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I. INTRODUCTION 

l . l  Overview 

The traditional method for obtaining a Hamiltonian system is by 
way of a Lagrangian, that is obtained by physical considerations. The 
system is then Legendre transformed ( i f  possible) to obtain Hamilton's 
equations in canonical form, a form that is conveniently representable 
in terms of the Poisson bracket. Canonical transformations preserve 
the form of the Poisson bracket; the idea of canonical conjugacy is 
maintained. An arbitrary coordinate transformation does not preserve 
the form of the Poisson bracket and consequently the canonical form 
of Hamilton is obscured. Conjugate variables cannot be discerned and 
the Poisson bracket may depend explicity on the dynamical variables. 
In spite of the obscured form, certain algebraic properties of the 
Poisson bracket are maintained: bi l ineari ty, antisymmetry, and the 
Jac.obi condition (c . f . ,  below). This motivates an alternate definition 
of Hamiltonian: A system is Hamiltonian i f  one can find a Poisson 
bracket, with these algebraic properties, and a Hamiltonian, such that 
together they generate the time evolution of the system. For the case 
of even-(nondegenerate) finite-dimensional systems, the theorem of 

Darboux 1'2 provides an algorithm for locally constructing canonical 

variables. Also, there exists an extension of Darboux's theorem 3 for 
the case of inf ini te dimensional systems. (The situation here is 
subtle -- gauge conditions may be necessary for a canonical descript- 
t ion.) 

In this paper we present noncanonical yet Hamiltonian descriptions 
of many of the non-dissipative f ield equations that govern fluids and 
plasmas. The dynamical variables here are the usually encountered 
physical variables. These descriptions have the advantage that gauge 
conditions are absent, but at the expense of introducing peculiar 
Poisson brackets. Clebsch-like potential descriptions that reverse 
this situation are also introduced. 

In the remainder of Sec. l the ideas sketched above are considered. 
The presentation here is admittedly non-rigorous. The reader who is 
interested in a more rigorous formulation of some of these ideas is 
directed to Refs. 4 - I f .  Section 2 deals with the ideal three-dimen- 
sional compressible fluid. The noncanonical Poisson bracket for ideal 
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magnetohydrodynamics 12 is presented. Various f luid descriptions are 
seen to be represented by portions of this bracket. The plasma equa- 

tions of Chew, Goldberger and Low 13 are considered. The constants of 
motion for MHD are discussed and the bracket is shown to generate the 
infinitesimal transformations of the ten-parameter Galilean group. 
This section is concluded by presenting a canonical formalism. Various 
potential decompositions of the f luid velocity and the magnetic f ield 
are discussed. Section 3 deals with the Hamiltonization of the equa- 

tions of two-dimensional vortex fluids and guiding center plasmas. 14 
The sole noncanonical dynamical variable in this case is the scalar 
vort ic i ty.  The canonical description is given. Section 4 is concerned 
with the equations that govern ful ly nonlinear ion-acoustic waves in 
plasmas. This is the system from which the Korteweg-de Vries equation 

is obtained by approximation. Section 5 covers the Maxwell-Vlasov 15-18 
equations. The noncanonical Poisson bracket is presented. The way to 

"canonize" this form 19 is indicated at the end of Sec. 6. The body of 

Sec. 6 deals with the Vlasov-Poisson equations. 15 I t  is observed that 
these equations possess the same noncanonical Poisson bracket as that 

19 for two-dimensional vortex fluids. A Clebsch-like potential decom- 
19 

position is seen to yield a canonical Hamiltonian description. 

1.2 Generalized Hamiltonian Field Theory 

Consider the following system of autonomous evolution equations: 

i § F i § § u t ( t , x )  = ( u , x )  i = 1 , 2 ,  . . . .  m ( l . l )  

§ § Rn Here, each u i is a function of time t and x, where x ~ V c 

for some integer n . The F i are general nonlinear partial differ- 

ential or integral operators on u . Specifically the F i may be any 
functions (with a f in i te  number of arguments) of the following: 

-9- -9- 

i )  u and x 

i 
ii) u k - 

~kui 

~xkl ~xk2"'" ~xknn 

where the Xi's are the components of 
n 

k = :  iki: 

X, 
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and ~ has components  k i which are pos i t i ve  

integers. 

V 
where 

f i s  some f u n c t i o n  and t he  k e r n e l  K i s  

i n d e p e n d e n t  o f  u . 

We denote this class of operators by ~ .  ( I . e . ,  F i E ~ .) 

We are not concerned with specif ic auxi l iary conditions neces- 
sary for existence and uniqueness of solutions, but suppose solutions 
do exist and are elements of a vector space m (over R ) that is 
equipped with the inner product 

<flg> = Ivfg dT , (1.2) 

where d% is the volume element f o r  V c R n , 

Customarily in f ie ld  theory certain integrals or functionals 
arise. For example, the integral of the Hamiltonian density is that 
part icular functional that generates the evolution. Here the 
evolution w i l l  be generated via generalized Poisson brackets that 
operate on functionals. To this end we define a vector space 

(over R ) of  d i f f e r e n t i a b l e  func t i ona ls  tha t  have the form 

G{~/] = G(u,x) dr (1.3) 

where G ~ ~ is an operator on m . We define di f ferent iat ion of 
funct$onals in the usual way. 

d--6- + Ew = ~ w , 

c =0 6uZ 

(1.4) 

where the variat ion is taken with respect to functions w that 
vanish at the boundary of V . Equation ( I .4)  defines the functional 

derivative 6F/6u I , which is in general a nonlinear operator of the 
class ~ that operates on m . 
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Before proceeding, consider the following examples of functional 
differentiation: 

~0 2~ i) Suppose Flu] = F(x,U, Ux,Uxx, . . . )dx 

where the function u is defined on (0,2~) and F is C ~ 
in all its (f inite number) of arguments. By Eq. (I.4) 
we observe 

6F BF d BF d 2 ~F 
- + 

6u ~u dx ~u x dx 2 ~Uxx 

i i )  Suppose F [u'] = J(x" l ,  i .e, ,  the functional composed 

of functions u i evaluated at the point-x' . Using the Dirac 

delta function ~ (~) , we can represent this in the form of 
Eq. (I.3) as 

u i  -~ 
F[u] = (~)6(~ - x')aT , 

V 

then from Eq. (1.4) we obtain 

6u1(x'). - 6 .6(~ - ~') 

where 

0 i ~ j 

6iJ = 1 i = j 

Continuing now, we recall that the usual Poisson brackets 20 
of field theory have the form 

6~k ~Dk ~k dT (1.5) 
k 
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where the dynamical equations generated by some Hamiltonian, 

8qk B~k 
~t - [qk 'HI ' ~t -[~k 'HI 

H , are 

Clearly the operator of Eq. (I.5) is antisymmetric and i t  is well 
known that i t  satisfies the Jacobi condition (cf. below). We gen- 
eralize this form by defining the following generic bil inear product 
on ~ : 

[F,G] = < 6F I oiJ 6G > 
6u ~ 6u 3 

(1.6) 

where repeated index notation is used and 0 i j  ~ ~ .  We desire our 
form, Eq. ( I .6),  to possess the same algebraic properties as Eq. 
(1.5), i .e . ,  

i) [ F,G] = -[O,F] for F, G e 

i i )  the Jacobi condi t ion 

[E,[F,G]] + [F,[G,E]] + [G,{E,F]] = 0 

f o r  every E, F, G 6 

The f i r s t  condition requires that the operator 0 i j  be anti-self-adjoint 
with respect to the inner product on m . The second condition is more 
stringent and wil l  be discussed in the next subsection. We note that 
a bracket of the form of Eq. ( I .6),  with properties i) and i i ) ,  
defined on R defines a Lie Algebra of functionals. We now define 
what we mean by Hamiltonian. 

Definition. A system of equat!ons of the form ( l . l )  is Hamiltonian 

i f  there exists an operator 0 IJ E ~  and a functional H such that 
Eq. ( l . l )  can be cast into the form 

~ 

~t- = 

where [ , ]  makes ~ a Lie Algebra. 
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1.3 The Jacobi Condition 

We now pinpoint what is required of an ant i -se l f -adjo int  0 i j  
in order for the Jacobi condition to be satisf ied. Since the Jacobi 
condition involves nested Poisson brackets, we require the functional 
derivative of a Poisson bracket. To this end, we f i r s t  obtain a 
property of second variation. We conclude this subsection by consid- 

ering two general classes of 0 i3 - : those that are independent of 

u and those that are l inear in u in a part icular way. 

Recall Eq. ( I .4)  

F i +ew = ~ w - G 

g=O 

G as defined here is clearly an element of e . Dif ferentiat ing again, 
we obtain 

d---G J + qz = . . z w 
dq 6u 3 ~U 1 

n=O 

(1.7) 

Equation (1.7) defines the operator ~2F/~uJ~ui 6 ~ that operates 

on u as well as operating l inear ly  on z . Since the order of 
d i f ferent iat ion is immaterial, we must have the following: 

62F w z = w ~ z 
6uZ6u 3 

(1.8) 

Since the Poisson bracket of any two functionals is also a 
funct ional ,  formally we have 

d [u k E 
46 [F,G] + w] 

r 

(1 .9)  

By Eq. (1.6) we also have 
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d-~-[F,G] [u k + ew] 
e=0 

_ d <6F 
- - - - - - - r -  

de 6u I 
oij 6G h [u k + ew] 

6u I / 

e=0 

62 F 

6uk6u i 
w 013 

6u 3 
0 ij ~2G w> 

6uk~u j 

6F 
-----r- 

6u I 

60 ij 6G 
6u k (w) 6--~ / ( l .  ZO) 

The f i r s t  two terms of Eq. ( l . lO) come from the d/de acting on 

~F/~u i and ~G/6u j respectively. The last term arises from the 

dependence of the operator 0 i j  on u . This term is complicated 

in that the symbol 60iJ(w)/6u k E ~ is used for an operator that 

acts on u , l inearly on w , and also on ~G/Buj to i ts r ight. We 

require that this term be written as follows: 

6u I , 6u j w ( i .  i i )  

where w is now isolated from the operator. (For the case when 

0 i j  only involves partial di f ferent iat ion, this is obtained by 
integration by parts.) Using Eqs. ( I .8) ,  ( I .9) ,  ( l . lO) ,  and ( l . l l ) ,  

the anti-self-adjointness of 0 IJ, and the fact that these relations 
hold for arbitrary w within a wide class, we str ip away the 
integration to obtain 

6IF G] 62F " " 6G 62G 6F , _ 013 0iJ 
6u k 6ul6u k 6u j 6uJ6u k 6u i 

, ~ (1.12) 
6u I 6u 3 
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Using Eq. (l.12) in the Jacobi condition yields 

[E,[ F,G]] + cyc = < 6E_E__ I 0m~ K~j ( 6F ' 6 u  m 6u I , 6G. )~6u 3 

+ cyc (1.13) 

Here cyc means cyclic permutation and we observe that the only 

surviving terms are those that involve the --K~ j . The terms that 

involve the second variation cancel by virtue of the anti-self- 

adjointness of 0 i j  and Eq. (1.8). The following theorem is 
apparent. 

Theorem I. I f  0 i j  is independent of ~ (including any operator 

of class ~ on ~ ), then anti-self-adjointness is sufficient for 
the Jacobi condition. 

u . 
Now we consider a special case where 0 i j  depends linearly on 

We suppose 0 i j  has the manifestly anti-self-adjoint form 

" " ~ [ ij,k uk~r + aJi'k BrUk] (1.14) 013 = ar r 

k,r 

= @/~Xr; where k = 1,2,...,m; r = 1,2,. . . ,n; Br and 

air j ' k  ~ R for all i ,  j ,  k, and r . With this form, the 

quantity ~0 i j  (w)/~u k of Eq. (l.lO) is seen to be 

\ 

_ -  J 6uk r 
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From this we obtain the quantity K~ j by integration by parts 

6U 1 ' 6U j 

E( 6u i r ~r 6u j 6u j r Br 6u I / 

(1.15) 

Inserting Eq. (l.15) into Eq. (l.13) yields a complicated expression 

that vanishes i f  the coefficients a~ j ' k -  satisfy certain properties. 

Theorem 2. Poisson brackets made up of operators 0 i j  of the form 
of Eq. (l.14) satisfy the Jacobi condition i f  

E( r Z t" ik,m aZtJ,k) = 0 i) a k,m a 3'k - a r 

k 

and 

ii) E(arZk'm atJ'k + aki'm aZtJ'k - aZtk'm a J i ' k r  r 

k 

- akj'm aZi'k)r 
= 0 

for all r, t, Z, m, i, and j 

We conclude this section by noting that many of the Poisson 
brackets presented in this paper are of the forms of Theorems l 
and 2. The Jacobi condition for the others can similarly be esta- 
blished by the procedures discussed here. 
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. The Ideal Fluid and Magnetohydrodynamics 
(Double Adiabatic Equations) 

The equations of ideal magnetohydrodynamics are 

(4) v t = -V + v x (V x ~z) - ( ) - p 

Pt = - v .  (p~) 

-i~7 "T% 

(2.1) 

(2.2) 

s t = -V'VS (2.3) 

B t = -BV-v + B.Vv - v. VB (2.4) 

.9- 
T h e  variables of Eqs. (2.1) - (2.4), p, v, ~ and s, are functions 
of three spatial coordinates and one time coordinate. Equation 
(2.1) is the equation of motion for a f l u id  with density p and 

-h- 
velocity v . The magnetic body force term is represented in terms 

of a symmetric stress tensor ~i: B = (B2/2~-T ~ - ~-~ where ~ is the 

magnetic f ie ld .  The symmetry of T B precludes the existence of 

internal torque densities; the equation obtains a symmetry without 

the use of the i n i t i a l  condition V.~ = 0 . Also in Eq. (2.1) the 
internal energy per unit  mass, U(p,s), is a prescribed function of 

and the entropy per unit  mass, s. The intensive variable, 
pressure p and temperature T, are obtained from this function 

= p2Up , T = U s . Equation (2.2) is mass conservation and Eq. P 
(2.3) expresses entropy advection. Equation (2.4) is Faraday's 

law assuming ~ +  ~ x ~ = 0 . I t  is writ ten in a form which is 
manifestly Galilean invariant. Below we obtain the Poisson brackets 
for specific subsets of Eqs. (2.1) - (2.4). The equations of Chew, 
Goldberger and Low are also expressed in Poisson bracket form. 

2.1 Noncanonical Poisson Brackets 

The MHD equations are known to possess several conservation 

laws. In addition to p , the momentum density pv and the energy 

density �89 pv 2 + pU + (B2/2) are densities of conservation laws. 

The symmetry o f ~  B assures that the angular momentum density 

(~ x ~)p , is conserved and also one can show that p(~ - ~t) is 
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21 conserved. S imi lar ly ,  the entropy per uni t  volume o z sp is 
conserved (more generally) pf(s) for a rb i t ra ry  function f ) .  Also, 

~, ~.~ (where ~ = V • X) and ~.~ are conserved densit ies i f  

V.~ = 0 . Below we w i l l  discuss these constants in the context of 
our Poisson structure. 

The natural choice for  the Hamiltonian is the energy functional 

H = pv 2 + pU(p,s) + ~ d% (2.5) 

With th is  as Hamiltonian, the fol lowing Poisson bracket 12 
the Eqs. (2.1) - (2.4):  

[ F,G] = 

produces 

- T6V. --+---v 

+ (V x v) �9 --/ • --+ 

6v 6v 

(2.6) 

(2.6.1) 

(2.6.2) 

+ 
(2.6.3) 

+ B- P P 

�9 ? "-- d'[ 

(2.6.4) 

The f i r s t  term, Eq. (2 .6.1) ,  is a natural extension to higher 
4 

dimension of the K-dV bracket obtained by Gardner. Considered 

as a binary operation of functionals of p and ~ , Eq. (2.6.1) 

sa t i s f ies  the Jacobi condit ion. I f  Eq. (2.5) with ~ set to zero 
and the s dependence of U suppressed, is used as Hamiltonian, 

one obtains the ideal f l u i d  equation of motion with V • ~ = 0 , and 
the cont inu i ty  equation (2.2). The inclusion of Eq. (2.6.2) with 

the same Hamiltonian produces Eq. (2.1) with the Vx~ term. The 
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The sum of these terms satisfies the Jacobi condition. I f  Eq. (2.6.3) 
is added to the previous two, then the resulting bracket considered 

as an operator on functionals of o , v , and s can be shown to 
satisfy the Jacobi condition. I f  Eq. (2.5), with the s dependence 

of U included and ~ = 0 , is used as Hamiltonian then Eqs. (2.1) 

(with ~ = 0), (2.2) and (2.3) are produced. The remaining term, 
Eq. (2.6.4), accounts for the magnetic f ield. The last two terms 
here are doubly contracted dyads, i . e . ,  

B- V 1 6F) . BG _ v ! 6! . 

P 6B 

3 

Bi ~--~. ~i P v~ 
i,j=l ] 

I f  one considers a bracket composed of this term added to Eqs. 
(2.6.1) and (2.6.2), then Eqs. (2.1), (2.2) and (2.4) are produced 

with H = (pv2/2 + pU(p) + B2/2)d~ . I t  can be shown that this 
satisf ies the Jacobi requirements. (We note that the Jacobi con- 

dit ion in no way depends upon the i n i t i a l  condition V.~ = 0). 
Finally, the entire bracket, Eq. (2.6) satisfies the Jacobi require- 
ment. I f  Eq. (2.5) is used as Hamiltonian then as noted Eqs. 
(2.1) - (2.4) are obtained. We summarize the above paragraph 
in Table (1). 

Let us now return to the constants. We divide them into three 
groups, the f i r s t  we call generators 

H = ~ pv + pU(p,s) + -~- aT (2.7) 

= f p~ dT (2.8) 
V 

r + 
= J x x pv dT (2.9) 

U 

l + + (2.10) = p (X - vt) dT 
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These constants together with the Poisson bracket defined by Eq. 
(2.6) generate the infinitesimal transformations of the ten para- 
meter Galilean group. H, of course, generates time translation, 

while ~ and ~ generate infinitesimal changes due to space 
translations and rotations respectively. For example, using the 

k th component of ~ we obtain 

[P,Pk] : - kP 

Iv Z , P k ] = -3kVz 

[S,Pk] = -~k s 

[Bg,P k ]  = -~kBz 

The remaining constant~ ~ , physically corresponds to uniform 

motion of the center of mass of the f luid, i .e . ,  x = v t + const. cm cm 
I t  can be interpreted as an embodyment of Newton's third law; all 
internal forces occur in action-reaction pairs. The only forces 
that can be imparted to the center of mass occur through surface 
terms that here are assumed to vanish. This constant generates 
changes due to Galilean transformation. We obtain 

: 

[ v f ,Gk ]  = t~kV Z - 6Zk 

[S,Gk] = t~kS 

[Bz, G k] = t~kBZ 

The Kronecker delta term of [~[,G k] allows for the boost in 
velocity. 

The second group of constants commute with any functional of 
the dynamical variables. That is, for 
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M = S pdl p (2.11) 

S = [ps dr 
JV (2.12) 

we have 

Ix,M] = [x,S] = o 
f o r  a r b i t r a r y  X 

The th i rd  group of constants is composed of the magnetic 
constants 

= [ B d% (2.13) 
J U 

A-B (2.14) 
J V 

W = v-B dT (2.15) 
V 

These functionals commute with the Hamiltonian [Eq. (2.7)] only 

for  the i n i t i a l  condit ion V.~ = 0 . The constant W also requires 
constant entropy per uni t  mass. 

The double adiabatic equations of Chew, Goldberger and Low can 
also be produced from the bracket Eq. (2.6). These equations 
account for  the presence of a strong magnetic f i e l d  through an 
anisotropic pressure tensor. The pressure paral lel  to the d i rect ion 
of  the magnetic f i e l d  p, d i f fe rs  from that perpendicular, Pi 

I f  the internal energy depends on B, the magnitude of the magnetic 
f i e l d ,  in addit ion to p and s, then our bracket produces the 
double adiabatic equations, i f  we make the fol lowing i den t i f i ca t i ons :  

2 DU 
Pll = p ~) p 

and 

2 ~U ~U 
= p pB Pi d~ 
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To conclude th is  subsection we present an a l te rnate ,  more 
symmetric form of the bracket defined in Eq. (2.6).  I f  we transform 

to the set of dynamical variables [p,o,~,~} , where o = ps is the 

entropy per un i t  volume and ~ = p~ is the momentum densi ty,  then 
Eqs. (2.1) - (2.4) become eight conservation equations ( i f  one 

V.B = 0). The pressure is now determined by p = p2 (~  - -  + adjoins 
- I  < ~ W 

op ) where U(p,o) = U(p,s), As a result of the transformation 

6p ~,,s M,O 

together with s imi la r  transformations for  the other var iables,  
Eq. (2.6) becomes 

/I [ B--IF " V @G~.. 6--p dG~_. V BF]~_p 

V 
-)- 

+ M " 

+0 ~ 

~ )" dT (2.16) 

Notice that  each term of Eq. (2.16) is l i near  in one Eulerian 
variable and there are no terms, l i ke  those of Eq. (2 .6) ,  with 
the density p in the denominator. This feature f a c i l i t a t e s  
evaluating the bracket when polynomial or  Fourier representations 
are used for  the dynamical variables. Also we observe that  Eq. 
(2.16) is of the form discussed in Theorem 2 of 1.3. 
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2.2 Potential Representations 

The use of potent ials to represent vector f ie lds has a h is tory  
that transcends the fami l ia r  potent ial  decomposition of e l e c t r i c i t y  
and magnetism. In th is  subsection, we discuss potent ial  representations 
that  pertain to our Poisson bracket [Eq. (2 .6) ] .  (We note that the 
h is to r ica l  account presented here should not be taken as complete. 
Such a task is hampered by a great deal of  rediscovery in th is  area. 
The interested reader is directed to Refs. 22 - 29). In par t i cu la r ,  
our main goal is to represent the f l u i d  ve loc i ty  f i e l d  in a form that 
f a c i l i t a t e s  a canonical Hamiltonian descr ipt ion,  and to show how th is  
form transforms to Eq. (2.6). Various forms of potent ial  representa- 
t ions "canonize" the subsets of  the MHD equations discussed in 
2.1. The magnetic f i e l d ,  of course, can also be subjected to poten- 
t i a l  decomposition. We conclude th is  subsection with a highly 
symmetric descript ion where th is  decomposition, in addit ion to that 
for the ve loc i ty  f i e l d ,  is done. 

Euler (1769) in his invest igat ion of f l u i ds ,  represented the 

solenoidal vector f i e l d  ~ , where ?.~ = O, in the form 

v = VF x VG (2.17) 

This decomposition in terms of the "Euler potent ia ls"  F and G can 
be shown to be local ly  general. This contravariant representation 

manifestly assures V.~ = 0 . Local ly, F and G must define inde- 
pendent surfaces. The intersect ion of these surfaces defines flow 
l ines.  (In plasma physics i t  is common, as we do below, to represent 
the magnetic f i e l d  in th is  form; the intersect ion of these surfaces 
in th is  case defines f i e l d  l ines . )  This representation is c lear ly  
not unique, since any function of G may be added to F (and vice 

versa) without changing v . More generally any two functions a(F,G) 
and B(F.G.) can replace F and G provided the Jacobian 
~(a,~)/~(F,G) = 1 . [Note, one can add the gradient of an arbi t rary 
harmonic function, @ , to Eq. (2.17) without destroying the solenoidal 

property. In the case where V.~ ~ 0 and ~ is not harmonic, we 
have a form, in the same vein as the Helmholtz representation, which 
was presented by Monge (1784).] 

We now present (as a stepping stone) a representation due to 
Clebsch (1859), which yields a variational description of the incom- 
pressible Eulerian f lu id  equations. I f  

v = aVB + V~ , (2.18) 

where @ is chosen such that V.~ = O, then Euler's equations can 
be represented in Hamiltonian form. The potential a is seen to be 
canonically conjugate, in the usual sense, to the potential 6 �9 

Downloaded 07 Sep 2009 to 128.83.63.21. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



29 

A generalization of Eq. (2.18) that includes density variation 
is the following; 

pv = X?u + p?@ {2,19) 

This decomposition allows (at the expense of obtaining gauge condi- 
tions) a Hamiltonian description for a compressible f lu id.  The 
density p is seen to be conjugate to the potential @ and similar ly, 
X and ~ are canonically conjugate. The Poisson bracket in terms of 
these potentials is 

[F,G] = ~-p T~-@ - Tp- 6-~- + T~- T~- - ~- 6-~ dT , 

(2.20) 

where F and G are functionals of p,@,l and u . I f  the 

Hamiltonian H = J" [~v  2 + pU(p)]d~ is represented in terms of 
these variables by making use of Eq. (2.19), then the equations of 
motion are obtained in the usual manner (e.~., @t = [@,HI) . 
Now suppose 

FIp , r  / [p  + = ,V] , 

then the chain rule for functional dif ferentiat ion yields 

6F 6F" 6F _ 6F" l VIJ �9 6F" (2.21) 
-~- = -V " (~v§ ' ~Sp 6p --2p 6v-~ 

and similar expressions for ~ and ~ . Substitution of these 
expressions into Eq. (2.20) yields a portion of our Poisson bracket, 
Eq. (2.6.1) plus Eq. (2.6.2). [Note by Eq. (2.21), exclusion of 
and u yields the i r rotat ionalpor t ion of the bracket Eq. (2.6.1).] 

Similarly, entropy advection is alloted for by the inclusion 
of an additional potential. Consider the following covariant form: 

pv = ~?~ + p?@ + a?@ (2.22)  
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Here ~ , the additional potentialp is canonically conjugate to o 
the entropy per unit volume. As above, the chain rule for Eq, (2,22) 
yields the Poisson bracket that is the sum of Eqs. (2.6.1), (2.6.2), 
and (2,6.3). 

Consider now a form that includes the magnetic f ie ld 

pv : ]~ x (v x ~) + v@ . (2,23) 

Zakharov and Kuznetsov 29 (1971) presented a Hamiltonian description 
for MHD (with constant entropy/mass), where the vector potential 

of Eq. (2.23) is seen to be conjugate to ~ in addition to main- 
taining the p,@ conjugacy. We emphasize that this form cannot be 
transformed into our bracket. The appropriate form, which respects 

the distinction between the i n i t i a l  condition V.~ = 0 and the 
dynamical symmetries of invariance under Galilean transformation and 
rotation, is 

p~ : (V?).~ - ~.V~ - T~/.~ + pV@ (2.24) 

The following Poisson bracket: 

[F,GI = ~ b - -  ~ - ~  
+ i/d  

yields with Eq. (2.24) and the chain rule, the Poisson bracket Eq. 
(2.6) with the exception of the entropy term [Eq. (2.6.3)]. The 
entire bracket is obtained by adding oV~ to Eq. (2.24) and con- 
sidering the canonical structure that includes o conjugate to ~ . 

To conclude this subsection, we present a formulation that entails 

a decomposition of ~ as well as v I f  we expand ~ in terms 
of Euler potentials as in Eq. (2.17) 

= V~ • V8 , 

then the appropriate expression for v Is 

pv = aW + bVB + pV@ (2.25) 

In this representation the advected f ield labels ~ and B are seen 
to be conjugate to the potentials a and b. The i n i t i a l  condition 

V .~ = 0 is now inherent to the dynamics. The connection to the 
formulation of Eq. (2.23) is easily seen to be made through the 
following: 

a : -VB - (v x ~) , b = W . (V x 7) �9 
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We note that the entire canonical formuation is obtained by appending 
oV~ to Eq~ (2.25). These results are summarized in Table 2. 

3. Two-Dimensional Vortex Fluids and Guiding Center Plasmas 

The equations for vortex advection in two spatial dimensions 
are used to model large scale motions that occur in atmospheres and 
oceans. The same equations have arisen in the study of plasma trans- 
port perpendicular to a uniform magnetic f ield. I f  we assume the 
usual euclidean coordinate system with uniformity in the 

z direction then the scalar vort ici ty is m(x,t) -- z.V x v(x,t) ,  
-9- ^ 

where ~ is the f luid velocity such that v.z = O. For the guiding 

center plasma, m corresponds to the charge density and ~ to the 

x ]~ dr i f t  velocity. The equations under consideration are the 
fol l owing: 

~4w 
~t = -v-Vw (3.1) 

V'v = 0 (3.2) 

For an unbounded f luid ~ can be eliminated from Eq. (3.1) by 

-~" r - ) !  _9. ! V = cO(X ) M(X I~ )dT' , (3.3) 

where we display only the arguments necessary to avoid confusion, 

Here ~ = z x V k (~I~') and k(ZI~') is the Green function for 
Laplace's equation in two dimensions. 

k(~Ix  ) - 47 
Zn [ ( x -x ' )  2+ (y_y,) 2] 

The integration in Eq. (3.3) is over the entire x-y plane; dT ~ dxdy. 
Observe Eq. (3.2) is manifestly satisfied by Eq. (3.3). Eq. (3.1) 
becomes 

~t = - ( ~ )  M(xlx )dT' �9 "?m(~) (3.4) 

Equations (3.1) and (3.2) are known to possess conserved den- 
si t ies, e.g. any function of m is conserved. In addition, the 
kinetic energy, which is the natural choice for the Hamiltonian, 
is conserved. With the density set to unity we have 
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, 

H[~o] = dT = - 1 (~Ix) co(~ ) (~(~) dT dT' 
2 

(3.5) 

The funct ional der ivat ive of Eq. (3.5) is 

6~ 

The Poisson bracket 14 that produces Eq. (3.4) is the 

fol  lowing : 

{F,G] =/ (o(~) { 6F 6G I ~-g ' UJ aT (3.6) 

where {f,g} = (@F/Bx) (~g/@y) - (3f/By) (Bg/Bx). We note that 
the bracket defined by Eq. (3.6) is precisely that for the one- 

dimensional Vlasov-Poisson equations 15'19 (see Sec. 6) i f  one 
replaces the vorticity by the phase space density and the phase 
space (x,y) by (x,v). Also observe that any two functionals com- 
posed of functions of m alone are in involution with respect to 
Eq. (3.6). 

We conclude this section by transforming Eq. (3.6) to canonical 
fom. The discussion of potentials in 2.2 indicates the following 
representation of the vorticity 

: {~,B} . (3.7) 

The chain rule for functional differentiation yields 

BF - 1 6 F  I 6F I BF 1 
(3.8) 

where on the lef t  F is now regarded as a functional of ~ and 8. 
The canonical Poisson bracket for ~ and 8 is 

f IBF BG [F,G] = B-~ B6 
\ 

6F 6G ~ dT 
6B 6~ ! (3.9) 
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which upon substitution of Eqs. (3.8) yields the bracket Eq. (3.6). 
(This is easily accomplished by making use of the relation 

ff{g,h} dT = J-~g{h'f} dT and the Jacobi requirement), 

4. Fully Nonlinear Ion-Acoustic Waves 

In this seciton we present the Poisson bracket for a particular 
approximation of the two-fluid equations of plasma physics that 

30 models nonlinear ion-acoustic waves. In the l imit that the electron 
temperature greatly exceeds the ion temperature, the ion dynamics 
are governed by the cold fluid momentum transport and continuity 
equations, 

= - V V  - (~ Vt X X 
(4.1) 

= (4.2) 
N t - (Nv) x 

Here, v is the ion fluid velocity, normalized to the ion sound speed 

= _ . ~  where T e is the electron temperature and m i the ion C S 

mass, N is the ion density that is normalized to n o the quasi- 

neutral electron or ion density, x and t are expressed in units 

of the electron Debye length ~D=~Te/4~no eZ and ion 

plasma frequency ~pi = ~/4~noe2/mi respectively. The electro- 

static potential r couples the ion dynamics to the electrons through 
Poisson's equation 

@xx = n(~) - N (4.3) 

Here, @ is normalized to e/T e and the electron density, n(r is 

assumed to be a function of @. Typically, since the electron mass 
is greatly exceeded by the ion mass, electron inertial terms are 
neglected and the approximation of isothermal electrons is jus t i f i -  

able. In this case n(@) = e@[ The structure that we present makes 
no restrictions on n except that i t  be a function of r 
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In the case n(@) = e r , since @x : nx/n ' i t  is customary to 

envision the electrons as supplying the ion pressure. Alternatively 
with n(@) specified the constraint equation (4.3) can be interpreted 
as supplying a non-local equation of state for the ion pressure, 
I t  is through this non-local equation of state that dispersion is 
introduced into the dynamics. I t  is well-known that in addition to 
shock wave solutions these equations possess solitary wave solutions. 
Equations (4.1) - (4.3) are the starting point for the reductive 
perturbation procedure which yields the K-dV equation for ion- 

acoustic solutions. 31 
The three known integral constants for Eqs. (4.1) - (4.3) are 

N = / R N  dx (4.4) 

[ 
P = | Nv dx 

J R 
(4.5) 

/ ( N ~  2 
H = ~ + ~N) dx 

R 

(4.6) 

where in Eq. ( 4 . 6 ) ~ i s  a nonlocal operator determined by Eq. (4.3) 
such that 

fN- 2 + (h' @n( )- d~ (4.7) 
B@' 

Equation (4.7) represents a nonlocal internal energy function. The 
obvious choice for the Hamiltonian is, of course, the energy, Eq. 
(4.7). (We note that in terms of the Poisson bracket presented 
below Eq. (4.9), P and N are in involution.) 
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Observe 

6H 
- Nv 6v 

and subsequently we wi l l  show 

2 6H _ v 
6N 2 + @ (4.8) 

The following bracket, which is the one-dimensional restriction of 
the f irst term of Eq. (2.6), yields the equations of motion: 

[F,G] = 6-v ~ 6N 6v ~ 6-N dx (4.9) 

where @ z d/dx. Clearly 

N t = [N,H] =-(NV)x 

and assuming Eq. (4.8), 

v t = [V,H] = -(v2/2 + #P)X 

To justify Eq. (4.8), suppose P[@] is some functional of @, i .e.,  

F[4p] = /R P(r 

Varying this we obtain 

~R 6P 6P(~);~(h) = ~- 6r dx (4.1o) 
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To see how a variation in @ is related to a variation in N we linearize 
Eq. (4.3) and obtain 

(2 2 Bn ) 
~@ (~) ~@ = -~N , 

which upon formal ly inver t ing y ie lds 

6(h(x) = - ~ K(4p,x,x') 6N(x') dx' (4.11) 

where K sa t i s f i es  

IB2 Bn) 
B@ K = 6(x-x ) (4.12) 

Here, B(x) is the Dirac delta function and we seek solutions with 
asymptotic charge neutrality and vanishing electric field. Sub- 
stituting Eq. (4.11) into Eq. (4.10) yields 

%-N + Z-6 K dx ~N d• : 0 

For our special case where 

we obtain 

dx , 

6P _ ,2@ + ~b(x ) -~- K dx 
6N 

which with Eq. (4.12) implies 

6P 
6N - ~ 
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To conclude this section we obtain a canonical form for the bracket 
Eq. (4.9). With the substitution 

V = l~ x , 

where ~ now replaces v as a dynamical variable, and the chain rule 
for functional differentation 

@F _ BF 
69 ~ 6-9 

Eq. (4.9) becomes 

[F,G] = 61~ 6d/ 6~b 6N dx 

(Observe that the substitution N = ~x wi l l  also achieve the same 

end). Clearly the substitution (4.13) makes Eqs. (4.1) - (4.3) 
variational in the sense that we can construct the action 

7 = /R /T Nt ~ dx dt - / H'[N,~b] dt 

which upon variation with respect to N and ~ produces the dynamical 
equations. 

5. The Vlasov-Maxwell Equations 

I f  a plasma is suff ic ient ly hot and tenuous, then coll isions 
become unimportant. When this is the case, fast time scale plasma 
phenomena is described by the following set of equations: 

~f e ~f 
f~t (x,v,t) = -v- +e m~ [E+v• +~ (5.1) 

~x e ~v 

Bt(~,t) = -V • E (5.2) 

Et(~c,t) = ~7 x B - e ~ f(~ d3v (5.3) 
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Equation (5.1) is the evolution equation for the single particle 
distribution function, ~ , which is a function of the six phase- 

space coordinates together with time. Here ~ designates species 
and e and m are the signed charge and mass respectively. 

Equation (5.2) is Farad~'s law relating the magnetic field ~ and 

the electric field ~ . Equation (5.3) is ~pere's law with the in- 
clusion of the displacement current. (We use rationalized Gaussian 
units with the speed of light set to unity.) 

I t  is well known that this system, Eqs. (5.1) - (5.3), conserves 
ener~. The natural choice for the Hamiltonian functional is the 
following: 

,E,B] = H[fa ~ § 

m v d3xd3v + 1 e ~ (E2+B2)d3x (5 4) 

JR 

For this Hamiltonian observe 

_ 2 ~H ~ 6H _ ~H i mv , - E , 
6f 2 ~ 6E 6B 

With Eq. (5.4) as Hamiltonian i t  is not d i f f icul t  to show that the 

following Poisson bracket 15"17 produces Eqs. (5.1) - (5.3): 

[F,G] = 

I " 

(5.5) 

(5.5.1) 

+ x (5.5.2) 

(~ ~F 6G 6G ~F d3x d3v 
+ m (5.5.3) 

+ e2 f x -- d3x d3v (5.5.4) 
m ~ ~ 6f ~$ 6f 

In the first term, Eq. (5.5.]), the curly brackets are used to 
indicate the usual particle Poisson bracket of two phase functions 

{g,h} = ~g/~ . Bh/~- ~g/@~ �9 ~h/~ . This temwith Eq. (5.4) 
produces Eq. (5.]) without the tems which couple in the electric 
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and magnetic f i e lds .  I t  can be shown to sa t i s fy  the Jacobi require- 
ment. (In Section 6 we present a construct ion where th is  bracket 
is the ent i re  bracket for  the Vlasov-Poisson system.) The second 
term, Eq. (5 .5 .2) ,  produced Maxwell's equations in vacuum. This 

term was apparently f i r s t  wr i t ten  down by Born and Infe ld.  32 I t  
sa t i s f i es  the Jacobi condit ion. The next two terms, Eqs. (5.5.3) 
and (5.5.4) supply the coupling between Eqs. (5.1) and (5.3).  
Observe the e /m mul t ip ly ing each. The f i r s t  of these y ie lds 

the e lec t r i c  f i e l d  coupling term. The last  term, Eq. (5 .5 .4) ,  
completes the coupling. This term is due to J. Marsden and A. 

Weinstein 16, who obtained i t  through consideration of the underlying 
Lie group. The Jacobi condit ion is sa t i s f i ed  for  th is  term only 
i f  the space of funct iona ls ,  on which the bracket acts, is res t r i c ted  

to vector f ie lds  ~ that  sa t i s fy  V,~ = 0 . For a rb i t ra ry  funct ionals 
E , F and G we obtain 

§ 6E 6F 6G d3v d3x , 

[ E,[ F,G]] + eye = f V-B ess t 6vs 6--~s v~ t 

where Es2~t is the Levi -Civ i ta tensor. I f  i n i t i a l l y  V.~ = 0 

then the Jacobi condit ion is sa t i s f i ed  fo r  a l l  time. 
We conclude th is  section by point ing out a recent motivation 33 

of the bracket, Eq. (5 .5) ,  (see Ref. 18). Here, the r e l a t i v i s t i c  
general izat ion is made and the generators of the fu l l  Poincar~ 
group are pointed out. Table 3 summarizes the above. 

6. The Vlasov-Poisson Equations 

In th is  section we wr i te  the Vlasov-Poisson equations in a 

form 15'19 very s imi la r  to that  of the two-dimensional vortex f l u i d  
equations of Sec. 3. We w i l l  observe that  these sets of equations 
possess the same noncanonical and canonical formulat ions. The 
Vlasov-Poisson equations are 

~f ec~ ~f 
~fc~ + + + C~ ~ O~ (6 i) 
-~ (X,V,t) = -V " ---j- + -- -- " § 

X m ~ ~v 

+ ~ d3v (6.2) •,(x,t) = - ~ e a f~ 
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Here the only symbol not defined in Sec. 5 is r the electro- 
s ta t i c  potent ia l .  I f  we seek solut ions where ~ is defined on 
R , and i f  we assume asymptotic charge neu t ra l i t y  and vanishing 
e lec t r i c  f i e l d ,  then the Laplacian operator A can be inverted 
Equations (6,1) and (6.2) can be wr i t ten compactly as fol lows: 

~f 
- -3 V f (6 3) Dt ~ P a 

ee ~ (6.4) 
'm~ ~x 

bserve V -~ = p 

or the inverse Lap]acian ; e.g., in one-dimension 

Here V is the six-dimensional phase-space gradient 
P 

( ~ / ~  , ~ / ~ )  and W is defined by 

e~ f K(xI~')fBd3X' ) - 

0 In Eq. (6.4) K(xIx') is  the kernel 

[ ( ~ [ ~ ' )  = �89 ~ - ~ ' I  The Hamiltonian for th is  system is 

1 fV2fcd3Z 1 f § {= ~ ~ ms - ~ eee B K(x]x')f~(z)fB(z')d3zd3z' 

(6.5) 

,,~ , +  

Here we have used z z (x ,v)  . The Poisson bracket is the f i r s t  
term of Eq. (5.5) 

re (z) I (6.6) 

where the braces are as defined in Sec. 5. I t  is not d i f f i c u l t  
to see that 

~f 
_ [fa,H] = -V f 

~t ~ P e 

To obtain canonical form we consider the three-dimensional 
general ization of  the potential  representation of Sec. 3, 

_ 1 {~a, • } 
fc~ m 

(6.7) 
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With this substitution, ~ and • become canonically conjugate 

variables. We note, in conclusion, that the entire bracket of 
Sec. 5, Eq. (5.5), can be put into canonical form by the substitution 
of Eq. (6.8) together with the usual canonical description of 

the fields in terms of the vector potential X and its conjugate ~. 
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SATISFIES JACOBI 

Eq.(2.6.1) 

Eq. (2.6.1) + Eq. (2.6.2) 

Eq. (2.6.1) + Eq. 

Eq. (2.6.3) 
l 

(2.6.2) + 

Eq. (2.6.1) + Eq. (2.6.2) + 

Eq. (2.6.4) 

Eq. (2.6.1) + Eq. (2.6.2) + 

Eq. (2.6.3) + Eq. (2.6.4) 

COMMENTS 

Defined on functionals of p & v. 

With H = Apv2/2 + pU(p)]dT 

produces Eq. (2,1) with Vx~ = 0 

and ~ = O, and Eq. (2.2). 

Defined on functionals of p & v. 

With H:f[pv2/2 + pU(p)]dT 

produces Eq. (2.1) with g = 0 

and Eq. (2.2). 

Defined on functionals of p,v and 

s, With H = / [ p  v2/2 + pU(p,s)] dT 

produces Eq. (2.1) with ~ = O, 

Eq. (2.2) and Eq. (2.3). 

Defined on functionals of p,v and 

With H = ~pv2/2 + pU(p) + 

B2/2] d~ produces Eq. (2.1), Eq. 

(2.2) and Eq. (2.4). 

Defined on functionals of p,v, 

and s. With H = f[pv2/2 + pU(p,s) 

+ B2/2] dT produces Eqs. (2.1)- (2.4). 

TABLE 1 
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SATIFIES JACOBI 

Eq.(5.5.1) 

Eq. (5.5.2) 

Eq. (5.5.1) + Eq. (5.5.2) + 

Eq. (5.5.3) + Eq. (5.5.4) 

COMMENTS 

with H : ~ - ~ / � 8 9  v2f d3xd3v 
c~ 

produces Eq. (5.1) with 

with H = / � 8 9  (E2+B21d3x 

produces Maxwell's equations 

in vacuum. 

With Eq. (5.4) as Hamiltonian 

produces the Vlasov-Maxwell 

equations, Requires the 

constraint V.~ = 0 

TABLE 3 

Downloaded 07 Sep 2009 to 128.83.63.21. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



1

Typos

page 19: Second term of Eq. (1.12) should read

δ[F,G]

δuk
=

δ2F

δuiδuk
Oij δG

δuj
+

δ2G

δujδuk
Oij δF

δui

+Kij
k

(
δF

δui
,
δG

δuj

)
. (1.12)

page 30: Last term of Eq. (2.230 is missing a factor of ρ, i.e., this equation should read

ρ~v = ~B × (∇× ~T ) + ρ∇φ. (2.23)

page 35: 3rd line below Eq. (4.7) should read “(4.6). (We note ...”

page 36: Unnumbered equation following Eq. (4.12) should read∫
R

[
δP
δN
−
∫
R

δP
δφ

K dx′
]
δN dx = 0

page 38: Equation (5.5.2) should read

+

∫
R

(
δF

δ ~E
· ∇ × δG

δ ~B
− δG

δ ~E
· ∇ × δF

δ ~B

)
d3x (5.5.2)

page 39: Unnumbered equation should read

[E, [F,G]] + cyc =

∫
f ∇ · ~B εs`t

∂

∂v`

δE

δf

∂

∂vs

δF

δf

∂

∂vt

δG

δf
d3v d3x ,




