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A PARADIGM FOR JOINED HAMILTONIAN AND DISSIPATIVE SYSTEMS 

Philip J. MORRISON 
Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712, USA 

A paradigm for describing dynamical systems that have both Hamiltonian and dissipative parts is presented. Features of 
generalized Hamiltonian systems and metric systems are combined to produce what are called metriplectic systems. The phase 
space for metriplectic systems is equipped with a bracket operator that has an antisymmetric Poisson bracket part and a 
symmetric dissipative part. Flows are obtained by means of this bracket together with a quantity called the generalized free 
energy, which is composed of an energy and a generalized entropy. The generalized entropy is some function of the Casimir 
invariants of the Poisson bracket. Two examples are considered: (1) a relaxing free rigid body and (2) a plasma collision 
operator that can be tailored so that the equilibrium state is an arbitrary monotonic function of the energy. 

Prologue 

It is with pleasure that I submit this somewhat 
preliminary work in honor of M.D. Kruskal. I 
consider this to be an outgrowth of my first work 
in this area, ref. 1, which was influenced in a 
principal way by the famous six papers on the 
KdV equation by Kruskal and collaborators (in 
particular ref. 2). I recall with fondness Martin's 
support, encouragement and unflagging question- 
ing. 

1. Introduction 

This paper is about a formalism for describing 
systems with dissipation. Physicists, particularly 
those that work in areas such as fluid mechanics, 
plasma physics or kinetic theory, view dynamical 
equations in a split manner: terms that cause 
dissipation are distinguished from those that don't. 
The formalism presented here concentrates on this 
split. The nondissipative dynamics is described as 
a generalized Hamiltonian system while the dis- 
sipative dynamics is described in terms of a metric. 
A bracket that incorporates both is defined on the 
phase space; thus we obtain a construct that has 
Riemannian as well as symplectic components. We 

define a generalized free energy and use it with 
this bracket to represent equations with dissipa- 
tion in a manner analogous to the way Hamilto- 
nian systems are represented in Poisson bracket 
form. This bracket representation has built into it 
conservation of dynamical constraints, such as en- 
ergy, as well as guaranteed entropy production. 
Here the aim is to treat classical systems that relax 
to a time independent equilibrium state, but the 
possibility of treating other systems, e.g. with more 
exotic attracting sets, exists. 

The remainder of the paper is organized into 
five sections. In section 2 we discuss generalized 
Hamiltonian mechanics; i.e. where the Poisson 
bracket is generalized. This is basically a review of 
material with a long history that includes work 
motivated by Lie, Dirac, and others. We recom- 
mend ref. 3 for a geometrical mathematical slant 
(and references therein) and ref. 4 for a coordinate 
approach. A very readable exposition is given in 
ref. 5. In section 3 systems that are strictly dissipa- 
tive are treated. The type of systems discussed 
have, in a natural way, Liapunov functions that 
guarantee asymptotic stability. This is because 
there is an associated metric. Refs. 6 -9  are useful 
for background material. In section 4 we put to- 
gether sections 2 and 3 and define metriplectic 
systems that have both Hamiltonian and dissipa- 
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five parts. In the final two sections we treat two 
examples, one finite dimensional and one infinite 
dimensional. The former is a relaxing free rigid 
body while the latter is a plasma kinetic example. 
Refs. 10-13 contain previous work concerning dis- 
sipative formalisms. 

2. Generalized Hamiltonian mechanics 

Usually, Hamilton's equations of motion are 
written in terms of the coordinates qk and con- 
jugate momenta Pk as 

qk=[qk, H], p k = [ p k ,  H] ,  k = l , 2  . . . . .  N, 

(1) 

where H is the Hamiltonian and the Poisson 
bracket of two functions, f and g, of the p 's  and 
q 's  is given by 

u Of Og Of Og 
[ f '  g] = ~-~ Oqk Op, Opk Oqk" 

k = l  

(2) 

If we relabel by defining z ~, i = 1,2 . . . . .  2N, by 
zi=qi for i = 1 , 2  . . . . .  N and zi=pi for i = N +  
1, N + 2 , . . . , 2 N  then Hamilton's equations and 
the Poisson bracket become 

~,i=] ijOH = [z i, H] (3) 
c Oz j 

and 

[ f , g ] =  Of j / j O g  (4) 
Oz' Oz j ' 

where we sum repeated indices. The quantity J~'J is 
a contravariant tensor that is called the cosymplec- 
tic form; it is given by 

[0 ,oN] (Jc) = _IN , (5) 

where 1 N is the N × N unit matrix. The cosym- 
plectic form is so named because it is the dual or 

inverse of the symplectic two-form that is the 
essential structure for a geometrical description. 

The form of eq. (3) affords a convenient way to 
view the split between kinematics and dynamics. 
Here the kinematics is embodied in the definition 
of the Poisson bracket or equivalently the ( J / 0 ,  
which determines the structure of the phase space. 
The dynamics is of course supplied by the choice 
of H. For usual Hamiltonian systems phase space 
is a symplectic manifold; i.e. a differentiable mani- 
fold with a closed nondegenerate two-form, the so 
called symplectic two-form. In this work we em- 
phasize the cosymplectic form rather than the 
symplectic form. This point of view facilitates our 
goal of generalizing the kinematics, as well as the 
dynamics. 

Conventional phase space has built into it a Lie 
algebra structure as determined by ( J / 0 .  This Lie 
algebra is that associated with the group of canon- 
ical transformations; i.e. changes of coordinates 
that preserve the form of ( j u ) .  Specifically the Lie 
algebra of phase space is composed of real valued 
functions defined on phase space with a product 
given by eq. (4). This product has the properties of 
antisymmetry and bilinearity. In addition it 
satisfies the Jacobi identity 

[ f , [g ,  h l l + [ g , [ h , f l l + [ h , [ f , g ] ] = O .  (6) 

Also it is a derivation 

[fg, h ] = f [ g ,  h l + [ f , h ] g .  (7) 

All of these properties are a consequence of eqs. 
(4) and (5). They also survive an arbitrary change 
of coordinates, but (J/J)  ---, ( j i j)  where (Ji 0 need 
not have the form of eq. (5) and may obtain 
dependence upon the phase space coordinates. 
Conversely, if we have a bracket of the form of eq. 
(4) with (J /J)  replaced by some (J~J) that retains 
the properties of antisymmetry and the Jacobi 
identity, then Darboux's theorem tells us that if 
the determinant of (J~J) is not zero, we can con- 
struct a local canonical coordinate system in which 
the bracket obtains the form of eq. (4). If we relax 
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the requirement that d e t ( J i J ) ~ 0  then in the 
vicinity of a point where the rank of ( j i j )  is 2M 
we can construct a coordinate system such that 
( j i 9 )  __, ( j c iO  where (j~i.i) has the following form: 

(j-,J)= 
0 IM] 0 ]  

- - I  M 0 II 0 . 
i 

(8) 

A system of equations is Hamiltonian in a gen- 
eralized sense if it can be written in the form 

OH 
2 i = J ' J o z g ,  i = 1 , 2  . . . . .  L,  (9) 

where the only requirements on ( J ' J )  are that the 
bracket it defines, 

Og 
I f ,  g] = --~ZTJiJ 

Oz j ' OZ" 
(10) 

must be antisymmetric and satisfy the Jacobi iden- 
tity. When ( J ' J )  is not of the form of eq. (5) the 
bracket given by eq. (10) is called noncanonical. 
We note that L, the dimension of (JgJ), need not 
be even; thus cases where d e t ( J i 0  = 0 are accept- 
able. In fact, in these cases the phase space has an 
interesting structure. If the rank of (J~J) is equal 
to 2 M  in the vicinity of some point in phase space 
then there exists L -  2M null eigenvectors for 
( J ' J ) .  The possibility exists that one of these null 
eigenvectors can be written as the gradient of some 
phase space function C; i.e. 

# c  
J i 2 ~  = 0. (11) 

8z j 

This turns out to be true. Moreover, it can be 
shown that the null space is spanned by such 
gradients: 3C('~)/Oz ~, a = 1,2 . . . . .  L - 2M. The 
quantities C (~ are called Casimirs. They are con- 
stants of motion that are built into the phase space 
since given any Hamiltonian, H, the following 
holds: 

Ct~)= [C(~), H ]  = 0, a = 1 , 2 , . . . , L - 2 M .  

(12) 

oA$ 

Fig. 1. Depiction of the metriplectic phase space for the relax- 
ing free rigid body. Symplectic leaves are concentric spheres 
while constant energy surfaces are ellipsoids. 

Thus trajectories are confined to he in surfaces 
defined by the constancy of the C(~)'s. These 
surfaces have dimension 2 M and are im- 
bedded in the whole phase space of dimension L. 
They are actually symplectic manifolds. A pic- 
turesque phraseology that has emerged is to say 
when ( j i j )  is degenerate, phase space foliates into 
symplectic leaves. In fig. 1 we depict this foliation 
for Euler's equations (cf. section 5) where the 
leaves are concentric spheres. 

3. Metric systems 

Prior to defining a metric system, let us briefly 
recall some definitions of stability for a dynamical 
system 

2 i = F i ( z ) ,  i =  l , 2 , . . . ,  N, (13) 

where z -= (z 1, z 2 . . . . .  zN). A phase space point z e 
is clearly an equilibrium point for eq. (13) if 
F~(ze) = 0 for i = 1,2 . . . . .  N. Such an equilibrium 
point is stable if for every neighborhood N of z e 
there is a neighborhood M of z e such that if 
initially z(0) is in M, then the solution will remain 
in N for all time. Here we are interested in 
asymptotic stability. A system is asymptotically 
stable if in addition l imt~ ~ z ( t ) =  z e. These types 
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O. 

b. 

Fig. 2. a) Stability; b) asymptotic stability. 

This bracket is clearly linear in each of its argu- 
ments; we further require that it be symmetric 
( f ,  g)  = (g, f ) ,  which in turn requires gU = gji. In 
general giJ may depend upon z. (A consistent 
terminology would be to call g~J a cometric form.) 

The above definition of a metric system is the 
natural starting place for building asymptotic 
stability into a phase space. If we add the require- 
ment that g~J must have positive definite eigenval- 
ues over the whole of the phase space of interest, 
then isolated maxima of S are asymptotically sta- 
ble equilibrium points. To see this, first observe 
that since we have assumed positive definite eigen- 
values the quantity gij has no null eigenvectors 
and thus equilibria correspond to extremal points 
of S. If such a point, z,, is an isolated maximum, 
then one can add a constant to S such that S(ze) 
- 0 and S(z~) < 0 for some deleted neighborhood 
of z~. Evidently, 

= OS. i  OS i,OS ^ 

Oz--Tz = Oz--Sg , Oz-- S > o, (16) 

of stability are indicated pictorially in figs. 2a and 
2b respectively. 

One way of ascertaining stability or asymptotic 
stability is by means of Liapunov's method. If one 
can find a nice function L(z )  defined on phase 
space points such that in a neighborhood M of 
ze, L(ze)  = 0 and L(z)  < 0 for z 4: ze; if moreover 
L > 0 for z 4: z~ and L(z~) = 0, then z~ is a stable 
equilibrium point. If the function L(z)  is definite; 
i.e. L ( z ) > O  for z ~ z  e and L(z~)=O then we 
have asymptotic stability. 

We define a metric system as follows: 

U ij OS = g  - ~ z j = ( z ' , S ) ,  i , j = l , 2  . . . . .  N, (14) 

where S(z)  is some phase space function that has 
the natural physical interpretation as entropy. The 
bracket, ( , ) ,  of eq. (14) is defined on two phase 
space functions f and g by 

where the equality is achieved only at the point 
z = z e. Thus S serves as a strong Liapunov func- 
tion; i.e. one that guarantees asymptotic stability. 

This is a felicitous state of affairs since one need 
only examine the extremal points of S and de- 
termine which are maxima. Asymptotic stability of 
these equilibria is built into the phase space b y  
virtue of the assumptions we have made on gq. 
(Similarly a statement about instability can be 
made concerning equilibria that are minima of S.) 

When the phase space for metric systems is 
equipped with a nondegenerate giJ many ques- 
tions of Riemannian geometry arise. We briefly 
indicate a few ideas along this line. 

Consider the usual expression for the length of a 
segment of a curve 

f t l  / d z  i d z  j 
S ( t o ' t i ; z ) = J t o  YgiJ-d~ dt dt, (17) 

Of q Og 
( f ' g ) = -~z ~ g ff-zz J " (15) 

where s can be considered to be a functional Of an 
arbitrary curve z(t). If we seek an extremal of s 
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by letting z ~ z + 8z subject to 8Z( to) = 8z( tl) = 0 
we obtain the well-known equation for geodesic 
curves. The form of eq. (17) is nice since arc length 
is a geometrical quantity and thus invariant under 
reparametrization of the curve. At the expense of 
losing this property, but for ease in manipulation 
we seek extremal curves for the integral over the 
incremental length squared 

i'q dz  i dz  j 
s(2)( t° '  tt ; z ) =J,  o giJ -d-i -~t dt.  (18) 

Extremals of eqs. (17) and (18) are the same. Upon 
variation of s(2) we obtain 

2 ' +  F,~kiU = 0, (19) 

where, as usual, 

U 1 , , [Og,k  Ogjk Ogij] 
= -2 g - TJ + Oz k : 

(20) 

Let us now constrain our curve to be a solution 
trajectory of a metric system; i.e. where Y is 
determined by eq. (14). Inserting eq. (14) into eq. 
(18) yields the following: 

S(2)(t0, tl; Z) = fil l(S, S)  dt  

= f t , ~  dt  = S ( t l )  - S ( t o )  = AS.  
to 

(21) 

Thus we have established a connection between 
s (2), which is related to the length of a trajectory, 
and AS, the change in entropy after a time inter- 
val At = t I - to; hence, extremizing the change in 
entropy over a time interval is equivalent to the 
variational principle for geodesic, but with the 
constraint, eq. (14). It is natural to ask the follow- 
ing: What is required of S or gij such that solu- 
tions of eq. (14) correspond to geodesics; i.e. what 
is necessary for the compatibility of eq. (14) and 
(19)? This issue can be explored by taking a time 
derivative of eq. (14) and comparing the result 
with eq. (18). These equations are seen to be 

redundant  if S = 0, or 

., = e, oAg( s ,  s ) = o  ' = z  Oz--- 7 (22) 

which can be viewed as a constraint involving both 
gij and S. This constraint is equivalent to the 
constancy of S; i.e. for some constant K 

o s  os  
K =  (S ,  S )  = l g  ij Oz' Oz j" (23) 

Observe that eq. (23) is just the Hamilton-Jacobi 
equation for geodesic motion. The coordinates z i 
span the configuration space while the conjugate 
momenta  are Pi = OS/az i "  The entropy in eq. (23) 
takes the role of the generating function that in- 
tegrates the geodesic flow. If g'J is specified then 
we have compatibility if the S that generates the 
dynamics in configuration space, via eq. (14), is 
also the generating function for integrating the 
2N-dimensional geodesic flow. Alternately we can 
specify S and view eq. (23) as placing a constraint 
o n  gG. 

Consider now another feature of the phase space 
for metric systems. If we have a nondegenerate gij 
then the phase space has associated with it a 
Riemannian curvature tensor, R~k t, defined in the 
usual way. This can serve as a means for classify- 
ing dissipation; e.g. the corresponding phase space 
may be flat, have constant curvature etc. If we 
remove the requirement that gij be nondegenerate 
then the notion of Riemannian curvature can still 
survive. For  example if we require that the rank of 
g~J be fixed then we can have Riemannian or 
metric leaves embedded in our larger space, in 
analogy with the degenerate case discussed in sec- 
tion 2. When this happens gij will have null 
eigenvectors, which play a part in the metriplectic 
construct that is treated in the next section. 

4. M e t r i p l e c t i c  s y s t e m s  

We now turn to the task of combining the 
features of the systems discussed in sections 2 and 
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3 in order to obtain a framework for describing a 
class of dissipative dynamical systems. To begin 
with we build into the phase space certain of these 
features. The picture we have in mind is a phase 
space that has embedded symplectic leaves as well 
as metric leaves. This is achieved by defining the 
metriplectic phase space as a differentiable mani- 
fold that is equipped with a cosymplectic form and 
a metric form. Thus there is a bilinear bracket 
operation on functions of the dynamical variables 
given by 

{f ,  g} = [f, g] +(f ,  g) 

= oIj jog+ ol ,j ag 
Oz' OzJ -~Tz~g OzJ" (24) 

On this prirniti~,e level we only require that j u  be 
antisymmetric and endow [f,  g] with the Jacobi 
identity while gU must be symmetric. For the 
present purposes we add the requirements that gi j  

have fixed rank and that its nonzero eigenvalues 
be positive. 

Fundamental ly it is desirable for dissipative sys- 
tems to conserve dynamical constraints such as 
energy and momentum while producing entropy. 
For this reason one can build into the phase space 
the preservation of such constants of motion. This 
is done by requiring the phase space gradients of 
these quantities to be null eigenvectors of gu. 
Since we are going to use eq. (24) to determine the 
arena for the dynamics, it will be apparent that 
this confines a trajectory to a surface defined by 
these dynamical constants. 

A metriplectic flow is defined in terms of eq. 
(24) and a quantity F, called the generalized free 
energy, as follows: 

2i=(zi ,  F ) = j i j O F  + • O F  

OZ J g'J OZ ) • 
(25) 

The first term of eq. (25) generates flow within 
symplectic leaves while the second term can gener- 
ate flow out of symplectic leaves along the dy- 
namical constraint surface. Fig. 1 depicts this for 
the example discussed in section 5. 

The generalized free energy is defined by 

F = H - S, (26) 

where H is the Hamiltonian or energy for the 
nondissipative portion (i.e. gU = 0) and the quan- 
tity S, called a generalized entropy, is an arbitrary 
function of the Casimirs of J'J. (One could place a 
constant T in front of S without loss of generality.) 
If we accept for the moment that S is an entropy- 
like object then this definition can be motivated by 
analogy with equilibrium thermodynamics. Recall 
that in the energy formulation of thermodynamics 
the equilibrium state is obtained by extremizing 
the energy at constant entropy. The reason that F 
is an appealing choice for generating the dynamics 
is that here the critical points of F correspond to 
dynamical equilibria since in view of eq. (25) 
OF/cgZ i = 0 ~ 2i = O. 

We give two arguments for suggesting why 
Casimirs are entropy-like objects. In the first place 
we argue from experience. For cases where the 
physics is understood, such as in fluid mechanics 
and kinetic theory, the entropies have been iden- 
tified as a Casimirs (cf. section 6) of the Hamilto- 
nian portion of these systems. Secondly, Casimirs 
are known to be constants that arise from a rela- 
belling symmetry of some underlying description 
[14-16]. They occur when there is a process of 
phase space reduction that results in a loss o f  
information. For example the Casimir S [ f ] =  
f s ( f )dz  of section 6 for the Vlasov-Poisson sys- 
tem arises from the fact that there is a redundancy 
of continuum particle states that yield the same 
phase space density f .  One can label the particle 
states by initial conditions, but functions of the 
initial conditions can serve as well. 

In closing this section we point out some inter- 
esting additional properties that a metriplectic sys- 
tem may possess. For example, it may turn out 
that the metric leaves are flat or of constant curva- 
ture. It is clearly possible for symplectic and met- 
ric leaves to be orthogonal. The notion of a 
metriplectic two form m = Jq d z  i A d z  j "b gi j  dZi  

® dzJ emerges. Discussion of these ideas and 
others may be considered in a future work. 
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5. Relaxing free rigid body 

In order to illustrate the formalism outlined in 
the previous section we treat an example. We 
begin by considering the motion of a rigid body 
with fixed center of mass under no torques. The 
motion of such a free rigid body is governed by 
Euler's equations 

d~, = ``.2``.3(12 - I3), 

&2 = 693691(I3 - I1), (27) 

¢b 3 = ``.1``.2(11 - -  12). 

Here we have done some scaling, but the dynami- 
cal variables 69g, i = 1, 2, 3, are related to the three 
principal axis components of the angular velocity, 
while the constants I,, i = 1, 2, 3, are related to the 
three principal moments of inertia. 

This system conserves the following expressions 
for rotational kinetic energy and squared magni- 
tude of the angular momentum: 

H =  ½( 11``. 2 + 12``. 2 + I3692), (28a) 

12 = ``,2 + ``,2 + ``,2. (28b) 

The quanti ty H can be used to cast eqs. (27) into 
Hamiltonian form in terms of a noncanonical 
Poisson Bracket [4] that involves the three dynami- 
cal variables, 69~. The matrix ( j u )  introduced in 
section 3 has a null eigenvector that is given by 
012/69~; i.e. 12 is a Casimir. The noncanonical 
Poisson bracket is 

of  ag 
[f,g]=-O-o~69i69i69k, ijk O69j, i, j , k =  l ,2 ,3 ,  (29) 

where cij k is the Levi-Civita symbol. Evidently 
eqs. (27) are equivalent to 

& , = [ 6 9 , , H I ,  i=1 ,2 ,3 ,  (30) 

and we have for an arbitrary function S(/2), [S, f ]  
= 0 for all f .  

So far we have endowed the phase space, which 
has coordinates 69~, with a cosymplectic form. Let 

us now add to this a metric component. In this 
case a dynamical constraint manifold corresponds 
to a surface of constant energy, i.e. an ellipsoid. 
We wish to construct a (gij) that has 0H/69 i as a 
null eigenvector, while possessing two nonzero ei- 
genvalues of t.he same sign. This is conveniently 
done by defining the bracket ( , )  in terms of a 
projection matrix; i.e. 

( OH OH 
( f , h) = - X 069, 069j 

aM onl al Oh ] 
8,j 069! a69! ] a69i ," 

(31) 

For  now we take X to be constant, but it could 
depend upon 69. Explicitly the (gU) is given by 

( gi j ) = ~t --/16`01`02 

- 6 6'o1`03 

-612`01`02 - 6/3o~1̀ 03 ] 
z?`0  + - 6 . 

2 2 -I213`01`03 Z2`0~ + 12`0 2 

( 3 2 )  

We are now in a position to display a class of 
metriplectic flows for the rigid body; i.e. 

,:,,= {69,, F}  = [69,, F] +(69. F) 
i OH OS 

=JS-~-~j69j+g'Jo69j, i =  1,2,3,  (33) 

where F = H -  S, H is given by eq. (28a) and S is 
an arbitrary function of 12. For the case i = 1 we 
have 

~ 1  = ' '92093(12 - -  13)  "[- 2•5 t (12)691  

X [I:z(I2 - I1)69~ + 13 (1  3 - It) 6932]. (34) 

The other two equations are obtained upon cyclic 
permutat ion of the indices. By design this system 
conserves energy but produces the generalized en- 
t ropy S(I 2) if 2t > 0, which could be chosen to 
correspond to angular momentum. 

It is well known that equilibria of Euler's equa- 
tions composed of pure rotation about either of 
the principal axes corresponding to the largest and 
smallest principal moments of inertia are stable. If 
we suppose that 11 < 12 < 13, then stability of an 
equilibrium defined by 691 = ``,2 = 0 and ``,3 = 690 
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can be shown by means of the following Liapunov 
function (see e.g. ref. 7): 

F =  ½[(I 1 -  I3)~ 2 + ( I  2 - I3)~022] 

2 2 
- + + , (35) 

where c is an arbitrary positive constant. If we 
recognize that F is a generalized free energy, i.e. 
F = H - ~ ( 1 2 )  where ~ ( 1 2 ) = i 3 1 2 / 2 + c ( 1 2 _  

,o02)2/4, then it is clear that Euler's equations 
conserve F. Also it is evident that the phase space 
point  to e = (0,0, too) is an isolated maximum for F. 

If we append to Euler's equations the terms 
arising from the metric, as shown in eq. (34) and 
its two companion equations with S '  = S '  = 13/2 
+ e(12 _ ¢02)/2, then we have a system for which 

the equilibrium toe= (0,0, ¢00) is asymptotically 
stable. For  example, if initially to 1 = to0/2, to 2 = 
too/2 and ~3 = ¢°o/2, and the constants c and h 
are arranged properly then the system will relax to 
~%. This relaxation must take place along the dy- 
namical constraint surface. The metriplectic phase 
space, with a trajectory corresponding to this mo- 
tion, is depicted in fig. 1. 

6. Extension to field theory-a plasma physics 
example 

For field theories the infinite dimensional gener- 
alization of the structure discussed in section 3 is 
required. Thus if ~k~(x, t), i = 1,2 . . . . .  M, are the 
field variables, then we are interested in systems 
represented by 

0 ~ i  . 

Ot = ( J / ' F } = [ ~ i ' F ] + ( ~ " F ) '  (36) 

where F is now a generalized free energy func- 
tional and the two brackets on the right are suit- 
ably generalized. 

Consider first the Hamiltonian portion of the 
field theory. The associated Poisson bracket has 

the form 

= f o .  nB [A,B] JS~b' 8~k y d z  (37) 

where d I" is an x-space volume element, A and B 
are functionals of the ~k i and 8A/8~/, the func- 
tional derivative, is defined by 

d A 8A d, 0=f a d+. (38) 

The quantity O u is a cosymplectic operator; i.e. 
an operator  that is anti-self-adjoint (so that [A, B] 
= - [ B ,  A]) and also satisfies a requirement that 
insures the Jacobi identity for [A, B] (see e.g. ref. 
17). Although these properties are required, the 
O ~j need not have any specific form. Usually 
quantum field theories are written in terms of 
canonical variables, in which case the cosymplectic 
operator  has the same form as that of eq. (5), but 
this is not the case for fields that describe continu- 
ous media in Eulerian form. For these fields O ij = 
~/kC~J where the quantities C~ j are structure oper- 
ators for some Lie algebra. Unlike the canonical 
case this O u is linear in the field variables; also 
the C~ j may involve differential operators. 

Similarly we generalize the symmetric bracket as 
follows: 

, Gu 8B (A (39) 

where G u is an operator analogous to the giJ. We 
require G u to be self-adjoint and also to possess 
the necessary null space for the preservation of 
dynamical constraints. 

As an example we consider the Vlasov-Poisson 
equation with the addition of a collision term; i.e. 

Of O ~ Of -~Of ' ( x ; / ) .  = v .  

(4o) 

where f(z, t) is the phase space density for a 
species of particles and z = (x, v) denotes a point 
of the particle phase space. The potential ~(x;  f )  
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= fV(x,  x ' ) f ( z ' )dz ' ,  where V is the single par- 
ticle potential (assumed spatially invariant). For 
the moment  we leave Of/Otlc unspecified; we will 
determine a general form for it by constructing a 
symmetric bracket with desired properties. 

The Hamiltonian structure for the Vlasov- 
Poisson equation was introduced in ref. 18, which 
we reproduce for completeness. The Hamiltonian 
functional in this case is the total energy 

H [ f ]  =fT(z) f ( z )dz  

+ ~ f f V ( z ,  z ' ) f ( z ) f ( z ' ) d z d z ' ,  (41) 

where T = v2/2 is the particle kinetic energy (we 
have set the mass and charge to unity). The non- 
canonical Poisson bracket is the following: 

[A, B] = f f ( z ' ) [ S A / S f ( z ' ) ,  3B/Sf(z ' )]cdz '  , 

(42) 

where [ f ,  g]c = Of/Ox. c)g/Ov- Of/Ov. Og/Ox. 
Thus in this case the cosymplectic operator is 
O = - I f ,  • ]c. Using 8H/3f= T + eO =- Hp, where 
Hp is the particle energy, we see that the following 
is equivalent to the Vlasov-Poisson equation: 

of 
a t -  I f ,  H ]  = - [ f ,  Hp]. (43) 

We construct a symmetric bracket so as to gen- 
eralize the form of the collision terms obtained by 
Landau and by Lenard and Balescu. Since this 
form is that of a Fokker-Planck equation we 
know that G ~s must be a second order differential 
operator  in v. Also since realistic collision op- 
erators are global in velocity space, we are led to 
the following form for (A, B); 

jj[0 0 
(A, B) = - Ovi 6f(z)  Or; 6f(z ' )  

[ 0 8B a SB ] 
x ooj 8f(z) oo; 8I(z') 

× T~j(z, z ' )dzdz ' .  (44) 

We wish to restrict T~j so the mass, momentum 
and energy generate null eigenvectors. This is 
achieved by letting 

Tij = wij( z, z ' )M(  f (  z ))M( f (  z') )/2, 

where M is an arbitrary function of f and w/j has 
the following symmetries: (i) w~j( z, z') = wji( z , z'), 
(ii) wij(z, z') = wij(z', z) and (iii) (v i - v;)wij = O. 
The three properties of the wij are the same as 
those possessed by the tensor that appears in both 
the Landau and the Lenard-Balescu collision 
operators. It can in fact be either of these objects; 
in the former case it is given by 

Wi~jL)=(1/g)(Sij--gigj/g2)3(X--X'), (45) 

where L is a constant, 8ij is the Kronecker delta, 
3 (x  - x ' )  is the Dirac delta and g, = v i - v;. 

Let us now see what sort of collision term arises 
from the above assumptions. The generalized free 
energy in this case is F =  H - S  where S[f]= 
f s ( f ) d z  and s ( f )  is an arbitrary function of f .  
Inserting F into the symmetric bracket yields 

C 

= ( f , F ) =  o_~,fw, j [ M ( f ( v )  Of(v')Ov~ 

- M ( f ( o ' ) ) ~ ] d o ' ,  (46) 

a prototypical collision operator. Although by con- 
struction we know that eq. (46) will not destroy 
conservation of mass etc., verification of other 
important  properties such as maintenance of the 
positivity of f by the dynamics and relaxation to a 
stationary state can be shown by essentially the 
same means used in ref. 19. 

The relaxation property requires a compatibility 
condition on the functions s ( f )  and M(f) .  For 
an H-theorem the following is required: 

Ma s= 
Of 2 1. (47) 

Thus we have a collision operator that is mated to 



P.J. Morrison / A paradigm for systems with dissipation 419 

a p a r t i c u l a r  e n t r o p y  funct ional .  The  state to which 

the sys tem re laxes  is de te rmined  by  8 F / t f =  O. 
This  y ie lds  

Meiss .  This  research  was suppor t ed  by  D O E  Con-  

t rac t  DE-FG05-80ET53088 .  

lip - s ' ( f  ) = O. (48) 

F o r  a cons i s t en t  solut ion s '  must  be  monotonic ;  

the  re laxed  s ta te  is given by  

fe = ( s ' ) t ( H p ) ,  (49) 

a n d  thus  we have  a f ramework  that  can be  ta i lored  

to p r o d u c e  a sys tem that  relaxes to any equi-  

l i b r i u m  s ta te  where  fe is a mono ton i c  funct ion  of  

the  pa r t i c l e  energy.  Some special  cases are of  inter-  

est:  (1) if  we p ick  M = f  then compa t ib i l i t y  

requi res  s = - k f  In f .  The  col l is ion ope ra to r  in 

this  case  is of  the  usual  L a n d a u  form. (2) I f  we 

p ick  M to be  quadra t i c  in f ,  i.e. M = f ( 1 - f ) ,  

then  the c o m p a t i b l e  en t ropy  is s = - k ( f  In f +  

( 1 -  f ) l n ( 1 - f ) )  and  we have a system that  re- 

laxes  to the  F e r m i - D i r a c  d is t r ibut ion.  The  colli-  

s ion  o p e r a t o r  ob ta ined  in this case is of  the form 

of  tha t  g iven in ref. 20, where a kinet ic  theory  for 

a rgumen t s  of  L y n d e n - B e U  [21] is discussed.  

In  c los ing  we po in t  out  that  a connec t ion  be- 

tween  the f luc tua t ion  spec t rum of  the Vlasov equa-  

t ion  a n d  ou r  genera l  col l is ion ope ra to r  can be  

m a d e .  I f  we m a k e  the fol lowing Bogol iubov- type  

a s s u m p t i o n :  

( t f S f ) k , , ~ = 8 ( v - v ' ) 8 ( c o - k . v ) M ( f ) ,  (50) 

then,  pa ra l l e l i ng  the a rguments  of  ref. 20, a colli-  

s ion  o p e r a t o r  of  the form of eq. 46 is ob ta ined .  
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