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POISSON BRACKETS FOR FLUIDS AND PLASMAS
Philip J. Morrison

Institute for Fusion Studies
Department of Physics
The University of Texas at Austin
Austin, Texas 78712
u. S. A,

1. INTRODUCTION
1.7 Overview

The traditional method for obtaining a Hamiltonian system is by
way of a Lagrangian, that is obtained by physical considerations. The
system is then Legendre transformed (if possible) to obtain Hamilton's
equations in canonical form, a form that is conveniently representable
in terms of the Poisson bracket. Canonical transformations preserve
the form of the Poisson bracket; the idea of canonical conjugacy is
maintained. An arbitrary coordinate transformation does not preserve
the form of the Poisson bracket and consequently the canonical form
of Hamilton is obscured. Conjugate variables cannot be discerned and
the Poisson bracket may depend explicity on the dynamical variables.
In spite of the obscured form, certain algebraic properties of the
Poisson bracket are maintained: bilinearity, antisymmetry, and the
Jacobi condition {c.f., below). This motivates an alternate definition
of Hamiltonian: A system is Hamiltonian if one can find a Poisson
bracket, with these algebraic properties, and a Hamiltonian, such that
together they generate the time evolution of the system. For the case
of even-{nondegenerate) finite-dimensional systems, the theorem of

Darboux]’2 provides an algorithm for locally constructing canonical

variables. Also, there exists an extension of Darboux's theor‘em3 for
the case of infinite dimensional systems. (The situation here is
SUbt]? -- gauge conditions may be necessary for a canonical descript-
tion.

In this paper we present noncanonical yet Hamiltonian descriptions
of many of the non-dissipative field equations that govern fluids and
plasmas. The dynamical variables here are the usually encountered
physical variables. These descriptions have the advantage that gauge
conditions are absent, but at the expense of introducing peculiar
Poisson brackets. Clebsch-like potential descriptions that reverse
this situation are also introduced.

In the remainder of Sec. 1 the ideas sketched above are considered.
The presentation here is admittedly non-rigorous. The reader who is
interested in a more rigorous formulation of some of these ideas is
directed to Refs. 4 - 11. Section 2 deals with the ideal three-dimen-
sional compressible fluid. The noncanonical Poisson bracket for ideal
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magne'cohydrodynamics]2 is presented. Various fluid descriptions are
seen to be represented by portions of this bracket. The piasma equa-

tions of Chew, Goldberger and Low13 are considered. The constants of
motion for MHD are discussed and the bracket is shown to generate the
infinitesimal transformations of the ten-parameter Galilean group.

This section is concluded by presenting a canonical formalism. Various
potential decompositions of the fluid velocity and the magnetic field
are discussed. Section 3 deals with the Hamiltonization of the equa-

tions of two-dimensional vortex fluids and guiding center p]asmas.]4
The sole noncanonical dynamical variable in this case is the scalar
vorticity. The canonical description is given. Section 4 is concerned
with the equations that govern fully nonlinear ion-acoustic waves in
plasmas. This is the system from which the Korteweg-de Vries equation

is obtained by approximation. Section 5 covers the MaxweH-V1asov]5']8
equations. The noncanonical Poisson bracket is presented. The way to

“canonize" this 1°ov-m]9 is indicated at the end of Sec. 6. The body of

Sec. 6 deals with the Vlasov-Pgisson equa’cions.]5 It is observed that
these equations possess the same noncanonical Poisson bracket as that

for two-dimensional vortex 1’1u1‘ds.]9 A Clebsch-Tike potential decom-
cps . . . . ... 19
position is seen to yield a canonical Hamiltonian description.

1.2 Generalized Hamiltonian Field Theory

Consider the following system of autonomous evolution equations:
u(tX) = FIGX) i=12,...m . (1.1)

Here, each u' is a function of time t and X, where X e ycr"
for some integer n . The F' are general nonlinear partial differ-

ential or integral operators on U . Specifically the F! may be any
functions (with a finite number of arguments) of the following:

i) U and X

. k. i
.. i _ 3 u
ii) uk =
axKlaxk2 | axkn
i 2 n

>
where the Xi's are the components of X,

k = |k| = ;lki
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and Kk has components ki which are positive

integers.
i) f K(x|X")£(q)dt  where
v

f 1is some function and the kernel K is

independent of u .

We denote this class of operators by #. (I.e., Flew .)

We are not concerned with specific auxiliary conditions neces-
sary for existence and uniqueness of solutions, but suppose solutions
do exist and are elements of a vector space w {over R ) that is
equipped with the inner product

<flg> = ffg ar (1.2)
v

where dt 1is the volume element for V c:Rn .

Customarily in field theory certain integrals or functionals
arise. For example, the integral of the Hamiltonian density is that
particular functional that generates the evolution. Here the
evolution will be generated via generalized Poisson brackets that
operate on functionals. To this end we define a vector space
% (over R ) of differentiable functionals that have the form

6lul = f G(4,x) 4t (1.3)
v

where G € & is an operator on w . We define differentiation of
functionals in the usual way.
w> , (1.4)

3 [i } _ SF
-d—e—Fu + €w <_5ui

where the variation is taken with respect to functions w that
vanish at the bogndary of v . Equation (1.4) defines the functional

€=0

derivative 6F/6u] , which is in general a nonlinear operator of the
class ¥ that operates on w .
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Before proceeding, consider the following examples of functional
differentiation:

27
i) =
Suppose F[u] ./; F(x’u’ux’uxx”")dx

where the function u is defined on (0,27) and F is C
in all its (finite number) of arguments. By Eq. (1.4)

we observe
6F _ 3F _ d 3JF a® aF
du Ju dx aux dx2 auxx

ii) Suppose F [u ] = l}(i’), i.e., the functional composed
of functions u' evaluated at the point X' . Using the Dirac

delta function ¢ (x) , we can represent this in the form of
Eq. (1.3) as

Fiel = [ e - wnar,
v

then from Eq. (1.4) we obtain

‘5“—1‘—;—)— = §..6(x-Xx") ,
5u3(§) 1]
where

0 i# g

Continuing now, we recall that the usual Poisson bracket520

of field theory have the form

E : 6F 8G OF
[ F,G] - ] dt (1.5)
/ Gnk <STr Gnk 6Trk
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where the dynamical equations generated by some Hamiitonian, H , are

on o
k k  _
ral [”k’”] ' T [“k’”]

Clearly the operator of Eq. (1.5) is antisymmetric and it is well
known that it satisfies the Jacobi condition (cf. below). We gen-
eralize this form by defining the following generic bilinear product

on Q
[r,6] = <-‘5—F— 0*3 §G—> : (1.6)
sut su’

where repeated index notation is used and 0 € @ . e desire our

1(°orm3 Eq. (1.6), to possess the same algebraic properties as Eq.
1.5), i.e.,

iy [F,61 = -I[G,F] for F, G € Q

ii) the Jacobi condition

LeE,[F,G6l] + [F,[G,E]]l + [G,I[E,FI] = o0
for every £, F, G €q .

The first condition requires that the operator 0" be anti-self-adjoint
with respect to the inner product on w . The second condition is more
stringent and will be discussed in the next subsection. We note that

a bracket of the form of Eq. (1.6), with properties i) and 1ii),
defined on Q defines a Lie Algebra of functionals. We now define

what we mean by Hamiltonian.

Definition. A system of equations of the form (1.1) is Hamiltonian

if there exists an operator 0') €2 and a functional #H such that
Eq. (1.1) can be cast into the form

where [,] makes 2 a Lie Algebra.
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1.3 The Jacobi Condition

We now pinpoint what is required of an anti-self-adjoint o'
in order for the Jacobi condition to be satisfied. Since the Jacobi
condition involves nested Poisson brackets, we reguire the functional

derivative of a Poisson bracket. To this end, we first obtain a
property of second variation. We conclude this subsection by consid-

ering two general classes of 0'9 . those that are independent of
U and those that are linear in U in a particular way.

_ <§f_i_ w>
Su

G as defined here is clearly an element of @ . Differentiating again,

we obtain
2
= <——6_Fiz w> . (1.7)
Gujéu

4 sl }
an G[u + nz
Equation (1.7) defines the operator 62F/<Su‘]6u1 € # that operates

on U as well as operating linearly on z . Since the order of
differentiation is immaterial, we must have the following:

< z> . (1.8)
6u 6u 6u 6u

Since the Poisson bracket of any two functionals is also a

functional, formally we have
- <____5[F'G] w> . (1.9)
k
su

Recall Eq. (1.4)

a i }
ﬁF[u + €w

1]
(]

€=0

n=0

2 qr.6[0* + el

€=0

By Eq. (1.6) we also have
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=<_62L
Gukdu
+<6F.
6ul

The first two terms of Eq. (1.10) come from the d/de acting on
6F/6u] and 6G/6uj respectiyg]y. The last term arises from the
dependence of the operator 0'9 on U . This term is complicated
in that the symbol 601"].(w)/6uk € & is used for an operator that

acts on u , linearly on w , and also on 6G/6uj to its right. We
require that this term be written as follows:

i3 [ SF G ) :>
K o, % M w (1.11)
<: k (éul su’

where w is now isolated from the operator. (For the case when

0" only involves partial differentiation, this is obtained by
integration by parts.) Using Egs. (1.8), (1 9), (1.10), and (1.11),

the anti-self-adjointness of 013, and the fact that these relations
hold for arbitrary w within a wide class, we strip away the
integration to obtain

pii 86 :> <: oii %6 w:>
dukéu]

ij
0= (wy SC, > (1.10)
Su GuJ

S(F,G] _  8°F i3 &6 526 iy oF
—x = i x 9 T~ 3. ¢ 1
su su”su sud  sulsu su
i S§F 8
+ kM <——3-, "E?> . (1.12)
k Su Su
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Using Eq. (1.12) in the Jacobi condition yields

- SE me _ij [ &F G
(€,[F,G1] + cye = <_— o™ x (___)>
su™ L sut su’
+ cyc . (1.13)

Here cyc means cyclic permutation and we opserve that the only
surviving terms are those that involve the K}J . The terms that
involve the second variation cancel by virtue of the anti-self-

adjointness of 0" and Eq. (1.8). The following theorem is
apparent.

Theorem 1. If Oij is independent of u (including any operator

of class # on U ), then anti-self-adjointness is sufficient for
the Jacobi condition.

Now we consider.a special case where o' depends linearly on
U. We suppose 0" has the manifestly anti-seif-adjoint form

- S [ e s an ] aae
k,r

where k =1,2,....m; r =1,2,...,n; Br = a/axr; and

ald:k€ r  forall i, j, k, and r. With this form, the

quantity 5013 (w)/6uk of Eq. (1.10) is seen to be

i3 iy 3

60 (w) = E (alj’k wo, + ail'k 3rW)
k r

du r
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From this we obtain the quantity KLJ by integration by parts

ij(GF e ) _
Ky T3] °
Su suJ

Z(wi a;;,k , 86 _ de a]j:l,k ; GFi)
=\ éu r sul  su T $u

(1.15)

Inserting Eq. (1.15) into Eq. (1.13) yields a complicated expression
that vanishes if the coefficients alJ’k satisfy certain properties.
Theorem 2. Poisson brackets made up of operators 0" of the form

of Eq. (1.14) satisfy the Jacobi condition if

. E: Lk,m _ij,k ik,m zj,k) B
i) (ar ay a. ay = 0
k
and
. . § : Lk,m _ij,k ki,m _£3j,kx _ _£Lk,m _ji,k
ii) (ar ap + a, a; ay a
k
_ _kj,m zi,k) _
ag a, = 0
for all r, t, £, m, i, and 3

We conclude this section by noting that many of the Poisson
brackets presented in this paper are of the forms of Theorems 1
and 2. The Jacobi condition for the others can similarly be esta-
blished by the procedures discussed here.

Downloaded 07 Sep 2009 to 128.83.63.21. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



22

2. The Ideal Fluid and Magnetohydrodynamics
(Double Adiabatic Equations)

The equations of ideal magnetohydrodynamics are

2
> v > > -1, 2 S B
v, = -V (—7-) + v x (Vxv) -p Vip Up) p v Ty
(2.1)
<>
—_ - N ko]
Py = Ve (pv) (2.2)
s, = -V+Vs (2.3)
> > - > -+ -+ >
Bt = ~BVev + B:Vv - v*VB . (2.4)

The variables of Eqs. (2.1) - (2.4), o, v, B and s, are functions
of three spatial coordinates and one time coordinate. Equation
(2.1) is the equation of motion for a fluid with density o and

velocity V. The magnetic body force term is represented in terms
of a symmetric stress tensor *TE = (BZ/ZTT* - BB where B is the
magnetic field. The symmetry of +TE preciudes the existence of

internal torque densities; the equation obtains a symmetry without

the use of the initial condition Vv-B = 0 . Also in Eq. (2.1) the

internal energy per unit mass, U(p,s), is a prescribed function of
and the entropy per unit mass, s. The intensive variable,

pressure p and temperature T, are obtained from this function

p= 02Up , T = US . Equation (2.2) is mass conservation and Eq.
(2.3) expresses entropy advection. Equation (2.4) is Faraday's

Taw assuming E+VvxB=0. Itiswritten in a form which is
manifestly Galilean invariant. Below we obtain the Poisson brackets
for specific subsets of Egs. (2.1) - (2.4). The equations of Chew,
Goldberger and Low are also expressed in Poisson bracket form.

2.1 Noncanonical Poisson Brackets

The MHD equations are known to possess several conservation
laws. In addition to © , the momentum density ov and the energy
density % ov2 + ol + (82/2) are densities of conservation laws.
The symmetry 0f+TE assures that the angular momentum density
(x x V)p , is conserved and also one can show that p(; - vt) is

Downloaded 07 Sep 2009 to 128.83.63.21. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp
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21 .. R _ .
conserved. Similarly, the entropy per unit volume o = sp is
conserved (more generally) pf(s) for arbitrary function f). Also,

B, A-B (where B=vxA) and V-B are conserved densities if

v-B =0 . Below we will discuss these constants in the context of
our Poisson structure.
The natural choice for the Hamiltonian is the energy functional

2
H = /(%- pv2 + pU(p,s) + Ez—)d'r (2.5)

v

With this as Hamiltonian, the following Poisson bracket12 produces
the Egs. (2.1) - (2.4):

[F,6) = (2.6)
§F . 8G . oF _ &G
- 2L y. + 2 .y 22
fv [do v v &3 Sp (2.6-1)
[ 56 _ 8F\|
+ |p l(V x V) - (—g x -f;) (2.6.2)
L Sv v /| <o
. -lv.(ﬁﬁ_éﬁﬁﬂ
L §s v 8s &V (2.6.3)
> [ 1 6F 86 1 &G SF
+ B —_— 'V '—_)"— -V -
[p v &8 P oev SB]
+ B (vl‘s—i) 2-(vl§§>-% at
P sv 6B P sv/ 8B
(2.6.4)

The first term, Eq. (2.6.1), is a natural extension to higher
dimension of the K-dV bracket obtained by Gardner.4 Considered
as a binary operation of functionals of p and v, Eq. (2.6.1)

satisfies the Jacobi condition. If Eq. (2.5) with B set to zero
and the s dependence of U suppressed, is used as Hamiltonian,

one obtains the ideal fluid equation of motion with v x v=0 , and
the continuity equation (2.2). The inclusion of Eq. (2.6.2) with

the same Hamiltonian produces Eq. (2.1) with the yxy term. The
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The sum of these terms satisfies the Jacobi condition. If Eq. (2.6.3)
is added to the previous two, then the resulting bracket considered

as an operator on functionals of o , v , and s can be shown to
satisfy the Jacobi condition. If Eq. (2.5}, with the s dependence

of U included and B = 0 , is used as Hamiltonian then Eqs. (2.1)

(with 8 = 0), (2.2) and (2.3) are produced. The remaining term,
Eq. (2.6.4), accounts for the magnetic field. The last two terms
here are doubly contracted dyads, i.e.,

rh2) - 01 5) (59
Sv v/ * \éB

3
_ 36 1 F
- Z B, 3B ai(E r—vj)

O |-
o Io;
WD
li
Ol

If one considers a bracket composed of this term added to Egs.
(2.6.1) and (2.6.2), then Egs. (2.1), (2.2) and (2.4) are produced

with H = (ov2/2 + pU(p) + B2/2)dr . It can be shown that this
satisfies the Jacobi requirements. (We note that the Jacobi con-

dition in no way depends upon the initial condition v.B = 0).
Finally, the entire bracket, Eq. (2.6) satisfies the Jacobi require-
ment. If Eq. (2.5) is used as Hamiltonian then as noted Egs.
(2.1} - {2.4) are obtained. We summarize the above paragraph
in Table (1).

Let us now return to the constants. We divide them into three
groups, the first we call generators

2

Ho= [ (% ov? + pU(p,s) + —B—z——)dr (2.7)
v

[ f ov dt (2.8)
v

- [ %xovar (2.9)
v

N 2.10

PO ( )

jp(?( - veyar
v
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These constants together with the Poisson bracket defined by Eq.
(2.6) generate the infinitesimal transformations of the ten para-
meter Galilean group. H, of course, generates time translation,

while 7 and 2 generate infinitesimal changes due to space
translations and rotations respectively. For example, using the
th

k component of P we obtain
.7 ] = =30
[VK,Pk] = =3V,
[S’Pk] = ~3s
[(BpePk) = -38,

The remaining constant, [ , physically corresponds to uniform
motion of the center of mass of the fluid, i.e., ;cm = cht + const.

It can be interpreted as an embodyment of Newton's third Taw; all
internal forces occur in action-reaction pairs. The only forces
that can be imparted to the center of mass occur through surface
terms that here are assumed to vanish. This constant generates
changes due to Galilean transformation. We obtain

[per] = tskp
[s,Gk] = t3,s
[Bg.6,) = t3,8,

The Kronecker delta term of [\k’Gk] allows for the boost in
velocity.

The second group of constants commute with any functional of
the dynamical variables. That is, for

Downloaded 07 Sep 2009 to 128.83.63.21. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp
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v (2.11)

%]
I}
—_
©
0
[oN)
~

v (2.12)

we have
Ix,Ml = [x,S1 = o0
for arbitrary X

The third group of constants is composed of the magnetic
constants

B = B dr (2.13)
J
T jv
W= f -3 ar (2.15)
v

These functionals commute with the Hamiltonian [Eq. (2.7)] only

for the initial condition v-B = 0 . The constant W also requires
constant entropy per unit mass.

The double adiabatic equations of Chew, Goldberger and Low can
also be produced from the bracket Eq. (2.6). These equations
account for the presence of a strong magnetic field through an
anisotropic pressure tensor. The pressure parallel to the direction
of the magnetic field p, differs from that perpendicular, P,

If the internal energy depends on B, the magnitude of the magnetic
field, in addition to o and s, then our bracket produces the
double adiabatic equations, if we make the following identifications:

o) =2
Py P ap
and
2 3U U
p.L =P 'é—p + eB 9B
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To conclude this subsection we present an alternate, more
symmetric form of the bracket defined in Eq. (2.6). If we transform

to the set of dynamical variables (p,o,ﬁ,ﬁ} , where o = ps is the

entropy per unit volume and M= pV is the momentum density, then
Egs. (2.1) - (2.4) become eight conservation equations (if one

adjoins V-B = 0). The pressure is now determined by p = pZ(G; +

op Uo) where H(p,o) = U(p,s), As a result of the transformation

S
ép

s
ép

>

>
v,S M,0

together with similar transformations for the other variables,
Eq. (2.6) becomes

+
=4
—
%
<
‘Oa
@
'

O O
213
<

ks
—

Notice that each term of Eq. (2.16) is linear in one Eulerian
variable and there are no terms, like those of Eq. (2.6), with
the density p 1in the denominator. This feature facilitates
evaluating the bracket when polynomial or Fourier representations
are used for the dynamical variables. Also we observe that Eq.
(2.16) is of the form discussed in Theorem 2 of 1.3.
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2.2 Potential Representations

The use of potentials to represent vector fields has a history
that transcends the familiar potential decomposition of electricity
and magnetism. In this subsection, we discuss potential representations
that pertain to our Poisson bracket [Eq. (2.6)]. (We note that the
historical account presented here should not be taken as complete,
Such a task is hampered by a great deal of rediscovery in this area.
The interested reader is directed to Refs. 22 - 29). 1In particular,
our main goal is to represent the fluid velocity field in a form that
facilitates a canonical Hamiltonian description, and to show how this
form transforms to Eq. (2.6). Various forms of potential representa-
tions "canonize" the subsets of the MHD equations discussed in
2.1. The magnetic field, of course, can also be subjected to poten-
tial decomposition. We conclude this subsection with a highly
symmetric description where this decomposition, in addition to that
for the velocity field, is done.

Euler (1769) in his investigation of fluids, represented the

solenoidal vector field Vv , Where V.V = 0, in the form

V = VF x VG (2.17)

This decomposition in terms of the "Euler potentials" F and G can
be shown to be locally general. This contravariant representation

manifestly assures vV =0. Locally, F and G must define inde-
pendent surfaces. The intersection of these surfaces defines flow
lines. (In plasma physics it is common, as we do below, to represent
the magnetic field in this form; the intersection of these surfaces
in this case defines field lines.) This representation is clearly
not unique, since any function of G may be added to F (and vice

versa) without changing v . More generally any two functions o(F,G)
and B(F.G.) can replace F and G provided the Jacobian
3(a,R)/3(F,G) = 1 . [Note, one can add the gradient of an arbitrary
harmonic function, ¢ , to Eq. (2.17) without destroying the solenoidal

property. In the case where V.V=0 and ¢ is not harmonic, we
have a form, in the same vein as the Helmholtz representation, which
was presented by Monge (1784).]

We now present (as a stepping stone) a representation due to
Clebsch (1859), which yields a variational description of the incom-
pressible Eulerian fluid equations. If

V o= ovB + Vo , (2.18)
where ¢ is chosen such that v.v = 0, then Euler's equations can

be represented in Hamiltonian form. The potential o 1§ seen to be
canonically conjugate, in the usual sense, to the potential 8 .
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A generalization of Eq. (2.18) that includes density variation
is the following:

oV = AVu + oV¢ . (2.19)

This decomposition ailows (at the expense of obtaining gauge condi-
tions) a Hamiltonian description for a compressible fluid. The
density p 1is seen to be conjugate to the potential ¢ and similarly,
A and u are canonically conjugate. The Poisson bracket in terms of
these potentials is

§F &G 8G S8F §F &G §G OF
[F,el = /[(EW"&TG_&)J'(STSF‘HW)] dr .
(2.20)

where F and G are functionals of p,p,A and wu . If the

Hamiltonian H = J"[%pvz + pU(p)ldt is represented in terms of
these variables by making use of Eq. (2.19), then the equations of
motion are obtained in the usual manner (e.g., $y = [6,H]) .

Now suppose

Flp,6,A,u]l = Flo,v] ,

then the chain rule for functional differentiation yields

5F §F” SF _ SFT _ A g, . 8FT (351

and similar expressions for A and u . Substitution of these

expressions into Eq. (2.20) yields a portion of our Poisson bracket,

Eq. (2.6.1) plus Eq. (2.6.2). [Note by Eq. (2.21), exclusion of A

and u yields the irrotational portion of the bracket Eq. (2.6.1).]
Similarly, entropy advection is alloted for by the inclusion

of an additional potential. Consider the following covariant form:

pv = AVp + Vo + oV . (2.22)
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Here ¢ , the additional potential, is canonically conjugate to o
the entropy per unit volume. As above, the chain rule for Eq, (2.22)
yields the Poisson bracket that is the sum of Eqs. (2.6.1), (2.6.2),
and (2,6.3).

Consider now a form that includes the magnetic field

ov = Bx (VxT)+vp. (2.23)

Zakharov and Kuznetsov29 (1971) presented a Hamiltonian description
for MHD (with constant entropy/mass), where the vector potential

T of Eq. (2.23) is seen to be conjugate to B in addition to main-
taining the p,$ conjugacy. We emphasize that this form cannot be
transformed into our bracket. The appropriate form, which respects

the distinction between the initial condition V-B = 0 and the
dynamical symmetries of invariance under Galilean transformation and
rotation, is

ov = (v)B - Bovt - TvB + ove . (2.24)

The following Poisson bracket:
56 6F _ SF 6G §F.86 _ 6G,6F \|
F,G] = s( - ) + (*:'"— - 5z )T
[ /VI‘WKE 5o 3p 53 67 6B 6%/

yields with Eq. (2.24) and the chain rule, the Poisson bracket Eq.
(2.6) with the exception of the entropy term [Eq. (2.6.3)]. The
entire bracket is obtained by adding o%¢y to Eq. (2.24) and con-
sidering the canonical structure that includes o conjugate to V¥ .

To conclude this subsection, we present a formulation that entails

a decomposition of B as well as v . If we expand B in terms
of Euler potentials as in Eq. {2.17)
B = vaxv ,

then the appropriate expression for v is

ov = ava + bV + pvo . (2.25)

In this representation the advected field labels o and B are seen
to be conjugate to the potentials a and b. The initial condition

v -B = 0 is now inherent to the dynamics. The connection to the
formulation of Eq. {2.23) is easily seen to be made through the
following:

3]
[H

g - (vxT) , b = Va. (VxT)
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We note that the entire canonical formuation is obtained by appending
oV to Eq, (2.25). These results are summarized in Table 2.

3. Two-Dimensional Vortex Fluids and Guiding Center Plasmas

The equations for vortex advection in two spatial dimensions
are used to model large scale motions that occur in atmospheres and
oceans. The same equations have arisen in the study of plasma trans-
port perpendicular to a uniform magnetic field. If we assume the
usual euclidean coordinate system with uniformity in the

2 direction then the scalar vorticity is w(X,t) = 2.7 x v(X,t),
where v is the fluid velocity such that V.2 =0. For the guiding
center plasma, w corresponds to the charge density and V to the

ExB drift velocity. The equations under consideration are the
following:

W = —$-Vw (3-1)

V'V =0 (3.2)
For an unbounded fluid V can be eliminated from Eq. (3.1) by

3= foE) ME XD ar (3.3)

where we display only the arguments necessary to avoid confusion,

> oA > ! >ty .
Here M =2z x vV k (x|x ) and k(x|x ) is the Green function for
Laplace's eguation in two dimensions.

KR = & lex) %+ iy-yD A

The integration in Eq. (3.3) is over the entire x-y plane; dt = dxdy.
Observe Eq. (3.2) is manifestly satisfied by Eq. (3.3). Eq. (3.1)
becomes

w, = -/m(?c') MEIE ydr - e () . (3.4)

Equations (3.1) and (3.2) are known to possess conserved den-
sities, e.g. any function of w is conserved. In addition, the
kinetic energy, which is the natural choice for the Hamiltonian,
is conserved. With the density set to unity we have
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Hiw] =

—
N S
o
-

1]

]
NI

/k&l;') w(§') w(g) dt at’
(3.5)

The functional derivative of Eq. (3.5) is

-gfi= - /k(;;;z'> w(x ) ar'
W

The Poisson bracket14 that produces Eq. (3.4) is the
following:
= > {8F 86 ] (3.6)
[FIG] “/ (.t)(X) {m ’ GUJ ’ dT

where {f,g} = (9F/ax) (9g/3y) - (3f/3y) (dg/5x). We note that
the bracket defined by Eq. (3.6) is precisely that for the one-

dimensional Vlasov-Poisson equationsw’]9 (see Sec. 6) if one
replaces the vorticity by the phase space density and the phase
space (x,y) by (x,v). Also observe that any two functionals com-
pose? of)functions of w alone are in involution with respect to
Eq. (3.6).

We conclude this section by transforming Eq. (3.6) to canonical
form. The discussion of potentials in 2.2 indicates the following
representation of the vorticity

w = {a,8} . (3.7)

The chain rule for functional differentiation yields
SF I §F  _ SF
{B'm]' W‘{E'“} (3.8)

where on the left F is now regarded as a functional of o and B.
The canonical Poisson bracket for o and B is

§F 86 _ §F &G
[F,G] = j.(ga 58 - EE’EE) dt (3.9)

[e]
-t

I

O
Q
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which upon substitution of Eqs. (3.8) yields the bracket Eq. (3.6).
(This is easily accomplished by making use of the relation

f%{g,h} dt = jé{h,f} dt and the Jacobi requirement),

4. Fully Nonlinear Ion-Acoustic Waves
In this seciton we present the Poisson bracket for a particular
approximation of the two-fluid equations of plasma physics that

models nonlinear ion-acoustic waves.30 In the limit that the electron
temperature greatly exceeds the ion temperature, the jon dynamics

are governed by the cold fluid momentum transport and continuity
equations,

V.= =-vv_ = ¢ (4.1)
N, = --(Nv)x . (4.2)

Here, v is the ion fluid velocity, normalized to the ion sound speed
s = ‘/Te/mi where Te is the electron temperature and m, the ion
mass, N 1is the ion density that is normalized to o the quasi-

neutral electron or ion density, x and t are expressed in units

of the electron Debye length X, =JTE/4wnoe2 and ion
plasma frequency Vo =V/Awnoe2/mi respectively. The electro-

static potential ¢ couples the ion dynamics to the electrons through
Poisson's equation

] = n{¢) - N . (4.3)

XX

Here, ¢ is normalized to e/T, and the electron density, n(¢), is

assumed to be a function of ¢. Typically, since the electron mass
is greatly exceeded by the ion mass, electron inertial terms are
neglected and the approximation of isothermal electrons is justifi-

able. In this case n{¢) = e¢: The structure that we present makes

no restrictions on n except that it be a function of 4.
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¢

In the case n(¢) = e” , since ¢x = nx/n ,» it is customary to

envision the electrons as supplying the ion pressure. Alternatively
with n(¢) specified the constraint equation (4.3) can be interpreted
as supplying a non-local equation of state for the ion pressure,

It is through this non-local equation of state that dispersion is
introduced into the dynamics. It is well-known that in addition to
shock wave solutions these equations possess solitary wave solutions.
Equations (4.1) - (4.3) are the starting point for the reductive
perturbation procedure which yields the K-dV equation for ion-

acoustic so]utions.3]
The three known integral constants for Egqs. (4.1) - (4.3) are

N = /Ndx (4.4)
R
P = ~/ﬂ Nv dx (4.5)
R
2
Ho = /(N—‘é— + £N) dx (4.6)
R

where in Eq. (4.6) % is a nonlocal operator determined by Eq. (4.3)
such that

2 o '
IN = igf + J- o ane ) 44" . (4.7)

Equation (4.7) represents a nonlocal internal energy function. The
obvious choice for the Hamiltonian is, of course, the energy, Eq.
(4.7). (We note that in terms of the Poisson bracket presented
below Eq. (4.9), P and N are in involution.)
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oo
<2,“—t
1
=4
<

and subsequently we will show

V2

o]0
2l

(4.8)

The following bracket, which is the one-dimensional restriction of
the first term of Eq. (2.6), yields the equations of motion:

- _ 8§G ¢F SF 86
R
where 3 = d/dx. Clearly

and assuming Eq. (4.8),

ve = IvH = -(vP/2 4 gy

To justify Eq. {4.8), suppose P[#] is some functional of ¢, i.e.,

Plgl = ‘/. P(¢)dx

R

Varying this we obtain

5P (6366) =/ %w ax . (4.10)
R
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To see how a variation in ¢ is related to a variation in N we Tinearize
Eq. (4.3) and obtain

2 an
(a - % (¢}) 6¢) = -6N r

which upon formally inverting yields

8¢ (x) = - /K(¢,x,x') SN(x') ax' (4.11)
R

where K satisfies

2
(a —a—g)x= §(x-x") . (4.12)

Here, 8(x) is the Dirac delta function and we seek solutions with
asymptotic charge neutrality and vanishing electric field. Sub-
stituting Eq. (4.11) into Eq. (4.10) yields

8P 8P ' _
/S—ﬁ+ [5—5 K dx 8N dx = 0
R R
For our special case where

2
¢ o .
Plo] = f%‘"/ ¢ g—gTdcp ax

R

we obtain

GP - (lz ] _a_r_l_ d '
W _J£ 3 T+ d(x) S ) K dx ’

which with Eq. (4.12) implies
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Eq. {4.9).

v

where § now
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this section we obtain a canonical form for the bracket
With the substitution

= v

X L)

replaces v as a dynamical variable, and the chain rule

for functional differentation

§F _ _ 4 SF
sy 5v
Eq. (4.9) becomes
§F §G  &F 66)
[F,G]‘=./-(gﬁ' v sy N ) &
R

(Observe that the substitution N = wx will also achieve the same

end). Clearly the substitution (4.13) makes Egs. (4.1) - (4.3)
variational in the sense that we can construct the action

J=/ /Nt\pdx dt—/ HiN,y] dat
R T T

which upon variation with respect to N and y produces the dynamical
equations.

5. The Vlasov-Maxwell Equations
If a plasma is sufficiently hot and tenuous, thencollisions

become unimportant. When this is the case, fast time scale plasma
phenomena is described by the following set of equations:

of e of
> > >

fo 5V 8) = -ve =2 - & [B+oxB]. -2 (5.1)
X a v

’ét(?c,t) = -yxE (5.2)

ﬁt&,t) = yxB - E e f% £ ady (5.3)

a [0}

o R
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Equation (5.1) is the evolution equation for the single particle
distribution function, fa , which is a function of the six phase-

space coordinates together with time. Here o designates species
and e, and m, are the signed charge and mass respectively.

Equation (5.2) is Faraday's law relating the magnetic field B and

the electric field £ . Equation (5.3) is Ampere's law with the in-
clusion of the displacement current. (We use rationalized Gaussian
units with the speed of light set to unity.)

It is well known that this system, Eqs. (5.1) - (5.3), conserves
energy. The natural choice for the Hamiltonian functional is the

following:
> >
f{[fa,za,a] =
1 2 3 .3 1
E }( s m, viE axalv o+ % -/}E2+Bz)d3x . (5.4)
a D R
For this Hamiltonian observe
SH 1 2 SH _ 2 SH _ 3
- === mVvVv —_— = F _—= .
8E, 20 s 5B

With Eq. (5.4) as Hamiltonian it is not difficult to show that the
following Poisson bracket‘s'17 produces Egs. (5.1) - (5.3):
[FIG] = (5.5)

£
o 8F §G 3 3

2{:./.57' {Gf ' 5T ; d"x d7v (5.5.1)
a o4 o

§F 56 _ 86 SF 3
+/(__) 'Vx*_‘;'__)_ * V X - d ™ x (5.5.2)
2 SE 8B 6B SE
e of [
N j{: _o ./'__% L[ SRS L SESF g3 v (s.5.3
o Mo Jy eV SE of SE Gf
o a

e
z o E e 3 6F 3 &G 3 3
+ — }{ fa B: | = —— x =5 — dx d4v (5.5.4)
o m
o D

In the first term, Eq. (5.5.1), the curly brackets are used to_
indicate the usual particle Poisson bracket of two phase functions

{g,h} = 9g/3X + oh/aVv - 3g/dV - dh/3X . This term with Eq. (5.4)
produces Eq. (5.1) without the terms which couple in the electric
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and magnetic fields. It can be shown to satisfy the Jacobi require-
ment. (In Section 6 we present a construction where this bracket

is the entire bracket for the Vlasov-Poisson system.) The second
term, Eq. (5.5.2), produced Maxwell's equations in vacuum. This

term was apparently first written down by Born and Infe]d.32 it
satisfies the Jacobi condition. The next two terms, Eqs. (5.5.3)
and (5.5.4) supply the coupling between Eqs. (5.1) and (5.3).
Observe the ea/ma multiplying each. The first of these yields

the electric field coupling term. The last temm, Eq. (5.5.4),
completes the coupling. This term is due to J. Marsden and A.

Weinstein] » who obtained it through consideration of the underlying
Lie group. The Jacobi condition is satisfied for this term only
if the space of functionals, on which the bracket acts, is restricted

to vector fields B that satisfy v.B=0. For arbitrary functionals
E, F and G we obtain

> S§E o6F 66 3 3
[E,[F,G]]+cyc = [f V.Beslt@_gé_vzz—v—t— d”v d7x ’

where ¢ is the Levi-Civita tensor. If initially v.B=0
st

then the Jacobi condition is satisfied for all time. 33

We conclude this section by pointing out a recent motivation
of the bracket, Eq. (5.5), (see Ref. 18). Here, the relativistic
generalization is made and the generators of the full Poincaré
group are pointed out. Table 3 summarizes the above.

6. The Vlasov-Poisson Equations

In this section we write the Vlasov-Poisson equations in a

15,19 very similar to that of the two-dimensional vortex fluid
equations of Sec. 3. We will observe that these sets of equations
possess the same noncanonical and canonical formulations. The
Vlasov-Poisson equations are

of of e of
a > > a o d9¢ a
T (x,v,t) = =~v * + — 2L . = (6.1)
t ’ 3% a 9% 33
3
A (X,t) = —% e, | £,V . (6.2)
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Here the only symbol not defined in Sec. 5 is ¢, the electro-
static potential. If we seek solutions where ¢ 1is defined on
R, and if we assume asymptotic charge neutrality and vanishing
electric field, then the Laplacian operator A can be inverted
Equations (6.1) and (6.2) can be written compactly as follows:

= = W -V £ . (6.3)

Here Vp is the six-dimensional phase-space gradient

(3/3% , 3/3v) and wa is defined by

e > >
o= (v,—g——a: > est(xlx')de3x'). (6.4)
o a Ix B
bserve Vp-@a =0 . In Eq. (6.4) K(§|§') is the kernel

or the inverse Laplacian; e.g., in one-dimension

Ux|x') = Bx - x| The Hamiltonian for this system is

.51 2 3 1 > 'y a3.33

{= % 5 My fv f,d7z - E}xBeaeB_[K(XIX')fG(Z)fB(Z yd"zd z
| (6.5)

Here we have used z = (;,V) . The Poisson bracket is the first
term of Eq. (5.5)

£02) (65 80 ] 43
F,Gl = Z/ Otm {éf . ‘d z (6.6)
a 63 o a

where the braces are as defined in Sec. 5. It is not difficult
to see that

of N
o —_ = —w 'V f .

To obtain canonical form we consider the three-dimensional
generalization of the potential representation of Sec. 3,

1
fu = -ﬂ; {lba,)(a} - (6-7)
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With this substitution, wa and X4, become canonically conjugate

variables. We note, in conclusion, that the entire bracket of
Sec. 5, Eq. (5.5), can be put into canonical form by the substitution
of Eq. (6.8) together with the usual canonical description of

the fields in terms of the vector potential R and its conjugate E.
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SATISFIES JACOBI

COMMENTS

Eq.(2.6.1)

Defined on functionals of p & V.

With H = ﬁpvz/Z + oU(p)]dr

produces Eq. (2,1) with yxy = 0
and B = 0, and Eq. (2.2).
Eq. (2.6.1) + Eq. (2.6.2) Defined on functionals of p & V.

With H=f[pv2/2 + oU(o)]dr
produces Eq. {2.1) with B=0
and Eq. (2.2).

Eq. (2.6.1) + Eq. (2.6.2) +
Eq. (2.6.3)

Defined on functionals of p,v and
s, With # = f[pv?/z + oU(p,s)] dr
produces Eq. (2.1) with B=0,

Eq. (2.2) and Eq. (2.3).

Eq. (2.6.1) + Eq. (2.6.2) +
Eq. (2.6.4)

Defined on functionals of p,v and
B. With H = U/Epvz/z + oU(p) +
B2/2] dt produces Eq. {2.1), Eq.
(2.2) and Eq. (2.4).

Eq. (2.6.1) + Eq. (2.6.2) +
Eq. (2.6.3) + Eq. (2.6.4)

Defined on functionals of p,V, B

and s. With H = f[pv2/2 + pU(p,s)
+ 82/2] dt produces Egs. (2.1) - (2.4)

TABLE 1
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SATIFIES JACOBI COMMENTS
e 1 2. 3.3
Eq. (5.5.1) with # —Z/z m v fad xd°v
)
produces Eq. (5.1) with
E=8=0
Eq. (5.5.2) with H = 1 (e248f)a

produces Maxwell's equations

in vacuum.

Eq. (5.5.1) + Eq. (5.5.2) + With Eq. (5.4) as Hamiltonian
Eq. (5.5.3) + Eq. (5.5.4) produces the Vlasov-Maxwell
equations. Reguires the

constraint v-B = 0

TABLE 3
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page 39:

Typos

Second term of Eq. (1.12) should read

L)

SIFG) _ 8*F 0 8G  8*G  0F

ouk SutuF 5uJ dul duk ou’
0F 6G
K” -] . 1.12
* (51# 5u3> (1.12)

Last term of Eq. (2.230 is missing a factor of p, i.e., this equation should read

pi =B x (VxT)+ pVe. (2.23)

3rd line below Eq. (4.7) should read “(4.6). (We note ...”

Unnumbered equation following Eq. (4.12) should read

573 oP

Equation (5.5.2) should read

+/ (5—P:-V (36 _%C g 5F)dx (5.5.2)
R \OE 5B OE 5B

Unnumbered equation should read

0 0E 0 ¢F 0 4G
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