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Abstract

NOVEL COMPUTATIONAL TECHNIQUES TO PREDICT TRANSPORT IN CONFINEMENT
DEVICES, AND APPLICATIONS TO ION TEMPERATURE GRADIENT DRIVEN
TURBULENCE. o

The thermal conductivity x; is computed for realistic experimental parameters by several differ-
ent 3-d simulation techniques for ion temperature gradient driven modes in a slab. A widely used fluid
model is also simulated. Both the kinetic x; magnitudes and the simulation results are inconsistent with .
the x; profiles seen on TFTR and JET. This indicates that the slab branch of ion temperature gradient
driven modes cannot explain experimental transport. Fully kinetic calculations of x; are made possible
using two different, new gyrokinetic simulation techniques which are up to two orders of magnitude
faster than earlier gyrokinetic particle simulations. Both give x; in rough agreement with mixing length
estimates using linear kinetic eigenfunction scales. However, x; is an order of magnitude or more
lower than inferred values on TFTR and JET. Ion Landau damping and gyroaveraging effects are impor-
tant for experimental parameters. The kinetic x; is an order of magnitude lower than the fluid x; but
the scaling is similar. The fluid simulation x; agrees with mixing length estimates from linear fluid
eigenfunctions. The differences between the fluid and kinetic x; can be explained by the difference in
growth rates and scale lengths present in linear theory, which leads to a difference in the mixing length
x; of about the same size as that found in the simulations. In a separate study, regression analyses are
performed to obtain the local x; between the q = 1 and q = 2 surfaces in terms of the local dimen-
sionless parameters present in the gyrokinetic equation. The slab %; model does not fit the data well.

* Work supported by US Department of Energy contract DE-FGO05-80ET-53088.
! Department of Physics, University of California, Los Angeles, California, USA.
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KINETIC SIMULATION TECHNIQUES

The nonlinear gyrokinetic equation in slab geometry to lowest order in the
gryokinetic expansion is

%M (x,visop) + £ X V() - W8S + v V8

= vV} (8) Fas + [1 +17 (v2 = g)} £-N () &Fu,

where §f = h + (qp/T:) fu, time is normalized by w!, z and y by p;, and
s = L,/L,, and () is the gyroaverage. Two totally different a,lgorithms are
presented.

a) 6f Particle Algorithm. Previous partlcle algorithms compute the
charge density by accumulating the number of particles in a cell. (Gyro-
average effects will be neglected in this discussion for simplicity.) Statistical

fluctuations in the number of particles per cell leads to noise in ¢, which

~ can swamp the part of ¢ from saturated instabilities.

_In the 6 f particle algorithm, the nonlinear equation Eq. (1) is solved for -

§f by integrating S along the nonlinear particle orbits (ie., the method of
characteristics). The particle positions are evolved and act as markers for
the value of 8§f. Note §f is related to the full distribution function f and

background distribution far by 6f = (f) — fsr + ({{g/T3)) — a0/ T) far;

~ thus §f is proportional to the fluctuation amplitude, not the background.
distribution function. The perturbed charge density is computed by accu-

mulating §f on the markers to a grid. Since the nonlinear orbit equations
preserve phase space volume, no net marker bunching errors arise. Sta-
tistical fluctuations in ¢ are smaller than previous codes by roughly the
factor 6f/f. Typically 6f/f ~ 107% the éf algorithm requires orders of

magnitude fewer particles to simulate such microinstabilities because of the

reduced noise. (Dimitz and Lee independently invented a similar gyroki-
netic algorithm, but did not notice the low noise feature.) Note that for

3-d runs, 6f was damped to zero near the boundary to prevent quasilinear

flattening.
b) Spectral Code. Here, 6f is expanded in basis functions: Fourier

modes in y and Hermite functions in z, and a grid is used in v and vy. .
Large time steps are possible since the linear terms in the equation are - = -

solved implicitly, using analytically derived linear orbit integrals-over the
source term for given . Further economies accrue since Hermite functions
are close to the linear eigenfunctions, so few are needed.

Boundary conditions in z are chosen so that the energy flux out of one . :. -

side is put in on the other side, thus preventing profile flattening.




The spectral code is expensive for many modes, so 3-d runs use fewer

" modes than the §f particle code.
c) Tests and Comparisons. Both codes agree with linear fully gyrokinetic

. -eigenvalue codes, typically to within several percent.

_ Comparisons were made with a standard gyrokinetic particle code for
" the nonlinear saturation of a 2d 7; mode in sheared slab. Parameters typical
of TFTR were used: 7 = 4 and L./L, = 0.25. However, the standard
code needed a large equilibrium gradient scale (pi/ Ln = 1/40, much stronger
than experiment) to increase the saturated amplitude above the noise. '
“The standard particle code was run with 300K and 3000 K particles.
The 300 K simulation was noise dominated; it showed no well defined expo-
. nentiating phase and had a large ¢ amplitudes. The 3000 K simulation gave
a saturated amplitude which agreed well with the 6 f and spectral code, but
required roughly 50 hours of Cray CPU time. Both the éf and spectral
codes agreed, using roughly 10 min of Cray CPU time. The éf code gave
converged results with 32 K particles (1K = 1024). :

All codes need an order of magnitude more time for 3-d runs. The 6f
‘and spectral codes run for atceptable expense (~ 4 Cray CPU hours). The
cost of standard gyrokinetic algorithms for such low noise levels is many
hundreds of hours or more.

FLUID SIMULATIONS

A fluid model used by many authors was simulated in sheared slab ge-
ometry. The value of the parallel viscosity and parallel pressure diffu-
sion were chosen to mimic the effects of ion Landau damping as well as
possible. Extensive parameter scans were done to arrive at the expression
i = g (ps/Ls) (cTi/eB) (n — m:) exp(—as), where g ~ 1 and @ = 5.

COMPARISONS OF 3D SIMULA’I‘IONS

Figure 1 gives a comparison of linear growth rates and scale lengths (Az? =
[¢*dz/ [(dp/dz)? dz). Over most of the kinetic eigenmodes, w/kjv; ~ 1
and Az ~ p;. Thus, for experimental parameters kinetic effects such as
Landau damping and gyroaveraging are important. This leads to large
differences between the fluid model and the kinetic results. Here 7/7critical ~
9 for both fluid and kinetic cases. Comparison of results for n/n. ~ 4 shows
similar differences.
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Growth Rate and Mode Width vs. Shear
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Figure 1. A comparison of the full gyrokinetic model for growth rates and
mode widths of 1; modes. Parameters used are 1;=2, kyp;=0.8 and Tj/Te=1.

The linear mixing length estimates of the fluid and kinetic cases differ by
roughly 20. The simulation results for x; differ similarly. Results for the nor-
malized heat conductivity F, defined by Xi =
(vip?/Ln) F (i, Ls/ L, T:/T.), are shown in Fig. 2. Despite the linear dis-
crepancy, one might have hoped that simpler fluid models are closer to more
complete kinetic models for nonlinear dynamics. This is not found. Similar
results are found for 2 < 7 < 5.

Also, note that the §f code and the spectral code agree to within a factor
of 2. The differences may be attributed to the different number of Fourier
modes used in the two codes, the somewhat different boundary conditions
in x, and to the presence of small dissipative terms in the spectral code
added for numerical reasons.

For both kinetic codes, most of the transport comes from modes with
the highest linear growth rates, at k,o. ~ .35 —.7. The spectrum drops to
much smaller values as kp; increases.
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Figure 2. Normalized conductivity F for n;=2, Ti/Te=1, computed by fluid
simulation (Fayid sim), fluid eigenfunction mixing length estimate (Fyiq
ML), kinetic 8f code (kac“c 56) kinetic spectral code (Fxinetic spectra) and
the kinetic eigenfunction mixing length esnmale (Fkinetic ML)

* In Fig. 3 we compare the kinetic and fluid x; with values inferred from
experiment. In all cases, the x; from slab 7; modes strongly decreases with
minor radius, in contradiction with TFTR and JET observations. Also, the
kinetic simulation values are much lower than the inferred values. Thus,
we conclude that slab 7; modes produce insufficient transport (especially at
larger minor radii) to explain the experimental x;.

Toroidicity induced n; modes and trapped particle modes may produce
larger transport. Support for this possibility has been found in fully toroidal
particle simulations using a code with full Lorentz ion dynamics and drift

kinetic electrons. Toroidal runs with 7; = 5. = 1 have been found to have

an order of ma,gmtude more transport than otherwise equivalent cylindrical
runs. Fluctuations in the saturated state had coupled poloidal harmonics
with the same frequency, indicative of a toroidicity induced mode. Further
simulations to test these possibilities, including runs with toroidal versions
of the spectral code and with the éf particle code, are in progress.
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X; Vvs. minor radius

Xexp

= 13—‘ ..............................
7 T eennnnnasnnnaesseannn T
6+
54
4
B Xkinetic 56
- o
ool et T G-u
e B
i S S A _— -
~~~~~~~~~~~~~~~~ o  Xkinetic ML
Orm-mocmmmoo- <
. 0.1 l — | | .
0.2 0.3 0.4 0.5 0.6 0.7
minor radius

Figure 3. Comparisons of y; from experimental data analysis (Xexp), fluid
simulation (Xfiuid sim), the kinetic 8f code (Xiineric 5f)> and the kinetic’
eigenfunction mixing length estimate (Xkinetic ML)- .

A

We turn now to the statistical analysis of experimental data. Scaling ar-
guments applied to the gyrokinetic equation show that x; =
(v;p?/L,) F (niy Ls/ L, Ti/T.). Regression was used to obtain the best power
law expression for F' for beam heated TFTR shots, for minor radii between
g =1 and ¢ = 3 surfaces, to obtain F = 0.17p}° (L)L) (T./T:)**. The
scaling with n and L,/ L, is roughly similar to the simulation results. How-
ever the best fit did not explain 75% of the variation in the logarithm of x;.
The experimental data scatter away from the fit value by a factor of 3 both
high and low. This poor fit indicates that variables other than those arising
in slab 7; modes are needed to reproduce the experimental ;.
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