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Abs t r ac t .  Self-focusing of an intense optical beam in a plasma is stud- 

ied, including the nonlinear effects of both the relativistic electron mass and 

the ponderomotive potential due to the electromagnetic wave. An exact steady 

asymptotic solution of beam propagation in a localized solitary wave form is 

obtained in slab geometry. Amplitude - width scaling relations are obtained, 

which imply that the width is limited to be less than square root of three of the 

collisionless skin depth. In the nonrelativistic limit, keeping only the relativis- 

tic mass effects, our solution reduces to the solution obtained by Schmidt and 

Horton. The asymptotic nature of the solitary wave is tested using a recently 

developed numerical particle simulation code. 

I. I N T R O D U C T I O N  

The nonlinear self-focusing of intense electromagnetic radiation in a 

dielectric media has been studied for well over twenty years now. 1 The devel- 

opment of powerful lasers and various applications of them, has prompted a 

considerable interest in self-focusing processes in plasma. In particular, the con- 

cepts of laser ignited fusion and laser-plasma particle accelerators such as the 

beat wave accelerator 2 and the plasma fiber accelerator 3 require transport of 

the laser beam with minimal loss in intensity over a considerable distance. A 

L~J 1989 A m e r i c a n  Ins t i tu te  of" Physics  
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mechanism that allows for such a transport of the beam, without significant 

depletion, is discussed here. 

As an intense laser beam enters plasma, an initial transient phase is 

expected. The interesting question is, what kind of a stationary state will the 

system assume after the initial transient. In particular, what is the asymptotic 

or steady form of the beam profile as it traverses through the plasma. Soliton- 

like or solitary wave profiles (either single or multiple) have emerged from several 

studies. An asymptotic profile of solitary nature would indeed be welcome for the 

above mentioned applications 1-3 (particularly for the plasma fiber accelerator 3) 

because for such a profile the beam propagates without transverse spreading and 

thus, without losing its intensity or profile in this way. 

In this paper we obtain an asymptotic profile for short laser pulses 

propagating in a cool plasma. The advantage of using a short laser pulse is 

that the ions, being massive, do not have time to respond and thus can be 

taken to be immobile. Therefore, the laser plasma system should be free of 

the parametric instabilities associated with the ion motion. The self-focusing 

process for a quasineutral plasma 4 is absent due to the short time scale. Since 

we are studying a cool plasma, only ponderomotive and relativistic effects are 

considered; the thermal self-focusing s effect should be negligible. 

In Sec. II we present the basic evolution equations for the laser-plasma 

system. In Sec. III we look for an asymptotic profile of the laser beam by 

taking an ansatz which makes the evolution equations separable. The equations 

are solved analytically in slab approximation. Comparisons to earlier work on 

the subject are made. In Sec. IV the asymptotic profile obtained analytically 

is tested using a particle simulation program. In Sec. V the results derived are 

summarized. 
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II.  E V O L U T I O N  E Q U A T I O N S  

The basic set of equations describing the laser-plasma system consists 

of Maxwell's equations and the equation of motion for relativistic electrons. The 

electron pressure gradient is neglected in comparison with the ponderomotive 

force and the electrons are treated as cold. The assumption of immobile ions, 

justified as previously mentioned by the shortness of the laser pulse, allows us to 

write the charge density and plasma current in terms of the equilibrium density 

no and the electron density perturbation ~ne: 

~ e j n j  : -edfne 
(1) 

.J = -e(no + ~ne)v 

Expressing the electromagnetic fields in terms of the potentials we obtain 

O~ A cV Off2 0 t - - 7 -  c2V A + = 4 cJ , (9) 

where the Coulomb gauge, V • A = 0 , is chosen because it allows for a clear 

separation of the slowly and rapidly varying components of the electric field. 

From here on we will use a normalized vector potential: A ---+ An ----- 

cA - -  = V/~. To single out the rapid laser variations, we take a trial function of 

the form 

An = a . ( r ,  ~)ei(koz--wot--¢(r't))(~ q- i ~  r) , ( 3 )  

where an(r, t) and ¢(r,  t) are real functions of space and time, k0 and w0 are 

the (constant) wavenumber and frequency of the laser wave in uniform, unper- 

turbed plasma, and we have chosen the coordinate system so that the z-axis 

coincides with the direction of propagation. The wave is taken to have circular 

polarization. 

Next we apply the slowly varying envelope approximation: the charac- 

teristic spatial length of the structure in our system is assumed much greater 
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than the wavelength of the wave and the characteristic time period involved is 

assumed to be much longer than the laser oscillation ,period: 

Oan Oan 
I-3Tz I << koan , I--~-I << ~0a. 

0¢ 0¢ I~-zl << k0, I-~-I << ~0. 
(4) 

The electron velocity is approximately given by 

p e A 
v - m - y  . , c  ~ ' ( 5 )  

and the plasma current can be written as 

Wvo 2 Ne 
J = - e n e v  = ,=__--~A , (6) 

47rc V I  In + 

where N, - I + 5ne/no and only electrons contribute to the current. According 

to the slowly varying envelope approximation no significant development takes 

place in the time scale of the rapid laser oscillations. We thus average the wave 

equation over the laser oscillation period To = 2..~. The real terms of the wave 
~J0 

equation then yield an equation describing the evolution of the amplitude, 6 

02a. 0¢,2 
Ot 2 =an(wo + "~-) + c2V2an - 

0¢)2 2 Ne 
c%{(ko - + IVT I 

(7) 

while the imaginary terms yield an equation for the phase shift, 6 

( ~ t )  Oa2n ~21~ cga~ ' 0 a ~  = - - " ~ o  - -  - -  

c 2 (Va2) • (V¢) + c2a2nV2¢ 
(s) 

where Ac - c/wv¢ is the collisionless skindepth, and VT is the transverse part of 

the gradient, V = VT + o27 ~ • The last term on the right hand side of equation 

(7) represents all the relevant nonlinearities, i.e. the ponderomotive force [acting 

through the normalized electron density N~ as will be given below by Eq. (9)] 
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and the relativistic electron mass effects (appearing as the inverse square root 

factor). 

We shall look for a stationary state, assuming that the outward laser 

ponderomotive force exerted on the electrons is balanced by the electrostatic 

field produced by the charge separation when the electrons are driven outward. 

Under these circumstances the electron density perturbation can be expressed 

in the form 6'7 

6he + 2[__z_ 0 0 022 
N , _ I +  --1 + ] X / ~ + I , ,  (9) 

no Oz 

where we have also assumed axial symmetry, o = 0. It is important to notice 

that this particular model does not have a mechanism for preventing negative 

- -  and thus unphysical - -  values for electron density. Therefore, once a solution 

is obtained using this model, it is necessary to check if the solution corresponds 

to physically meaningful values of electron density. For the stationary state 

described, the field equations become 

2k0 - I V ¢ l  2 +  V2a A~ 2 ~ +  \ c 2  

and 
~a 2 

z + ( v O )  + = 0 .  

Here (and henceforth) we have dropped the subscript n for convenience. 

(11) 

I I I .  A S Y M P T O T I C  L A S E R  P R O F I L E  

We look for a stationary and asymptotic intensity profile independent 

~f z for the laser beam under the combined influence of the ponderomotive and 

:elativistic effects. We choose the following ansatz for the amplitude and phase: 

a(r,z) = a(r) , 
(12) 

¢(r ,z)  = f ( z )  +g(r)  , 
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where we have still allowed for phase modulation in z. Equations (10) and (11) 

are separable under this ansatz. Equation (10) yields 

= c ,  -2k°~zz - ~°2 + \ d z ]  
(13) 

1 1 d  da i ' d g ~ 2 1  N~ 
- a 7 drr'd';r- " "k'~r] ,~ ~ ' 

0,3 2 

where ~02 -= ~- - k0 ~ , and C1 is the separation constant. The phase equation 

(11) yields 
d2f = C2 = 1 d dg 1 da 2 dg (14) 

- dz - ' T  r~rr-~r q- a 2 dr dr 

where C2 is the separation constant. 

Equation (14) requires the z-dependent part of the phase shift ¢ to have 

the form 

S(z) = - l c 2 z 2  + C~z (15) 
2 

where the (arbitrary) constant phase shift has been dropped. Now substituting 

Eq. (15) into Eq. (13) implies that f ( z )  is given by the linear expression 

f(z) = k0z + , / ~  + c1 z (16) V c 2 

0O The assumption of slow modulations, 1~-;~ [ <~ k0, implies that we have to choose 

square root with the negative sign to retain consistency. Thus 

° (17) f ( z )  = k o z -  - ~  + C~ z , 

where for consistency C1 should be much less than k02 in an underdense plasma. 

The constant C1 can thus be interpreted as a measure of the z-dependence of 

the phase modulation. The radial portions of Eqs. (13) and (14) can now be 

written as 

1 1 d  da ~ dg'~ 2 1  N~ 

~ 7 ~  - \ ~ ]  ~ 41+a~ 
1 d dg 1 da 2 dg 
r ~rr~r + a 2 dr dr - 0 

- - -  C1 , and 
( i s )  
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Equations (18) in the slab limit are 

a dx ' ' ~ a  - \ ' ~ x )  ~2c x/1 + a - - - ' ~  ' 

and 

a s = c ,  (20)  
(ix 

where the phase equation was integrated once over x, bringing about the integra- 

tion coefficient Ca, which can be interpreted to be a measure of the amplitude 

dependent transverse phase modulation. Combining Eqs. (19), (20) and (9) 

yields a differential equation for a only: 

1 d ~ C 2 1 1 1 d~ ~ / l + a  s = C, (21) 
a ~x 2a a 4 A2c x/~ -4- a s ~ dx2 

An equation of the form of Eq. (21) can be derived from the Hamilton's 

principle. Treating Eq. (21) as the "equation of motion" for the laser-plasma 

system with the coordinate x playing the role of time, we write the Lagrangian 

of the system in the form 

a t2 

L = g (a ) - -~  - V ( a ) ,  (22) 

where g(a) is a metric and V ( a )  is the potential of the system, both yet to 

be determined, and where prime stands for the derivative with respect to the 

time-like variable. Lagrange's equation then yields 

1 dg ,2 OV 
g(a)a"  + ~ a a  a + ~ a  -- 0 ,  (23) 

We find an integrating factor #(a) by requiring that Eq. (21) multiplied by #(a) 

should coincide with Eq. (23). We thus obtain 

~(a) = a and 

1 (24) 

g(a) = 1 + a 2 ' 
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and from Eq. (21) the potential is seen to be 

1 1 41 + (25) 
V ( a ) -  2 a 2 A 2 z " 

Applying Noether's theorem we can now write down the first integral of Eq. (21), 

OL , 
e = -~a,a - L(a ,a ' )  

= ~9(~)~ '2 + v ( ~ ) .  
f~ 

(26) 

Thus, 

E - 2(1 + a 2) + --2a 2 - A~ V/i '+ - -~-a . (27) 

Exact  Solut ions  

Seeking analytical solutions of Eq. (27) with finite total power we im- 

pose the boundary conditions: a, a' --* 0 as x --* oo. This requires that the 

"energy" E and the coefficient 6'4 have the following values: 

C4 - 0  

1 (28) 
C--- 

The amplitude equation now becomes 

( 2 ) a  2 2 2 ( l + a 2 )  ~ (29) a'2=Cla4+ C1-~ -~+~ 

If we let ~ = x / A c  and change variables according t o  y(~)2 = 4a(~)2 + 1 -- 1 , 

Eq. (29) takes on an elementary form, which has the solution 

+16~2E 
Y =  E 2~:4E(2g 2 - 1 ) + 4  ' (30) 

where E -~ e x p ( - 2 a ( (  + C8)) and a2 __- X2C1 + 1. Unraveling the change of 

variable leads to 
I = a  2 =  + 3 2 ( E + 2 ) 2 a 2 E  

[(E 4- 2) 2 ~= 8~2E] 2 " (31) 
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Since the intensity is positive, the upper sign in the expression (31) is relevant. 

The integration constant Cs imbedded within E corresponds to merely a shift 

of the solution along the x-axis. From Eq. (31) the profile centered at ~ = 0 is 

2~ sech(n~) 
a = (32) 

1 - ,~2 sech2(,~) " 

The parameter ,~ is now seen to be related to the inverse width of the profile 

in units of A~ -1. Further, ,~ is directly related to both the peak intensity of the 

profile at ~ = 0, and to the total power of the beam: 

2~ 
a m = a ( ~ = 0 ) -  l - n 2  • (33) 

The total power of the laser beam in dimensionless variables is given by 

p 

(34) 

Equation (34) is a scaling relation between the width and the power 

of the laser profile. The presence of a relation between the amplitude and the 

width is typical of soliton-like structures, although the relation (33) is not linear 

and is thus different from the KdV -soliton. 

Physically reasonable values for ,~2 are given by 

0 < m 2 < 1 .  (35) 

The lower limit excludes trivial solutions with zero amplitudes, and the upper 

limit keeps the peak amplitude finite. In Fig. l(a) we have plotted profiles for 

various values of maximum amplitude am. In Fig. l(b) are the corresponding 

potentials. The solitary type profile corresponds to the homoclinic orbit that 

the potential is found s to exhibit when 0 < ,~2 < 1. There could, however, exist 

also oscillatory type solutions, s 
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elAI 

6.0 

4.0 

2.0 

-10.0 

~=0.7 

~=0.6 

, ,  . 

-5.o o.o 5.0 ~o.o x/A~ 

Figure l(a) 

v(~,) 

0.0 

-2.0 -1.0 0.0 1.0 2.0 

Figure l(b) 

F ig .  1 - S o l i t a r y  p ro f i l e s  - l (a)  The asymptot ic  ampli tude profile for 
various values of the beam width parameter  ,~. The normalized peak am- 
plitude, defined as a0 =- eE~ is given by a0 = 12_--~: (1) ,~ = 0.3, a0 = 

tTl.C~d 0 ' 

0.66, (2) ,~---- 0.5, a0 = 1.33, (3),~---- 0.6, ao = 1.88, (4) ,~ 0.7, a0 = 
2.75.  l (b)  The characteristic potential  of the system V(a) describing the 
beam profile plotted for the same values of ,¢ as in l (a) .  
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Another restriction on the possible values of n2 can be found by requir- 

ing that the solution correspond to physical values of the electron density given 

by Eq. (9). As mentioned when introducing the model for electron density~ Eq. 

(9), it is necessary to check if these solutions correspond to physically meaning- 

ful values of electron density. From Eq. (9) the electron density perturbation 

can be rewritten in terms of the variable y(~) as 
n0 

~ne = y,  sinh y q- y~2 cosh y . (36) 
n0 

From the Hamiltonian formalism the y-derivatives can be expressed in terms of 

the potential V(y) and the total energy of the system £ as 

OV yH - -  

(37) 
y' = 2 ( E -  v )  , 

yielding 

~ne  
= 2E cosh y + 2A2cC1 sinh 2 y cosh y + sinh 2 y + 2 cosh 2 y .  (38) 

no 

The critical case, corresponding to a total depletion of the electrons, is given 

b y  ~n~ = -1 .  This case is specified by the electron depletion curve given by n0 

Eq. (38) evaluated at ~ = -1:  
no 

3 
A¢C1 sinh 2 y . E(Cl,y)  = - ~ c o s h y -  2 (39) 

The physically meaningful solutions lie above the electron depletion curve cor- 

responding to positive values of the electron density. The critical case for the 

homoclinic orbit corresponds to the situation when the intersection of the de- 

pletion curve and the potential takes place at the maximum amplitude of the 

homoclinic orbit. Setting the potential given by Eq. (25) equal to the depletion 

curve given by Eq. (39) we obtain 

2 cosh y, + ~c C1 sinh 2 y, = 0 . (40) 
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For the homoclinic orbit the energy is, accoring to Eq. (28), E = a - ~ .  Equation 

(39) thus yields 

coshy, = 2 . (41) 

Substituting this value for y, back to Eq. (40) we obtain 

1 
• ~2cC 1 : - 2 / 3 ,  o r  equivalently t~ 2 < ~ .  (42) 

For values satisfying the condition (42), the potential lies above the depletion 

curve corresponding to physically meaningful values of electron density. There- 

fore, within the framework of the model for electron density as given by Eq. 

(9) the self-consistent solitary profiles are given by Eq. (32) while the width of 

the profile is restricted by 
1 

0 < x 2 < ~ . (43) 

N o n r e l a t i v i s t i c  S o l u t i o n s  

It is interesting to compare the results yielded by the present approach 

to work done earlier on the subject. 9'1° Schmidt and Horton 1° studied purely 

relativistic self-focusing for non-relativistic field amplitudes, a 2 < 1. Expanding 

the left-hand side of Eq. (29) for a 2 < 1, keeping the electron density constant, 

Ne = 1, yields 

( l)a  11o  
a '2 = Cl  + ~ - 4 ~ + 0(~ ~) (44) 

Recalling the shorthand notation ~2 _ A~C1 + 1 Eq. (44) reduces to 

- - a = +  ~ a  2 -  (45) 

which yields the following expression for the intensity: 

I(x) = -16n 2 C6e+2~ 
(1 - c 6 ~ : ~ . ~ )  2 (46)  

For the solution to remain finite for all values of ~, C6 - -6'7 < 0. The 

profile is found to have one (and only one) extremum when C7 > 0, a condition 
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that  coincides with the one already established above for the finiteness of the 

solution. The extremum, xm, is given by 

lnC7 
x , , = -  2 7  ' (47) 

and the intensity profile centered at ~ = 0 is 

1 
I(~) = 4~ 2 cos_2.a.  " a ( ¢ )  (48) 

The complete solution obtained by Schmidt and Horton 1° is 

1 1 L 
/(~) -= A~,(~) = t0 cosh2( ~j_~_~ ) , aSH = ~ 0 

(49) 
1 1 2  2 1 

while the complete solution obtained by us is 

1 , ,~2 1 
= I0 cosh2(   ) = 

(50) 
1 /c02 2 1 ~(~) = ~ V  0 + W p o ( ~ 1 0  -- 1) z - -  wot 

For a given frequency w = wo, our solution coincides (within a factor of two) 

with the one obtained by Schmidt and Horton. The factor of two difference 

arises from the different choice for the polarization of the laser field: Schmidt 

and Horton assumed a linearly polarized wave for which the time averaging 

process produces a factor of ] ~-, whereas in this work we have used circular 

polarization for which the time averaging does not introduce any numerical 

factors. Taking this difference into account, it is seen that  the profiles are 

consistent. 

IV.  N U M E R I C A L  R E S U L T S  

In this section we compare the theoretical results derived in the preced- 

ing sections with a recently developed computer simulationJ 1 The code used is 

Downloaded 25 Apr 2013 to 128.83.63.20. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://proceedings.aip.org/about/rights_permissions



240 

a time averaged particle simulation code developed for modeling transport of 

optical beams in plasmas. 11 The code operates on the same principles as any 

standard electromagnetic particle simulation code, except that it uses the wave 

equation which is phase averaged over the rapid laser oscillations. Similarly, 

the equation of motion for the relativistic electrons is averaged, thus yielding 

the laser contribution in the form of the ponderomotive force. We have here 

used a version of the code that is formally one-dimensional but which in fact 

potrays a two-dimensional situation - -  the code 'time' representing the the di- 

rection of propagation for a stationary state. The code uses periodic boundary 

conditions, the width of the simulation box is chosen to be 51.2~c and there 

are 100 electrons per grid cell. The number of grid points for the simulations 

discussed below was 256 and the time step was chosen at dt -- 0.1w~-~. 

In the first case we set up a Gaussian intensity profile with normalized 

intensity (quivering velocity) I = 0.16 and beam waist Wb = 8X~, and the 

laser frequency was chosen to be w0 = 5wp. For these parameters the beam 

should self-focus (see Refs. 6 and 7), and it is indeed observed to focus as 

indicated by the increasing peak amplitude in Fig. 2(a). We then replace the 

Gaussian intensity profile by the sech 2 -profile derived above for the asymptotic 

profile. The profile should then remain practically unaltered while propagating 

in plasma, as it is a steady state solution. This turns out to be the case, as 

evidenced in Fig. 2(a), which shows that the fluctuations in the peak amplitude 

do remain within 1%. Also, the form the beam retains its sech 2 -profile, whereas 

in the case of the Gaussian profile quite strong deviation from the original form 

is observed (see Figs. 2(b) and 2(c)). Thus we conclude that the sech 2 -profile 

is a realistic physical candidate for the asymptotic shape of a self-focused laser 

beam. 
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Figure 2(b) Figure 2(c) 

Fig .  2 - G a u s s i a n  prof i le  vs .  so l i tary  prof i le  - 2(a) The peak am- 
I pli tude of the different profiles as a function of time. Compared to the self- 

focusing Gaussian profile, the solitary beam appears to propagate without  
secular changes. 2(b) The beam profile of an originally Gaussian beam plot- 
ted at t=0  and t=50 w~ "1 . 2(c) The beam profile of a soliton-like beam plot ted 
at t = 0 and t = 50w~ -1. 
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V. D I S C U S S I O N  

We have addressed here the question of a possible asymptotic transverse 

profile for a short, self-focused laser pulse propagating in plasma. Using a sta- 

tionary state model for the electron density, we arrived at a solitary wave shape 

for the asymptotic profile. In the nonrelativistic limit for the field intensity, 

keeping only relativistic electron effects, the result reduces to the one obtained 

earlier by Schmidt and Horton. 1° The general profile (including ponderomotive 

effects) agrees well with computation proving to be stable and stationary in the 

numerical particle simulation experiment. 

The existence of a stable asymptotic profile of a self-focused laser beam 

may have important applications in e.g. laser fusion as well as in plasma based 

accelerators, where it is necessary to have the laser beam traverse considerable 

distances without significant depletion. 
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