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THE HAMILTONIAN STRUCTURE OF THE BBGKY HIERARCHY EQUATIONS

Jderrold E. Marsden,1 Philip J. Morrison,]’2 and Alan weinstein]

ABSTRACT. The BBGKY hierarchy equations for the evolution of the
i-point functions of a plasma with electrostatic interactions are
shown to be Hamiltonian. The Poisson brackets are Lie-Poisson
brackets on the dual of a Lie algebra. This algebra is constructed
from the algebra of n-point functions under Poisson bracket and

the filtration obtained by considering subspaces of i-point func-
tions, 1 <1 <n.

§1. Introduction

' The purpose of this paper is to show that the BBGKY (Bogoliubov-Born-
Green-Kirkwood-Yvon) hierarchy equations are Hamiltonian with a Poisson
bracket associated to a certain Lie algebra. For background and the original
references on the hierarchy, the reader may consult one of the standard texts,
such as Clemmow and Dougherty [1969], Ichimaru [1973] or Van Kampen and
Felderhof [1967]. For background on Lie-Poisson structures on duals of Lie
algebras, see Marsden and Weinstein [1982], Marsden et. al. [1983] and the
lectures of Morrison, Ratiu and Weinstein in these proceedings.

In the present paper, we simply exhibit the Hamiltonian structure of
the hierarchy equations making use of the theory of momentum mappings.
Eventually, we hope to show how this structure is inherited by trun-
cated systems, providing a statistical basis for recently discovered bracket
structures for plasma systems (Morrison and Greene [1980], Morrison [1980],
Marsden and Weinstein [1982], Morrison [1982] and Marsden, et. al. [1983]).

2. The Hierarchy Equations

Let P be a finite dimensional symplectic manifold; for example, the
position-momentum space IR6 for a single particle. Let PP =pxpx ... xp
(n times) be thought of as the phase space for n particles. Points in

P" Wwill be denoted (z ves Zn)' Consider a Hamiltonian on P" of the form
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n
H(zys -ues z) = § H(z5) + ) H(z,,2.)
n' ol i;p U i< AR R

where H]:P -~ R and ‘HZ:P x P (minus the diagonal) - IR are given and
H2 is symmetric in its arguments. For example, on IR6 with z = (q,p)
and z' = (q',p'), the functions

2

2
= .JLL ] =

H](Z) om and HZ(Z,Z ) W
describe the dynamics of identical particles of mass m and charge e under
electrostatic interaction. (The simple generalization to an arbitrary number
of different species is omitted here.)

Hamilton's equations on P" give the Liouville equation for the evolu-

tion of a smooth symmetric function,
f, P+ IR,
namely

Bfn
5t + {fn’Hn}n =0, (L)

where { , }n denotes the Poisson bracket on P", i.e. the n-particle
Poisson bracket. The moments of fn are defined by the following equations

one-point function: f](z;t) =n ffn(z,zz, vees zn;t)dz2 - dzn

- s . [N - _ ' .
two-point function: fz(z,z 3t) = n(n 1)ffn(z,z 3235 ens zn,t)dz3 .. dzn

where dz denotes Liouville measure. The hierarchy equations can be obtained"
by differentiating these equations in t wusing the evolution equation for fn.
For example, the first equation is

of
—L (z;t) + {f] Jf(f])}(Z;t) = J{ﬁ(Z;t)f](Z';t) - folz,2'5t), Hy(2,2")} dz

ot
(HT)
where Jﬁ(f])(z) = H1(z) + jf(z')HZ(z,z')dz' and the braces denote the

Poisson bracket on P (see the appendix).



THE HAMILTONIAN STRUCTURE OF THE BBGKY HIERARCHY EQUATIONS 117

§3. Lie-Poisson Equations

A Lie-Poisson bracket is the natural bracket on functions defined on
the dual of a Lie algebra. These brackets play a fundamental role in the
Hamiltonian description of rigid bodies, fluids, and plasmas, (See the
references cited earlier). If G 1is a Lie group with Lie algebra q} and
dual ¢4, then for F,G:OJ* > IR, their Lie-Poisson bracket at 1 € ¢4*
is defined by

630 = (o, [EF, 58], (LP)
where SF €84 is defined by
Su &}
DF(u)en' = (', LLY

du

DF(u) 9s the Frechet derivative, { , ) 1is the pairing between €y* and 0},
and [ , ] is the Lie bracket on 64 -

The Lie-Poisson bracket for the group Sym(P) of canonical transforma-
tions of a symplectic manifold P may now be described as follows. Except
for constants, the Lie algebra sym (P) may be identified with (generating)
*

with densities fdu, where
f:P - IR and dup 1is Liouville measure on P. Then we set

functions K:P = IR and its dual sym(P)

{F,G}(f) = }fp f{% %2} dy. (PV)
This is the bracket for the Poisson-Vlasov equation; it is also a fundamental
ingredient in the Maxwell-Vlasov bracket (Morrison [1980], Marsden and
Weinstein [1982]). With P replaced by Pn, it also describes the Liouville
equation (L). In fact one can check either by a direct calculation or from
considerations of reduction of dynamics on Sym(Pn) that (L) is equivalent to

F= (R KF)

where F is a functional of s { 1} (fn) is given by the bracket (PV) with
f. in place of f, P" in place of P and

. zn)dz - dzn

Here Sym(Pn) may be replaced by Syms(Pn), those elements of Sym(P") that
commute with permutations and sym(Pn) by symS(Pn), the symmetric functions
on P", ‘
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4. The Hierarchy Algebra
Suppose that An is a real Lie algebra and A] c A2 c... C An are
lTinear subspaces. Below we shall choose A~ to be the algebra syms(Pn)

of symmetric functions under Poisson bracket and Ai to be the space symS(P1)
embedded as a subspace by the map

i s

Ei:Ki(z1’ vees Z.) b ZKi(zj], vees 2.1)

where the sum is over distinct subsets of {1, ..., n}; i.e. j] # j2 Fo...
# ji‘ For example

K (z.,zj).

K](z]) »-%K](zi) and K2(z],zz) C) (2

it]
One checks that in this example we have a filtration; i.e.

.] C
[A'i ’AJ] Ai+'

i (F)

(Note that only A] is a Lie subalgebra,) In general given such a filtra-
tion there is a Lie algebra structure on

An = A ®A2®...@An

such that the map

defined by

is a Lie algebra homomorphism. Indeed, set
LKy wees K)o (Lys eens LT = (IKL DL TKLLD + KoL D,

[Kysl,J + [KpsLad + [Kgsly D, ol ) (HLA)
where [Ki’Lj] is to be put in the kI os1ot if k=i o+ j-1 andif
i+j-1<n. If i+j-1>n, the term is to be put in the last (n
slot; one has some options here that will be the subject of our work on

th)

truncations.
One can check directly that (HLA) defines a Lie algebra structure and
that O is a Lie algebra homomorphism.
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§5. The Moments Comprise a Momentum Map

The dual u; of o, in our example is determined as follows. We have

*

o A @ ...@A ~ A and so ¢A3+q®.“@%

is given by

* —
J(anfn)(K], e Kn)dz] v dzn = jfnan(K1, . Kn)dz] e dzn
n
-1 [foest2azy .. az,.
From the definitions it follows that
*
anfn = (f], vees fn)

where f1, vees fn are the moments of fn and the embeddings g; are

suppressed.

Thus, the process of taking moments is given by the dual of a Lie
algebra homomorphism and is therefore a momentum map (this is a standard fact;
cf. Guillemin and Sternberg [1980] or Marsden et. al. [1983]).

§6. The Hierarchy Equations are Lie-Poisson

Since o, s a momentum map, it is a Poisson map; i.e. it preserves

brackets. We have the following maps

%N m%
syms(P ) ———— IR
taking moments a;
n 9:/ i H
An = ) symS(P ) ———— IR
i=1

Now J%(fn) = JP" Hn(z1, cees zn)fn(z], cees zn)dz] .. dzn

¥ Jp“ Y Hz(zi,zj)fn(z], s zn)dz] co. dz
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= JP H](z)f](z)dz + % JPZ Hz(z,z')fz(z,z')dz dz!

so that M% "collectivizes" in the sense of Guillemin and Sternberg [1980]

to a map ¥ on AT C)'...() A: that depends only on the first two arguments.
From general properties of momentum maps and reduction, it follows that the
equations of motion for & are Lie-Poisson. But these equations are just
the equations for fn written out in terms of the moments; they are thus

the hierarchy equations. We summarize:

Theorem. The BBGKY hierarchy equations for the moments f,, ..., f of an

n
n particle distribution function fn(z], cees zn) are equivalent to the

Hamiltonian equations

F=(F,30,, (LP)
n

where F is a functional of (f], cees fn) (regarded as independent
variables), ¥ is given by

wof, ..., fn) = jp H1(z)f](z)dz + % JPZ Hz(z,z')fz(z,z')dz dz!

and { 1},. is the Lie-Poisson bracket on the dual of the hierarchy Lie
n

algebra with Lie bracket given by (HLA).

Remark. The present formalism is appropriate for electrostatic interactions
and has brackets compatible with those for the Poisson-Vlasov equation.
Electromagnetic interactions require a Poisson structure compatible with

that for the Maxwell-Vlasov equations, with fully incorporated electromagnetic
field variables.

Appendix. Direct Verification of the Main Theorem for the First Two
Hierarchy Equations

From (L) we have

5 , .
S NCAE R {fn(z], cees Z5t), g H(z;)
+ Y H (z.,z.)} =0, (L)
ig &V e,

where we have replaced the brace subscript n by the explicit variable
dependence Zys eees 2. Thus
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3 L) = 0 . s
= f](z],t) = % ann(z1,22, Cees zn,t)dz2 e dzn (definition of f])
(
=n -{f (z9s wees Z 3t), T H(z,) + ) H (z.,z.)} dz,..dz
At T g BT e

Using the identity f{f,g}z dzk = (0, we obtain
k
3 ¢ (per) = nlde . |
3E-f](z,t) = -nJ{fn(z], cees zn,t),§ Hy(z;) + iZj Hz(z].,zj)}21 dz, ... dz_

= '"J{fn(zl’ cees zn;t), H](z])}z] dz2 e dzn

-nj{f (z;, o0y z3t), ) Ho(z ,z.)}
n'1 n 145 271°75 z, dz2 cen dzn

‘{f](zl;t)s H](Z])}Z1 = j{fz(zlgzz)s HZ(Z] ’22)}2_] d22 ° (H])

This is equivalent to the first hierarchy equation (H1).

For f2 we similarly compute (assuming n > 3)

0 L) = 1y _9 .
5t fz(z],zz,t) n(n-1) 5t jfn(z], cees zn,t)dz3 e dzn

= -n(n-])I{fn(z], zn;t),gH](zi)

+ Y H (z.,z.)} dz, ... dz
i< AR RN Z]""’Zn 3 n
= -n(n-])f{fn(z], v zn;t), H](z]) + H?_,(zz)}zl’22 dz3 et dzn

- n(n-])j{fn(z], cees zn;t), Hz(z],zz) + jzz HZ(Z]’Zj)

+ ) Hy(z,,z )} dz, ... dz
Wl 22K 2,2, O3 n

'{fz(z]szz;t)’ H](Z'l) + HZ(ZZ)}Z],ZZ

- {fz(z‘] szz;t)a HZ(Z] 922)}21 ’22.
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- Jirgtey gzt ytazg) iz, dzg ()

Let us now verify fhatthe Lie-Poisson structure also gives (H1) and (H2).
Indeed, let F(f],fz) be a functional of f] and f.,. Then

2
F o= DF(f,F,)(F,, )
of 3
(P er T2 oF
j 5t of, ¢ +f 5t 3F, 1419%

Also,

, B (6F  6F V(83 sH
R0 (Fawos £) = (s ey fn),[ﬁ-, 00 B S ]])

1 2 1 2
SH 8 1
Now SF H] and SF 3 HZ’ S0
1 2
: - SFSF
{F’J(}A;(f'l’ s fn) - <(f-|s'-o-9 fn),[[(sf]s 6f2, 0,09 0]:

%he bracket is obtained by embeddirg as functions of z z

]3 LI ) ns
taking the Poisson bracket there and then identifying the answer as an
embedded function. The embedding introduces various combinatorial factors.

For example, we find
[(K](Z])Q K2(Z‘l,zz)’0909 "‘)’ (L‘I(Z])’ LZ(Z]’ZZ)SOQ "')]

= ({K (7)), L](z1)}zl, 21K, (z;), Lz(z],zz)}z],

2
P 2W(zpzp)y Li(n)Y, i Kolznzp) Lz,

* Az 2 Lylzpazy) 1y 0, 0, )

Remark. The term {K,(z;,2,), L2(z1,22)}z],22 could have gone into the

second slot to give anothér Lie algebra for which the theorem remains valid.
Thus
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{F,JC}A:(f], cees o) = Jf]{-d—];—, ”1}21 dz,
' foz({ii] (2). 3 #olz:20)f
{2;2 (272,) ”1(21)}z1)dz1dzz
jf3 - ? 5 {6F2 (2),25), % HZ(Z]’ZZ)}Z],zde]dZZdZ3

SF
Jf3.4{ 2 (z], 2), ? 2(21,23)}21 dz]dzzdz3

_U{fl(Z) Hy(2,)) S GF dz1

{ SF
+ J{fz(z] 922)9 Hz(z-‘ 922)}21 ’ZZ ‘6—1_-; dZ-le2

+ 2J{f2(z],z2

SF
)s H](Z])} 31?; (Z-l ,22) dZ-le2

SF
+ [{fz(z],zz), Hz(zl,zz)} E?E dz]dz2
2

SF
+ ZJ{f3(z],22,z3), Hz(z],z3)}21 S?E dz]dz dz3]

SF_
5F,

SF

Comparing coefficients of and = gives (H1) and (H2).
2
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