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The well-known Maxwell—Vlasov equations that describe a collisionless plasma are cast into hamiltonian form. The dyna-
mical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these
variables and the energy functional to produce the equations of motion.

Systems of partial differential equations that pos-
sess hamiltonian structure are of great importance in
physics. Historically, the first step to quantization has
been the recognition of classical hamiltonian form.
More recently, the underlying Hamiltonian structure
of equations such as those of Korteweg and de Vries
{1], Benjamin and Ono [2], and Benney [3] have
been discovered. For these equations the useful va-
riables are noncanonical. In addition the use of non-
canonical variables in discrete systems has been of
practical advantage [4]. Recently, the equations of
eulerian hydrodynamics and ideal MHD have been
shown to be hamiltonian in terms of the physical
although noncanonical variables [5]. The great diffi-
culty encountered when attempting to cast the
Maxwell—Vlasov system into hamiltonian form has
been in the search for a set of canonical variables. This
difficulty is compounded by the functional coupling
between functions of field variables and functions of
phase space variables. We have circumvented this pro-
blem by producing a Poisson bracket in terms of the
noncanonical variables, £, (r,v, ), E(x, t) and B(x, t).
Here £ is the distribution function of species e, E is
the electric field and B is the magnetic field.

In the following we informally define the mathe-
matics underlying what is meant by a continuous
hamiltonian system; the mathematics is tailored to
the system at hand. The important result is essentially
the Poisson bracket defined by eq. (9). This is the
bracket for the full Maxwell—Vlasov system. A reduced
form of this bracket is then shown to produce the

Poisson—Vlasov system. Finally a formulation of this
reduced system with the distribution function as the
sole variable is presented.

We consider the following equations:

Bi(x,1)=—VXE(x,1), (1)

Ef(x, 1) = VX B(x, 1) ~ 2 e, [0 £,(z,0P(lx) dz,(2)
o Rl

fofz,1)  eq
fat(z$ t)=—‘). ai —;1— f[E(x; t)
a R,
of (2,
+vX B(x, )] o2 1) Pzlx)dx . ?3)

ov

Eq. (1) is Faraday’s law; eq. (2) is Ampeére’s law with
the inclusion of the displacement current. (We use
rationalized gaussian units with the speed of light set
to unity.) The remaining two Maxwell equations will
take their usual role as initial conditions. Eq. (3) is the
Vlasov equation where e, and m, are the signed charge
and mass, respectively, of species a. Formally, we treat
[, as a function of the phase space variable z = (r, v)
while F and B are functions of the field variable x;
hence, we have used the operator P(z[x)=8(x —r),
where 8(x) is the Dirac delta function, in the coupling
terms of egs. (2) and (3). The region of integration
R; =AX R3 where R = (—o0, @) and ACR3. R,=A.
We seek to represent these equations in the form

dxifor=[x',H), i=0,1,..,6, 4)
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where

xi=f,, for i=0,
=F, for i=1,2,3,
=B, for i=4,5,6,

the hamiltonian functional

Axiy=2 [ dmp?, dz+f (E2+B%)dx
@ g,

and the operator [ , ] is the Poisson bracket (which
is complicated since the x?’s are noncanonical).
Before presenting the bracket we now lay some
groundwork. Suppose that the solutions of egs. (1),
(2) and (3) are contained in a vector space w = w
X w- (over R) which is the direct product of sub-
space w; whose elements are functions of z, and sub-
space w, whosé elements are functions of x. Then ob-
serve that the operator P(z|x) is used in egs. (2) and
(3) to map elements of one subspace to the other.
Now suppose that w is equipped with the following
inner product

@y= [ ghydz+ [grhydx, ®)
Ry Ry

where all g € w have the form g = (g7, g,) such that
g1 € wy and gy € wy. (Clearly eq. (5) satisfies the ne-
cessary algebraic properties for an inner product.) We
define our Poisson bracket in terms of this inner pro-
duct and a skew-symmetric matrix operator on w as
follows:

(£, 61 = 22 6Fsx1076CI8xT) . ©)
a’l’]

The quantities F and G are elements of £, a vector

space (over R) of Frechet differentiable functionals

of the functions f, , E and B [differentiable with respect

to the L2 norm defined by eq. (5)]. For example £

contains elements of the form
Fix'y =F1 (X% + Fyix7}, i#0, Q)
where
ﬁg{xi}= pr(xﬁaXZg)dxg, =12,
R
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withx,=z, x2 =x,i; =0and iy =1, 2, 3. The sub-
script k£ on Xt '8 means that Fgisin general a function
of all partial derlvatlves of x’B of degree k. Clearly the
hamiltonian functional H{xl } is of the form of eq. (7)
with k = 0. § also contains arbitrary C* functlons of
Xk for all i. In eq. (6) the quantity 8F/6x is the func-
tional derivative of F with respect to x’; it is defined
by

(d/de) F{xO(z) + ew(2)} = = G F[5xCIw) ,

and similarly for i # 0. Observe w(z), SEsx0 € w)
and for i # 0 § F/6x'€ w,. [Note 6)(0(2)/8)(0(2 )=
8(z — z') and 8xi(x)/8x!(x") = §(x — x); since for the
hamiltonian k = 0, functional differentiation reduces
to ordmary partial differentiation of its integrands:
6H/6f 2m v2,8H/8E = E and 5H/5B = B.] The
bracket defined by eq. (6) is a bilinear function which
maps §2 X § to . In addition we require that the
operator O/ endow our bracket with the following
properties:

(i) [F, F] =0 for every F € . Since & is defined
over R this is equivalent to [F, G] = —[G, F] for
F GEQ.

(ii) The Jacobi identity

[E, [F,G]]1+[F, [G, E11+[G, [E,F1]=0

for every E, F, G € Q.
Clearly these are the usual properties possessed by a
Poisson bracket. A vector space together with a bracket
which has these properties defines a Lie algebra [6].
I summary, by a hamiltonian system we mean a
system of partial differential equations which possess
an integral invariant and a bracket with properties (i)
and (ii), such that the system is amenable to the form
of eq. (4).
We now introduce the following operator (co-
symplectic form):

251 _p2-1]
~{fp o} P —p2 W
’_’_’:_”_‘_F: JE
©h=pg? 1103 1D | ®)
————— s = — = = —«‘
1-2 (N f
LPB P b 1 03 ]

This is a 7 X 7 matrix operator which maps w into w.
05 is a 3 X 3 array of zerosand D = [e,]k(a/ax])] where
€% is the Levi-Civita tensor. The braces in the upper

left hand entry are used to indicate the usual Poisson
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bracket {g, h} = 0g/0r - 0h/dv— 0g/ov- dh/0r. This
entry maps w; into w;. The lower right hand block

(delineated by the double hash marks) maps w, into
w,. The off-diagonal elements

Pg"l f( )*—de
and
of,
2—]1 — & o
P2 =m—f ( Xu)de
R

send elements of w, into w;. The off-diagonal ele-
ments

e of,

-2 - "a ) o
PP?=-e [958 paz,
Ry

and

po2= f()(—x )sz

send elements of w; into w,.

Since 0¥ is skew-symmetric, property (i) is satis-
fied. We have proved the Jacobi identity for the first
and last terms of eq. (9) below. For the cross terms
we have done so for a class of restricted functionals
of the form of eq. (7) with k = 0. (These properties
depend upon integrations by parts and subsequent
neglect of surface terms. We require ' (z, xg) to
vanish as |v] = oo for all elements of §2. The surface
terms obtained by spatial integrations by parts can
also be assumed to vanish [7].) Writing out eq. (6) we
obtain

[F,G) = [F,G] +[F, G, , ©)

where
8F 8G
1h.h = [ff{sf i J
Lo Ge)e

8F 2.1 (8G
_11/;87%1% 1-(§)dz) , (10)
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[ﬁ,é]25§{ 3F 12 (gf%)dx

8E ' E
6F 1_>2(BG)
+ SB Py 1, dx
§G 866G SF)
+ —_— —_
f( VXSB B VXBE dx (an

Substituting the x! and A into eq. (9) renders eqs. (1),
(2), and (3) in the form of eq. (4). Observe that the
first term of eq. (10) yields the Vlasov equation with-
out the coupling term; the last term of eq. (11) yields
the Maxwell equations in vacuum. The remaining terms
yield the coupling terms.

Neglecting all the terms which contain B in eq. (9)
and A produces a bracket for the Vlasov—Poisson equa-
tions [i.e., eqs. (2) and (3) with B = 0; the constraint
V X E =0 is required of functionals of §2]. This system
can be further reduced by eliminating £ in the Vlasov
equation in terms of f,*!. The bracket thus obtained is

Eff()[gf gﬁ’} (12)

From eq. (12) we obtain the Vlasov equation in the
form

6fa_|:6fa & Hy,
&t Lsf,’ of,

|-,

where

A7) = D( [ wpr 00

Ry

3 ) [ r@nemen @),

R; Ry

HY = ym v? and HYy = e2/Ir —rl. H is the particle
hamlltoman which we observe H"‘ 6HE/8 fo-

*1 This reduced form was derived by Allan N. Kaufman in
collaboration with the author while both were guests at the
Aspen Center for Physics. It has been brought to our atten-
tion that J. Gibbons has independently obtained this re-
sult [8].
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