with Leray scaling consistent with (90) and (79).

5. Conclusions

We have shown that the system put forth by Moffatt and 
Kimura [1,2] for the interaction of two tilted vortex rings has so-
lutions with finite-time singularity. This was achieved by finding 
the noncanonical Hamiltonian structure of the equations, which 
naturally led to a geometrical depiction and explicit forms for 
the solutions by making use of the newly discovered Hamiltonian 
and Casimir invariants. Exact Leray divergence was demonstrated, 
within the inequalities proposed in [1,2] for the model.

Several avenues for future work remain: in future publications 
we will consider the effect of viscous dissipation, further physical 
interpretation of the results, and various bounds and perturba-
tion expansions. Of particular interest is to derive the Hamiltonian 
structure that we have obtained for the Moffatt and Kimura model 
from that of Euler’s equation. This will elucidate how the Hamil-
tonian and Casimir of the reduced model relate to those of the 
parent model. Insights about vortex lines and Casimirs described 
in [26], may be of particular help in this regard.
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Appendix A. Non-Hamiltonian spectrum

Usually one studies the equilibrium points of a dynamical sys-
tem in order to get a view into the nature of trajectories in phase 
space. Thus we study the only equilibrium point of (1), (2), and 
(3), viz. κ = 0, for any values of δ and s, which corresponds to 
the vortex rings having infinite radii. Interestingly, although our
11
system of equations (1), (2), and (3) is a Hamiltonian system, it has 
an associated singular Poisson tensor at this equilibrium point. As 
discussed in [21,24], such systems may not have the usual Hamil-
tonian spectra when expanded about an equilibrium state, i.e., the 
symmetry of growing and decaying eigenvalues having the same 
magnitude.

The singularity occurs at κ = 0 for any values of δ and s. Such 
co-dimension one singularities may have the peculiar spectra. This 
kind of singularity follows because the Poisson tensor J , as given 
by V, vanishes identically for κ = 0. This is seen because the 
components V i for i = 1, 2, 3 are all proportional to κ . At other 
points of phase space it has rank 2, while along this line rank 
zero.

The only equilibria of our system occur along the line κ = 0, 
while any values of δ and s are allowed. Thus expanding as

s = s0 + s̃ , δ = δ0 + δ̃ , and κ = κ̃ (A.1)

we obtain a simple eigenvalue problem⎡
⎢⎢⎣

˙̃
δ

˙̃s
˙̃κ

⎤
⎥⎥⎦ =

⎡
⎣ 0 0 a

0 0 b
0 0 L

⎤
⎦

⎡
⎣ δ̃

s̃
κ̃

⎤
⎦ , (A.2)

where

a = − c2δ0

2s0
, b = −c2(ln(s0/δ0) + β1) , and L = c1

s2
0

,

with the matrix

M :=
⎡
⎣ 0 0 a

0 0 b
0 0 L

⎤
⎦

giving rise to following characteristic polynomial by assuming tem-
poral behavior of eγ t

γ 2(γ − c1/s2
0) = 0 . (A.3)

Thus the spectrum of M is {0, 0, c1/s2
0}.

In the right coordinates M is the direct sum of commutat-
ing diagonal (semisimple) and nilpotent pieces. To this end we 
change coordinates by replacing δ̃ and s̃, while retaining κ̃ , as fol-
lows;

δ̄ = δ̃ − a

L
κ̃ and s̄ := s̃ − b

L
κ̃

in which case M is replaced by

M̄ :=
⎡
⎣ 0 0 0

0 0 0
0 0 L

⎤
⎦

and the linear dynamics is trivial. With κ̃ exponentiating away at 
fixed initial δ̄ and s̄. From this we conclude that the rings will ini-
tially exponentially decrease their radii of curvature while δ and s
decrease.

Appendix B. The Leray Hamiltonian

In light of Sec. 4.4, we observed that for small δ the system 
exhibits Leray scaling. This behavior follows upon expanding (69)
or by approximating (1), (2), and (3). Here we follow the second 
route, using in the vicinity of the singularity s ∼ e1/2−β1δ =: rδ, to 
obtain the following set of equations that describe the dynamics 
near the singularity:



P.J. Morrison and Y. Kimura Physics Letters A 484 (2023) 129078
δ̇ = − c2

2r
κ + ε

2δ
(B.1)

κ̇ = c1

r2

κ

δ2
. (B.2)

Upon setting ε = 0 (future work considers its retention), we expect 
this reduced system of (B.1) and (B.2) to be Hamiltonian. Indeed, it 
conserves the quantity

c= c2

2
κ − c1

rδ
, (B.3)

which upon using (42) and (54) can be shown to be the Casimir of 
(49) expanded to leading order, and (B.1) and (B.2) can be written 
in the noncanonical Hamiltonian form as[

δ̇

κ̇

]
=

[
0 −κ/r

κ/r 0

][
∂c/∂δ

∂c/∂κ

]
=

[
0 −κ/r

κ/r 0

][
c1/(rδ2)

c2/2

]
.

(B.4)

Upon changing variables according to

q = rδ and p = − ln(κ) (B.5)

the following canonical Hamiltonian form is obtained:

q̇ = ∂c

∂ p
= − c2

2
e−p and ṗ = − ∂c

∂q
= − c1

q2
(B.6)

where the Hamiltonian in canonical coordinates is

c= c2

2
e−p − c1

q
. (B.7)

Various canonical coordinate changes are possible, but given that 
there is a simple quadrature, they do not add insight. Clearly, upon 
setting c to a constant, c̊, and solving for p, as is usual for natural 
Hamiltonians of the form of (B.7), we obtain the quadrature∫

dq

c̊q + c1
= −

∫
dt , (B.8)

leading, yet again, to the Leray solution

q = rδ ∼ √
2c1(t∞ − t) , (B.9)

with κ following from c = c̊,

c̊+ c1

q
∼ c1

q
= c2

2
e−p = c2

2
κ ⇒ κ ∼

√
2c1

c2
2(t∞ − t)

.

(B.10)

Appendix C. Using κ as a clock

There are various paths to quadrature. Here we present one 
where the system is transformed so that κ measures time. This 
is done by dividing (6) and (7) by (8), giving

dδ

dκ̄
= −sδ = −xδ2 (C.1)

ds

dκ̄
= −s2

[
ln

( s

δ

)
+ β1

]
= −s2
 (C.2)

where κ̄ = c2κ/c1. Using (9) we can replace (C.2) by

dx

dκ̄
= −δx(
 − 1/2) . (C.3)

Next, because H is κ independent, we can use (21) in (C.1) to ob-
tain the quadrature
12
dδ

dκ̄
= −e1/2−β1

2
δ2 eδ2 H̊ ⇒

δ∫
δ̊

e−δ′2 H̊

δ′2
dδ′ = −e1/2−β1

2

κ̄∫
˚̄κ

dκ̄ ′ .

(C.4)

With the substitution u = δ2 H̊ , (C.4) becomes

H̊δ2∫
H̊ δ̊2

e−u′

u′3/2
du′ = − c2

c1

e1/2−β1

√
H̊

(κ − κ̊) . (C.5)

The lefthand side of (C.5) can be written in terms of the incom-
plete gamma or error function defined by (40). Then, inverting 
(C.5) for δ(κ) and inserting into (C.3) gives the following separable 
equation:

dx

dκ
= − c2

c1
x
(

(x) − 1/2

)
δ(κ) , (C.6)

the solution of which yields x(κ), whence we obtain s = xδ imply-
ing s(κ). Finally, upon inserting s(κ) into (8), we can obtain κ(t), 
and all quantities are known as functions of time.
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