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THE HAMILTONIAN STRUCTURE OF THE BBGKY HIERARCHY EQUATIONS 

Jerrold E. Marsden,l Philip J. ~lorrison,1,2 and Alan Weinsteinl 

ABSTRACT. The BBGKY hierarchy equations for the evolution of the 
i'-point functions ofa plasma with electrostatic interactions are 
snown to De Hamil tonian. The Poisson brackets are Lie-Poisson 
brackets on the dual of a Lie algebra. This algebra is constructed 
from the algebra of n-point functions under Poisson bracket and 
tne fil tration obtained by considering subspaces of i-poi nt func­
tions, 1.5. i .5. n. 

§l. Introduction 

Tne purpose of this paper is to show that the BBGKY (Bogoliubov-Born­

Green-Kirkwood-Yvon) hierarchy equations are Hamil tonian with a Poisson 

bracket associated to a certain Lie algebra. For background and the original 

references on the hierarchy, the reader may consult one of the standard texts, 

such as Clemmow and Dougherty [1969J, Ichimaru [1973J or Van Kampen and 

Felderhof [1967J. For background on Lie-Poisson structures on duals of Lie 

algebras, see Marsden and Weinstein [1982J, Marsden et. al. [1983] and the 

lectures of Morrison, Ratiu and Weinstein in these proceedings. 

In the present paper, we simply exhibit the Hamiltonian structure of 

the hi erarchy equations making use of the theory of momentum mappings. 

'Eventually, we hope to show how this structure is inherited by trun-
cated systems, providing a statistical basis for recently discovered bracket 

structures for plasma systems (Morrison and Greene [1980J, Morrison [1980J, 

Marsden and Weinstein [1982]" Morrison [1982J and Marsden, et. al. [1983]). 

2. The Hierarchy Equations 
Let P be a fi ni te dimens i ona 1 symp 1 ecti c mani fo 1 d; for exampl e, the 

position-momentum space :rn6 for a single particle. Let pn::. P X P X ••• X P 

(n times) be thought of as the phase space for n pa~ticles. Points in 

pn will be denoted (Z~' ••• , zn)' Consider a Hamil tonian on pn of the form 
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where H,:P ->- IR and H2:P x P (minus the diagonal) ->- IR are given and 

H2 is symmetric in its arguments. For example. on m6 with z = (q,p) 

and z' = (q',p'), the functions 

2 
H (z) = lEt:. and 
1 2m Iq - q' I 

descrioe the dynamics of identical particles of mass m and charge e under 

electrostatic interaction. (The simple generalization to an arbitrary number 

of different species is omitted here.) 

Hamilton's equations on pn give the Liouville equation for the evolu­

tion of a smooth symmetric function, 

namely 

(L) 

where { '}n denotes the Poisson bracket on pn, i.e. the n-particle 

Poisson bracket. The moments of fn are defined by the following equations 

one-point function: fl (z;t) = n ffn(Z,z2' ••.• zn;t)dz 2 ••• dZn 

two-point function: f 2(z,z';t) = n(n-l)ffn(Z,z"z3' ... , zn;t)dz3 dz 
n 

where dz denotes Liouville measure. The hierarchy equations can be obtained 

oy differentiating these equations in t using the evolution equation for f n. 

For example, the first equation is 

df 
d~ (z;t) + {f"Ji(f1)}(Z;t) = J{fl(Z;t)fl(Z';t) - f 2(z,z';t), H2(Z,z')} dz' 

where JIl(f,)(z) = H,(z) + jf(Z')H 2(Z,Z')dZ' and the braces denote the 

Poisson bracket on P (see the appendix). 

(Hl) 
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93. Lie-Poisson Equations 

A Lie-Poisson 5racket is the natural bracket on functions defined on 

tFie dual of a Lie algeora. These brackets playa fundamental role in the 

Hami'l toni an descri pti on of ri gi d bodi es. fl ui ds, and pl asmas, (S ee the 

references cited earlier). If G is a Lie group with Lie algebra o;r and 

dual 4(*, then for F,G: ~* -+- IR, their Lie-Poisson bracket at fl E 6)* 

is defined 5y 

(LP) 

where ~~ E ~ is defined by 

DF(fl) is the Frechet derivative, ( ,) is the pairing between ~* and 8-), 
and I, J is the Lie bracket on D}. 

The Lie-Poisson bracket for the group Sym(P) of canonical transforma­

tions of a symplectic manifold P may now be described as follows. Except 

for constants, the Lie algebra sym (P) may be identified with (generating) 

functions K:P -+- rn and its dual sym(P)* with densities fdfl, where 

f:P -+- rn and dfl is Liouville measure on P. Then we set 

J {oF oG} {F,G}(f) = P f Of' Of dfl. (PV) 

117 

This is the bracket for the Poisson-Vlasov equation; it is also a fundamental 

ingredient in the Maxwell-Vlasov bracket (Morrison [1980J, Marsden and 

Weinstein I1982J). With P replaced by pn, it also describes the Liouville 

equation (L). In fact one can check either by a direct calculation or from 

considerations of reduction of dynamics on Sym(pn) that (L) is equivalent to 

F = {F ,:I( }( f ) 
n n 

where F is a functional of fn' { } (fn) is given by the bracket (PV) with 

fn in place of f, pn in place of P and 

( 

~(fn) = Jpn Hn(Zl' ... , zn)fn(Zl'···' Zn)dZ, ..• dZn 

Here Sym(pn) may be replaced by syms(pn), those elements of Sym(pn) that 

commute with permutations and sym(pn) by sym (pn), the symmetric functions 
s 
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4. The Hierarchy Algebra 

C A are 
n 

Suppose that An is a real Lie algebra and Al CA2 c ... 
linear subspaces. Below we shall choose An to be the algebra 

of symmetric functions under Poisson bracket and Ai to be the 

embedded as a subspace by the map 

sym (pn) 
s. i 

space syms (P ) 

where the sum is over distinct subsets of n, 
f ji' For exampl e 

... , 

. . . , 

z. ) 
J i 

nl; i.e . 

One checks that in thi s exampl e we ha ve a fi ltra ti on; i.e. 

[A. ,AJ.] CA .. 1 
1 1 +J-

(Note tnat only Al is a Lie subal gebra;) In general given such a fil tra­

tion there is a Lie algebra structure on 

such that the map 

defined by 

is a Lie algebra homomorphism. Indeed, set 

( F) 

(HLA) 

where [K.,L.] is to be put in the kth slot if k = i + j - 1 and if 

i + j _ll.;;;;~. If i + j - 1 >n, the term is to be put in the last (nth) 

slot; one has some options here that will be the subject of our work on 

trunca ti ons. 

One can check directly that (HLA) defines a Lie algebra structure and 

that an is a Lie algebra homomorphism. 
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§5. The Moments Comprise a Momentum Map 

The dual CI.~ of Cl.n in our example is determi ned as follows. We have 

is given 5y 

From the definitions it follows that 

I Jf s· (K. ) dZl ... dz . 
i =1 n 1 1 n 

dz 
n 

where f" ..• , f n are the moments of f n and the embeddi ngs si are 

suppressed. 

Thus, the process of taking moments is given by the dual of a Lie 

algebra homomorphism and is therefore a momentum map (this is a standard fact; 

cf. Guillemin and Sternberg [1980J or Marsden et. al. [1983J). 

96. The Hi erarchy Equa tions are Lie-Poisson 

Since CI.~ is a momentum map, it is a Poisson map; i.e. it preserves 

5.rackets. We have the followi ng maps 

sym*( pn) 
s 

taki ng moments I CI.~ 
'1/ 

JC 
__ n_ .... > IR 

n *. JC 
A = L sym (pl) ---..;.> IR 

n i =1 s 

dz 
n 

+ J L H2(Z.,Z.)f (zl' ... , Z )dzl '" dz 
pn i <j 1 J n n n 
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so tha t JC n "collectivizes" in the sense of Guillemin and Sternberg [1980J 

to a map JC 

From genera 1 

on A~ (] ' ... <!) A~ that depends only on the fi rst two arguments. 

properties of momentum maps and reduction, it follows that the 

equations of motion for JC are Lie-Poisson. But these equations are just 

the equations for f n written out in terms of the moments; they are thus 

the hierarchy equations. We summarize: 

Theorem. The BBGKY hierarchy equations for the moments f l , ... , fn of an 

n particle distribution function fn(zl' ... ' zn) are equivalent to the 

Hamiltonian equations 

where F is a functional of (fl' ... , fn) (regarded as independent 

variables), JC is given by 

and { }A* is the Lie-Poisson bracket on the dual of the hierarchy Lie 
n 

algebra with Lie bracket given by (HLA). 

(LP) 

Remark. The present formalism is appropriate for electrostatic interactions 

and has brackets compatible with those for the Poisson-Vlasov equation. 

Electromagnetic interactions require a Poisson structure compatible with 

that for the Maxwell-Vlasov equations, with fully incorporated electromagnetic 

field variables. 

Appendix. Direct Verification of the Main Theorem for the First Two 
Hierarchy Equations 

From (L) we have 

ddt fn (Zl' ... , zn; t) + {f (Zl' ... , Z ; t), L H l( z. ) 
n nil 

+ L H2(Z. ,z .)} 0, (L) 
.. 1 J 
1 <J Z, , ••• ,zn 

where we have replaced the brace subscript n by the explicit variable 

dependence zl' .•. , zn' Thus 
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Using the identity {{fog} dZk = 0, we obtain 
zk 

This is equivalent to the first hierarchy equation (Hl). 

For f2 we similarly compute (assuming n ~ 3) 

+ L H2(Zo, Zo l} Z dZ 3 ••• dz 
i <j 1 J Z1' .•. , n n 

+ L H2(Z2'Zk l } Z dZ 3 ••• dz 
k >2 zl' 2 n 

dz 
n 
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Let us 110W verify {hatthe Lie-Poisson structure also gives (Hl) and (H2). 

Indeed, let F(fl ,f2) be a functional of f, and f 2. Then 

Al so, 

{F, J{} ( f, , 
A* 
n 

...... , 

oJ( _ oJ( 1 
Now 8fl- Hl and of2 = 2 H2, so 

{F.J(}A~(fl' .•.• fn) =«f, •••. , fn),[t~~l' ~~2' 0,0 .... 0). 

h ' i H 2' 0, ... , O)} 

The bracket is obtained by embeddirg as functions of zl' ... , zn' 

taking the Poisson bracket there and then identifying the answer as an 

embedded function. The embedding introduces various combinatorial factors. 

For exampl e. we fi nd 

= ({Kl(Zl), L,(Zl)}Z' 2{K,(Zl)' L2(Zl'Z2)}z' 
1 1 

+ 2{K2(Zl'Z2)' Ll(Z')}Zl' n: 2 {K 2(Zl'z2)' L2(Zl,Z2)}Zl'Z2 

Remark. The term {K2(zl,z2)' L2(zl 'Z2)}Zl ,z2 could have gone into the 

second slot to give anothar Lie algebra for which the theorem remains valid. 

Thus 
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+ 2 Jf2(H~1 (zl)' ~ H2(Zl'Z2)L, 

+ {~~2 (z, ,Z2). Hl (zl )Ll )dZl dZ 2 

of of Compari ng coefficients of ""6fl and 8f2 gi ves (Hl) and (H2). 
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