VOL. V

December 1986 .

Institute for Fusion Studies
‘The University of Texas
- Austin, Texas 78712

In this Issue:

p. 2......Hamiltonian Four-Field Model.
R.D. Hazeltine, C.T. Hsu and P.J. Morrison.

.4....... ition Experiment (IGNITEX)
P e R. Carrgra, E. Montalvo, M. N. Rosenbluth

p. 7........ Muon Catalyzed Fusion-Fission Reactor
Driven by a Recirculating Beam -
S. Eliezer, T. Tajima, M. N. Rosenbluth

p.9.......Fermi Award Address
M. N. Rosenbluth

J.D. Meiss, editor




Vol. V

Page 2 -

Hamiltonian four-field model.

R.D. Hazeltine, C.T. Hsu and
P.J. Morrison.

The four-field model for nonlinear tokamak
fluid dynamics is a generalization of reduced

MHD that allows for slow evolution (® < ®x),
long mean-free-path electron dynamics, and
various effects of plasma compressibilty, in a
simple albeit non-rigorous way. Like previous
models it reproduces such features of kinetic and
FLR physics as the “semi-collisional”
conductivity, gyroviscosity-modified nonlinear
convection, curvature-modified drift-tearing
instability and diffusion in a stochastic magnetic
field. Also like its predecessors it omits

temperature gradients and kinetic effects of .

magnetic trapping. Finally, unlike previous work
(but like the underlying physics it atttempts to
represent), it not only conserves energy but is a
Hamiltonian dynamical system.

Note that the Hamiltonian property is much
stronger than energy conservation; it implies both
conservation of phase space volume as well as
the proper invariance of generalized helicities
(Casimir invariants).

First recall the following conventional

normalized field variables: W = (eBTa)'lAC,
where € is the inverse aspect ratio and Ag is the
toroidal component of the vector potential; ¢ =
c®@/(evaBTa), where @ is the electrostatic
potential and vp is the Alfven speed;
v=Vy/(evy), where V) is the ion parallel
velcocity; and p = (B/e)[(n/n;) -1], where n is the

plasma density. It is also convenient to introduce
a velocity stream function, F, according to (1 +

PB&#VZF = ¢ + Stp. This contains the
expected combination of electric and diamagnetic
drifts, with FLR corrections. We finally use the

parallel current density J = V2,y and parallel

vorticity W = V2, F in order to obtain the four-

field model shown in Egs. (1)-(4). Here h= (R -
Rg)/a is a normalized “horizontal” distance (R is
the major radius and Rg the major radius of the
magnetic axis), and the three constant parameters

are B = 8mn.To/BT2, where n, measures the
central plasma density and BT measures the

toroidal magnetic field; & = c/(2my;a), where Opi
is the ion plasma frequency and a is the plasma
radius; and T = T;/T.. The "inner bracket" is
conventional,

[fg] =0V, fx Vg,

where { is a unit vector in the toroidal direction,
and the parallel gradient operator is defined by

V”f = af/a?; + [f,\]f]
The conserved field energy is given by

H= 1/2( IV_LFIZ + IV_L\UIZ +
(1+0)p%/(2B) +v2),

where the angular brackets denote an integral
over the system volume. This energy is easily
understood in terms of fluid kinetic, magnetic
field and thermal energies.

To demonstrate the Hamiltonian character

of this system we introduce field variables &l
according to

El=V 2(F - &1pf2), E2=v,
E3=p+2Bh, Ed=v.

Thus &! is a modified vorticity; £2 measures the
poloidal magnetic flux; &3 is a curvature-corrected

electron pressure; and &% measures the ion
parallel velocity. The system energy then takes

@ty + V6 - 8V;p =0,

@ORYW + [E;W] + V,J + (1+0)(1+162BV  9)h,p] = 5V -[p+2Bh,V ]
+ (12)283BV  2[p+2BhW] - (1/2)t8BY 2V, (v+25)), 1)

(0/00)p + [¢, p+2Bh] = B{23[p,h] - Vy(v+28D)},
@0V + [¢.v] + (1/2)V[p+T(p-8PW)] = 182B[v,V | 2(F-81p)]+281B[v,h].

@
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the form

» HIE = 1o(IV  (V7261) + 87,V (3 - 2Bh) ]2
+] V82 2+ (1+1)(E3 - 2Bn)2/(2B) + (E4)2 )

where V=2 is the inverse of the Laplacian. H is
to be considered a Hamiltonian functional of the

&1, with functional derivatives H; = SH/8E1The
Hamiltonian version of Egs. (1) - (4) is given by

oEi/ot = {EiH]}, )

where the noncanonical Poisson bracket is
defined for arbitrary functionals F and G by

{F.G} = (CUEX[F;, G;] + Clip(F9Gyo( -
GOF/a0). ©)

Here F; = OF/0E], and a sum over paired indices
is implicit. The coefficient matrix CYp,
symmetric with respect to its upper indices, has
the following nonzero components:

Gli= Gl =8y

G2 = 32 = 28B3y,

C33 =28B8s,

Gt = G* =Bdy,

Ci* = -B1(By3 - 28Py ). @

We remark that Egs. (6) and (7) define a true
Poisson bracket: it is antisymmetric, it satisifies
the Jacobi identity,

{F.{GH}}+{G,{(HF}}+{H,{F,G}} =0,
and acts as a dervation, in the sense that
{F.GH} = {F,G}H + G{F,H)}.

Note also that Cliy is a simple matrix, at least in
the sense of being sparse.

The new FLR and compressibility terms
appearing in Egs. (1) - (4) can be understood as
follows. FLR corrections appear multiplied by
™28 or 18P, measuring the squared ion
gyrodradius, p;2.  Such

terms occur in

combination with the expected Laplacian factor,
and have a well known interpretation in terms of
averages over the Larmor orbit. The FLR terms
manifest on the right-hand side of Eq. (1)
describe, in particular, nonlinear diamagnetic
convection and ion gyroviscosity. In linear
theory these terms reproduce the ijon drift
frequency corrections of gyrokinetic theory.
Another type of FLR correction is most

‘apparent in Eq. (4): the 8BW correction to the

ion pressure. It can be identified with a well-
known residue from “gyroviscous cancellation;”
thus gyroviscosity is known to modify the ion
scalar pressure in an FLR plasma according to
Pi—=pill - Q) 1b-VXVy], where O is the ion
gyrofrequency, V; the ion fluid velocity and b a
unit vector in the direction of the magnetic field.

When this correction factor is expressed in terms
of normalized variables and reduced for large

aspect ratio it becomes p-6fW.

The remaining corrections of interest
involve the plasma compressibility, given by the
right-hand side of Eq. (3). The term involving h
is perpendicular compressibility, resulting from
curvature of the magnetic field, while the term

involving V) is parallel compressibility of the

electron flow, V|, =< v+28]. A new feature of

the Hamiltonian model is the appearance of
compressibility terms in Eq. (1), as seen, for
example, in its last term. The contribution of
compressibility to the shear-Alfven law, although
often omitted, is easily understood. First of all,
the  vorticity of  diamagnetic  flow,

CVx(d/d)(CxVp), evidently involves the

Laplacian of the compressibility, V2(dp/dt).
Secondly, gyroviscosity can be shown to
contribute terms of the same form. Equation (1)
displays the sum of these two contributions,
which, together with the factor of (1/2), also
occur in the rigorous version.

The Hamiltonian four-field model,
drastically simpler than models obtained from
systematic ordering procedures, is not rigorously
asymptotic. The selection of FLR effects it
contains can be characterized as the minimal
additons to a cold-ion theory vyielding the
following physical properties: (i) correct cold-ion
limit; (ii) physical treatment of ion diamagnetic

effects; and (iii) Hamiltonian structure. ¢




