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SOME OBSERVATIONS REGARDING BRACKETS 

AND DISSIPATION 

+ Philip J.Morrison 
D~partment of Mathematics 
University of California 

Berkeley, CA 94720 

Some ideas relating to a bracket formulation for dissipative systems 

are considered. The formulation involves a bracket that is analogous to a 

generalized Poisson bracket, but PQssesses a symmetric component. Such a 

bracket is presented for the Navier-Stokes equations. 
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Many of the fundamental nondissipative equations describing fluids 

and plasmas have been shown to be Hamiltonian field theories in terms of 

generalized Poisson brackets (GPB). For review see [1-4]. Here we discuss 

a formalism for entropy producing conservative systems. As an example, the 

Navier-Stokes equations are considered. (This report is a companion to [5] 

,\There plasma kinetic equations are treated. A nonconservative system was 

discussed in [6]. Other formalisms were presented in [7-10].) 

Recall that a·GPB is a bilinear, antisymmetric operator that is a 

derivation on functionals and satisfies the Jacobi identity. The GPB 

need not be the usual Poisson bracket; hence fields that do not possess 

standard or canonical form can sometimes still be expressed as follows: 

a1// _ {,hi, JI} at - 'V i=1,2, ••• N (1) 

where the Hamiltonian functional JI is the "generator of time translation" 

and the quantities t/Ji are the field components. For two functionals F 

and G GPB's typically have the form 

{F,G} (2) 

where OF/Ot/Ji, the functional derivative, is defined by 

d i 
de: "F[t/J +e:ot/J] dTis a volume element; and O~ is an 

operator that in light of antisymmetry must be anti-self-adjoint. 

Systems that are dissipative would not a priori be expected to fit 

. t th f f E (1) ·Indeed -it -is not clear what functional ·should ~n 0 e orm 0 q.. • • 
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be the "generator of time translation", and which algebraic properties of a 

binary bracket operator will lead to a rich structure. 

We address the first point above by recalling that in classical thermo­

dynamics the equilibrium state can be obtained by either the energy or 

entropy extremum principles. In this sense we view the energy, a function 

of the extensive variables, as the "generator of equilibria",· or alternatively 

the entropy can generate equilibria. Moreover, additional extremum principles 

exist in terms of the thermodynamic potentials. For dynamical systems an 

extension of this is to choose from among these quantities the "generator 

of time translation". 

In particular an appealing choice is a quantity., we call the "generalized 

free energy". In the energy formulation of thermodynamics the equilibrium 

state is obtained by extremizing the energy at constant entropy. This can 

be achieved by varying the following: 

FA = E + AS (3) 

where E is the energy, S is the entropy and A is a Lagrange multiplier. 

A natural generalization of this for dynamical systems is to add to the 

Hamiltonian quantities known as Casimirs or "generalized entropy" functionals. 

These are functionals that, due to degeneracy in a GPB, are conserved for 

all Hamiltonians; i.e. they commute with_all functionals. Such quantities, 

independent of the GPB formalism, have previously been used to obtain varia­

tional principles for plasma equilibria [11-14); such. principles are useful for 

obtaining linear stability criteria. Recently, using_ theGPB formalism, nonlinear 
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stability results have been obtained by using Casimirs [15, 16]. Thus 

generalizing Eq. (3) we obtain 

J!.+ /% (4) 

where/% is a Casimir. (Observe tha.t we have dropped the Lagrange 

multipliers since typically Casimirs involve free functions; see Eq. (22) 

below.) . The reason that the quantity q of Eq. (4) is an appealing 

"generator of time translation" is that by analogy critical points of ~ 

correspond to both thermodynamic and dynamic equilibria. q so defined 

is what we ,have termed the'generalized free energy." 

It remains to describe the binary bracket operator that together with 

q produces the equations of motion; i. e., in the form 

(5) 

where the double braces are used for_the dissipative generalization of 

Eq. (2). Just as any operator can be split into self-adjoint and anti-

self-adjoint parts, we split the bracket of Eq. (5) into the sum of an 

antisymmetric GPB and a symmetric component. For two functionals F 

and G we have 

{{ F ,G}} = {F ,G} + (F ,G) (6) 

where. {F ,G} has the form of Eq. (2) with an ant i .... s elf-adj oint operator 
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oij and (F,G) is given by 

(F ,G) (7) 

Here, M
ij 

is to be self-adjoint and hence (F,G) is symmetric under the 

interchange of F and G. 

Equation (5) thus becomes 

(6) 

From Eq. (6) it is clear that critical points of .1J; i.e. points where 

&1/0~i = 0, correspond to dynamical equilibrium, since clearly a~i/at = 0. 

Also Eq. (6) can be rewritten as 

(7) 

since the difference between )1 and q is a Casimir. From Eq. (7) we 

see that the dynamics is split into Hamiltonian and non-Hamiltonian parts. 

Moreover, if the symmetric bracket has the degeneracy property ,()1,G) = 0 

for all functionals G, Eq. (7) becomes 

, (8) 

Thus the time rate of change of the general~zed entropy is given by 

d$ 
dt = ($,$) (9) 
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From Eq. (9) it is clear that definiteness of the symmetric bracket is 

equivalent to an H-theorem. The ideas of degeneracy and definiteness 

first appeared in [7] and were subsequently employed in [5, 8-10]. 

We now consider the Navier-Stokes equations 

(10) 

(11) 

8p d 
-;-t = - -", - (pvk ) 
o oXk 

(12) 

Equation (10) is the equation of motion, where ·v 
i 

is the ith (i = 1,2,3) 

component of the velocity field, which is assumed to be a function of the 

spatial coordinate xk as well as time t. Repeated sum notation is 

assumed. ·As usual, p is the pressure, P is the mass density and T 

is the temperature. The heat equation, Eq. (11) is written in terms of 

the entropy per unit mass s, in order to explicitly show those terms that 

instigate entropy production. The quantities aik and are the 

viscosity stress tensor and the conductive heat flux density respectively. 

They are given by the following constitutive relations: 

(13) 

(14) 
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where n and ~ are the viscosity coefficients, which are in general 

positive functions of p and T. The thermal conductivity is K, which 

may in addition be a function of IV'T I. The system of equations given by 

(10)-(12) is closed by the thermodynamic relations 

and 

2 aU 
p=p 8P 

au T =­as 

where U(p,s) is the internal energy per unit mass; U(p,s) is assumed 

to be a known function of p and s. 

The Navier-Stokes equations, as given, are known to conserve the 

energy 

J 
1 2 3 

JI = . (2 pv + pU(p,s» d x 

but produce entropy as a result of the terms of Eq. (11) involving Gik 

and i.e. by viscous dissipation and heat flux. Before presenting 

(15) 

(16) 

(17) 

the symmetric bracket that produces these terms we review the Hamiltonian 

structure for the Euler equations (i.e. Gik, qk + 0) as given in [17] 

(see also [2]). 

The Hamiltonian in this case is the total energy ftlnctional of Eq.. (;L7), 

The equations of motion, continuity and entropy are, given by 



av. 
-2:. = {v. JI} 
at 1.' 

.92= {p,J/} 
3t 

as {s ,.I/} -= at 

where the GPB, {,}, is given by 

of 
01; 
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(18) 

(19) 

(20) 

(21) 

Upon inserting the quantities shown on the right hand side of Eqs. (18)-(20), 

into Eq. (21) and performing the indicated operations one obtains, as noted, 

the' in'vicd.d adiabatic limit of Eqs. (10)-(12). 

The Casimirs for the bracket given by Eq. (21) are the total mass 

M = J P d
3
x and a generalized entropy functional $f 

where f is an arbitrary function of s .. The latter quantity is added to 

the energy [Eq. (17)] to produce the generalized free energy ofEq. (4): 

In order to obtain the dissipative terms, we introduce the following 

symmetric bracket: 

(23) 
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where 

ll°km ]. n 
2 

- n (0 i O k + 0 kO ° - -3 oOko ) + s oOk 0 , n m n m]. ]. mn ]. ron 

from which we note that aOk = ll0kmndV lax, and A is an arbitrary ]. ]. n m 

constant. In addition to symmetry this bracket possesses the following 

properties: 

(a) There are degeneracies associated with the momentum functional 

-7-

P = Jp~ d3x and energy functional 

functionals G. 

H; i. e. 
-7-

(P, G) = (JI, G) = 0 for all 

(24) 

(b) For all functionals the braeket is definite with sign depending 

upon A. This is clear for the term that depends upon K (recall K > 0), 

but it is not immediately apparent for the remaining terms, so we rewrite 

the bracket as follows: 

(F G) = 1. J { Til [_a _ (1:. ~) _ ~ av i OF] , A ikmn dX
i 

p oV
k 

pT dX
k 

os 

Definiteness arises from the fact that llikmnaikamn > 0 for any (aik) • 

An important ramification of definiteness occurs for the functional gf. 

Definiteness in this case corresponds to an H-theorem, which is va;Lid 

even though the function f remains arbitrary. 

(c) If we let f = AS .upon inserting ~ into Eq. (23) with 

p, and s we obtain 

-7-
V, 
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(25) 

(p,0 = 0 (26) 

(J ik dV i 1 - 8 8T 
(s,t§l) = PT 8x

k 
+ pT 8~ (K dX

k
)' (27) 

Equations (25)-(27) yield the dissipative terms of the Navier-Stokes 

.equations. Since $ is a Casimir, the Navier-Stokes equations are 

given by 

8v. 
---1. = {{ Vj ,t~Z}} 8t 

dP {{ p /]2 }} -= 
8t 

8s 
{{s,~ }} -= 

8t 

Observe that had we chosen a nonlinear f Eqs. (25) and (27) would obtain 

additional dependence upon s. 

In closing, we point out that for general systems, symmetry in transport 

coefficients is related to bracket symmetry. For the purpose of illustration 

we demonstrate this by replacing the scalar conductivity K by a tensor 

K. . • Usually anisotropy arises because of. the presence of a magnetic 
1J 

field B, as in the case of a crystal or conducting fluid. Here we 

ignore the dependence of K •• 
1J 

on B, but evidently the formalism presented 

here for the·Navier-Stokesequat1ons can be extended to magnetohydrodynamics 

with constitutive relations arising from:small Lannor radius' corrections [18]. 
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·If we replace the penultimate term of Eq. (Z3) by 

then in order to maintain symmetry in the bracket it is necessary for 

K .• = K ..• This corresponds to Onsager symmetry since here K1..'J:(D) = 1.J J 1. 

K
fj 

(-B). The contribution to the heat equation that is produced by 

Eq. (28) is 

1 d dT 
pT dX. Kij dX. 

1. J 
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Erratum

Page 3, Line 2: Essential ideas (energy conservation, definiteness, etc.) in
the context of brackets for dissipation actually appeared earlier in

A. N. Kaufman and P. J. Morrison, “Algebraic Structure of the
Plasma Quasilinear Equations,” Phys. Lett 88A, 405 (1982),

which evaded the memories of both of these authors∗ during the independent
preparations of their back-to-back papers of Refs. [5] and [8].

∗ A. N. Kaufman private communication October (2007).

1








