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The Hamiltonian formulation of the Vlasov-Einstein system, which is appropriate for
collisionless, self-gravitating systems like clusters of stars that are so dense that gravity
must be described by the Einstein equation, is presented. In particular, it is demonstrated
explicitly in the context of a 3+ 1 splitting that, for spherically symmetric configurations, the
Vlasov-Einstein system can be viewed as a Hamiltonian system, where the dynamics is
generated by a noncanonical Poisson bracket, with the Hamiltonian generating the evolution
of the distribution function f (a noncanonical variable) being the conserved ADM mass-
energy H,pw. This facilitates a geometric understanding of the evolution of f in an infinite-
dimensional phase space, providing thereby a natural interpretation of the constraints
associated with conservation of phase space. This geometric interpretation also facilitates
the derivation of improved criteria for linear stability by focusing on dynamically accessible
perturbations Jf which satisfy all the constraints of phase space conservation. An explicit
expression is derived for the energy 8'*’H,p\ associated with an arbitrary spherical phase
space preserving perturbation of an arbitrary spherical equilibrium, and it is shown that the
equilibrium must be linearly stable if §'H,p,,, is positive semi-definite. Insight into the
Hamiltonian reformulation is provided by a description of general finite degree of freedom
systems. Intuition derived from simple finite models clarifies several features of the Vlasov—
Einstein system; for example, how, negative energy modes preclude necessary and sufficient
conditions for stability and why, unlike the Newtonian case, the existence of negative energy
perturbations for some static, isotropic equilibrium apparently signals the onset of a linear
instability. An Appendix exhibits the construction of a completely covariant bracket which
generates the Vlasov-Einstein system for arbitrary configurations in a form independent of
any assumed 3 + 1 splitting.  © 1993 Academic Press, Inc.
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1. INTRODUCTION AND MOTIVATION

It is generally accepted by theoretical astrophysicists that, whenever “collisions”
(i.e., discreteness effects) may be ignored, the evolution of a collection of objects
interacting only via Newtonian gravity can be modeled by a one-particle distribu-
tion function f governed by the gravitational Vlasov—Poisson system. This means
that f is assumed to satisfy a collisionless Boltzmann or Vlasov equation, with
forces determined by a potential @ generated self-consistently from f via the
gravitational Poisson equation. This is, for example, the starting point for a great
deal of work in the field of galactic dynamics.

However, under certain extreme conditions the system may be so dense, and the
gravitational field so strong, that one must allow for the effects of general relativity.
In this case it is believed that the evolution may be described instead by the general
relativistic Vlasov-Einstein system. It should, however, be noted that this system is
more difficult to justify than ordinary Vlasov equations, which assume Newtonian
forces satisfying linear superposition or, relativistically, linear field equations.

One concrete setting where one is led to this system occurs when considering a
very dense star cluster or galactic nucleus (cf. Refs. [1-4]), which might eventually
become unstable towards an overall collapse to form a massive black hole. Another
setting occurs when studying the motion of free-streaming “inos” in the early
Universe, a problem that arises naturally in various scenarios involving the origin
of large scale structure (cf. Refs. [5-8]). In this latter case, f can be interpreted
either as a one-particle distribution function for a collection of classical, or
semiclassical, particles or, alternatively, as a quasilocally defined (there being no
global definition of “particle” in curved space quantum field theory) Wigner
function constructed from the renormalized Hadamard two-point function [9].

Hamiltonian techniques [10-27] have proven very useful in analyzing plasma
systems, in particular, those described by the Vlasov equation. Recently, these
techniques have also been applied to the gravitational Vlasov-Poisson system and
have led to new results [28-30] regarding the stability of spherically symmetric
equilibria and the instability of rotating, axisymmetric equilibria. The objective of
this paper is to apply similar techniques and perspectives to the Vlasov-Einstein
system, assuming, for simplicity, that the system is spherically symmetric. This will
lead to several new results, which serve to generalize and clarify earlier work
[3,31]:

1. It is shown that the spherically symmetric Vlasov-Einstein equation is
Hamiltonian with respect to a Poisson bracket of noncanonical form, a form that
arises because the distribution function does not constitute a set of canonical field
variables. Poisson brackets written in terms of noncanonical variables retain their
Lie algebraic properties, which is a deeper sense of what it means to be
Hamiltonian. The evolution described by the Vlasov-Einstein system can thus be
viewed as a generalized canonical (actually noncanonical but Hamiltonian) trans-
formation in the (infinite-dimensional) phase space of distribution functions. The
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Hamiltonian generating this evolution is the “natural” conserved energy for a
spherical system, namely the mass H,pym of the “ADM” formalism developed by
Arnowitt, Deser, and Misner [32]. It follows that the “energy” associated (cf. [31])
with a linear perturbation away from some equilibrium serves as the Hamiltonian
for the linearized evolution equation.

2. This formulation also provides a clear geometric interpretation of the
infinite number of constraints embodied in the Vlasov-FEinstein system as a conse-
quence of conservation of phase space. These constraints, which are called Casimir
invariants, serve to restrict the evolution to a particular hypersurface in the phase
space of distribution functions, so that, e.g., a perturbation orthogonal to this
hypersurface cannot propagate and must instead correspond to a zero frequency
mode. Perturbations within this hypersurface are referred to as dynamically
accessible.

3. The geometric insights provided by the Hamiltonian formulation also
permit one to generalize the stability criteria derived by Ipser and Thorne [3, 31].
By identifying the “energy” associated with a generic phase space preserving, i.e.,
dynamically accessible, perturbation, one can derive a sufficient criterion for the
stability of some equilibrium f, without assuming, as in the past, that f, is a
monotonic function of the particle energy E, or that the unperturbed distribution
of three-velocities at each point in space is isotropic.

4. The above observations also facilitate new insights into the question of
why the stability properties of Vlasov-Einstein equilibria are fundamentally
different from those of the corresponding gravitational Vlasov—Poisson equilibria.
In 1965, Zel’dovich and Podurets [2] asserted without proof that the onset of
instability for sufficiently well behaved spherical Vlasov—Einstein equilibria can be
determined using “turning point” or “binding energy” criteria [33], in much the
same way that one analyzes the stability of neutron stars [34]. Unfortunately,
despite considerable effort this assertion has never been proven, largely because of
technical difficulties in handling the infinite number of conserved quantities
associated with conservation of phase space. It has, however, been corroborated
repeatedly via numerical simulations [35-39]. What makes the situation all the
more interesting is that this assertion is actually false for the corresponding equi-
libria generated from the gravitational Vlasov-Poisson system [40, 417, which are
all known to be linearly stable. In this latter case, the negative energy perturbation
arising at the first turning point is never dynamically accessible [29].

Preliminaries

In a relativistic setting, the distribution function f is understood as a covariant
“phase space number density,” where the natural particle phase space is the
cotangent bundle associated with the spacetime (M, g,,) in which f lives (cf.
Refs. [1, 3,42] and references cited therein). Given a preferred 3 + 1 splitting into
space and time, this leads to a distribution f'= f(x“, p,, m, t), which is interpreted
as a number density for finding particles with mass m at the spatial point x with
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spatial momentum p, at time ¢ The assumption that f be governed by the
Vlasov-FEinstein system then implies that f satisfies a collisionless Boltzmann
equation (cf. Ref. [1])

praof 1 5gaﬂi
moxt 2mPAPP oxn p,

(1.1)

where the spacetime metric g, is viewed as a functional of f, generated from the
Einstein equation

-3 ax f x
Gﬂ[g]—SnTﬂ_Sn_[| lf’2 P*Pa. (1.2)

In a certain limited sense, this system may be generated via a Poisson bracket
defined in the eight-dimensional phase space. Specifically, introduce the bracket
operation

o, =—— 1.
A B)= ox*dp, Op, 0x°* (13)

and idemify a “super-Hamiltonian”
= 1 ”v( ) (1 )
=—g" " \x)p,p.. 4
2m #o

Equation (1.1) may then be rewritten in the form
(H, f>=0. (1.5)

This sort of interpretation can also be implemented slightly differently in a
constrained theory. When imposing the equations of motion for the free streaming
particles, it follows that the numerical value of

=|g"p.p.l"? (1.6)

is constant and, with an appropriate choice of affine parameter, equal to the
particle mass. However, by implementing this constraint explicitly, one verifies that
Eq. (1.1) may also be written in the form

(HLfS=0. (1.7)

The above general setup is of course manifestly covariant. However, in order to
make sense of an “evolution” for the system, one wishes oftentimes to implement
a 3+ [ splitting, in which one can speak meaningfully of the “state” of the system
on successive f=constant spacelike hypersurfaces. This can be done using the
ADM formalism [32] in a completely straightforward way if one supposes that the
evolution leads to a globally hyperbolic space-time. In this case, one can pick a
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gauge in which the shift vector N¢ vanishes identically, so that the metric functions
g% = g, =0. Thus the line element has the form

ds’ =g, dt’ + g dx"dx"  (a,b=1,2,3). (1.8)

Given the induced foliation associated with this decomposition, one can then
view f as a function f(x“, p,, m, t) and define a “spatial” Poisson bracket

0A 0B 04 0B
ABl=r———7"— 1.9
{ } axu a a ( )
in the six-dimensional (x“ p,) phase space. One identifies the quantity
E(x“, p,, m, t)= p, as the energy of a particle at (x“ p,) with mass m at time ¢, and
then verifies immediately that this energy serves to generate a noncovariant version
of Eq. (1.1) in the form

of
= {ES) (1.10)

This equation obviously has the correct Newtonian limit. It is, moreover, a very
reasonable equation, given the intuition of electromagnetism (cf. Ref. [43]) as
formulated using the “multi-generator” approach of Dirac [44] (see also [45]).

This general setup is attractive, but does not constitute a Hamiltonian formula-
tion for the field variable f. The form of Eq. (1.10) is suggestive since it involves the
Poisson bracket {f), f>} that acts on phase space functions f; and f,, but this
bracket is appropriate for the Hamiltonian description of particle orbits—not that
of /. What is needed is a Poisson bracket that acts on functionals of the dynamical
variables f and g,,. However, for spherically symmetric configurations g,, is a
functional only of f, so that a Poisson bracket involving functional derivatives of f
alone is appropriate. Such a Poisson bracket that generates the dynamics, as given
in Section 2, may be viewed as a “generalized canonical transformation” in the
function space of distribution functions.

Qverview of This Paper

The aim of Section 2 is to present the noncanonical Hamiltonian structure for the
Vlasov-FEinstein system. First, the Vlasov-Einstein system is reviewed within the
context of a 3+ 1 splitting, the framework that has been used by relativistic
astrophysicists interested in understanding solutions to the initial value problem.
Next, the noncanonical Poisson bracket appropriate for spherical systems is
presented. Given the assumption of spherical symmetry and natural boundary
conditions “at infinity,” one can treat the distribution function f as the sole dynami-
cal variable and view the metric g,, as a functional of f. In general, for completely
arbitrary configurations this would be difficult, if not impossible. However, the
assumption of spherical symmetry implies that the radiative degrees of freedom of
the metric cannot be triggered. It is then natural to work in the standard
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Schwarzschild coordinates {t,r, 6, ¢} (cf. Ref. [3]), where all the dynamics of the
gravitational field is embodied in the two metric functions g, and g,,. It is shown
that the Hamiltonian, which is the ADM mass-energy viewed as a volume integral,
combined with the noncanonical Poisson bracket yields the correct dynamics. This
generalizes the case of Newtonian gravity, where the obvious Hamiltonian is the
total mean field energy, as considered, e.g., by Lynden-Bell and Sanitt [46].
Section 2 also contains a brief discussion of Casimir invariants and concludes with
a simple sufficient condition for stability.

Although the Hamiltonian structure of Section 2 is a straightforward adaptation
of that for the Vlasov-FEinstein and other plasma systems, one does encounter a
new complexity when trying to study perturbations about some equilibrium solution
fo- Because the Vlasov-Einstein system actually defines the spacetime, and hence the
cotangent bundle, in which the distribution function lives, the unperturbed f, and
the perturbed f really live in two different spaces. Only by introducing some non-
trivial—and nonunique—mapping between the unperturbed and perturbed bundles
can one identify what is meant by a perturbation Jf. Translated into a Newtonian
language, this mapping entails a time-, as well as space-dependent, coordinate
transformation, the form of which is determined by f itself. Section 3 discusses this
new wrinkle, illustrating in particular two possible prescriptions for identifying the
two bundles. One of these, developed by Ipser and Thorne [3], is geared to exploit
the special features following from the assumption of spherical symmetry. The other
prescription, introduced by Israel and Kandrup [47], is perhaps less natural in a
spherically symmetric setting, but has the obvious advantage that it does not
presuppose any particular symmetries. Section 3 also indicates how this general
program, formulated for nonlinear perturbations, reduces in an appropriate limit to
the linear stability theory of Ipser and Thorne [3] and to other, related work
[31,48].

Whereas Section 3 focuses on perturbations from the viewpoint of the linearized
evolution equations, Section 4 considers more abstractly the problem of dynami-
cally accessible perturbations. The requirement of phase space conservation is used
explicitly to construct a general infinitesimal dynamically accessible perturbation,
and it is observed that, as is the case for the Vlasov—Poisson system, such a pertur-
bation is always generated via what is effectively a canonical transformation. The
identification of such a perturbation leads to an important geometric result, namely
that the first variation 6'VH 5\ vanishes identically for a dynamically accessible Jf,
independent of the perturbed equations of motion. Indeed, one can invert one’s
perspective and interpret the requirement §'H,,,, =0 as actually defining “equi-
librium.” Every equilibrium f, is an energy extremal with respect to dynamically
accessible deformations, The problem of stability thus hinges on the sign of the
second variation 6P H,py. If 6P H,py is of fixed sign for all dynamically
accessible perturbations, the equilibrium is guaranteed to be linearly stable, whereas
an indeterminate 6'YH,p\ suggests—but does not prove—an instability, The
explicit expression for §*'H ,\ constructed in Section 4 thus provides a sufficient
criterion for linear stability.
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It is to be stressed that the, admittedly rather formal, mathematical structure of
Sections 24 can actually be useful to theoretical astrophysicists interested in under-
standing the properties of real astronomical objects. By reformulating the Vlasov
equation as a Hamiltonian system, one has the possibility of applying very powerful
techniques which work only in the context of a Hamiltonian description. And,
perhaps, even more importantly, one then has at one’s disposal the formidable
intuition which many physicists have regarding finite-dimensional Hamiltonian
systems, the subject matter of Section 5.

In this context, it is important to observe that the linear theory of stable,
homogeneous plasmas has been solved completely by a mapping to action-angle
variables [27]. This would suggest that, quite generally, the onset of instabilities
may be understood by restricting attention to only a few degrees of freedom. Thus,
in particular, the onset of a linear instability can often be understood by tracing the
evolution of one or two “modes” as functions of some parameter. Indeed, this
Hamiltonian approach has already proved useful in considering the gravitational
Vlasov-Poisson system, where it enables one to understand in an intuitive and
geometric way precisely why it is that, even if some static, spherically symmetric
configuration admits a “negative energy” linearized perturbation, it need not be
linearly unstable [28]. More extensive discussions of this point in the context of the
Vlasov description of a plasma are contained in Refs. [22-25, 27].

Section 5 begins by discussing a finite-dimensional canonical Hamiltonian
system, where the equilibrium is linearly stable, but nevertheless does not
correspond to an energy minimum. This system is thus the prototype of a negative
energy mode. The example is followed by a thorough discussion of noncanonical
Hamiltonian dynamics, which clarifies several features arising for infinite-dimen-
sional systems, notably the fact that only some equilibria can be constructed as
extrema of the energy plus some set of Casimir invariants. Section 5 ends with a
simple noncanonical example that mimics the Vlasov-Einstein system, including the
Newtonian limit.

Section 6 concludes the paper by summarizing what is known about the stability
of spherical equilibrium solutions to the gravitational Vlasov-Poisson and
Vlasov--Einstein systems, in light of the Hamiltonian reformulation of Sections 2-5,
including the noncanonical example of Section5. In particular, this general
approach would appear to provide significant new insights into the problem of
linear stability for spherical relativistic star clusters, a problem which, despite a
great deal of work during the past 25 years, is not yet completely understood.

An Appendix considers an alternative, manifestly covariant, formulation of the
Vlasov-Einstein system, in which the distribution function f, the metric g,,., and the
conjugate metric momentum (ie., connection) =}, are taken as the fundamental
variables. This is done by combining results derived by Marsden et al. [49] (see
also Ref. [50]) for the vacuum Einstein equations with the obvious gravitational
generalization of the Vlasov—-Maxwell system in flat space. A priori, this might seem
little more than an academic exercise, but such is not really the case. This covariant
approach serves as an alternative, and in certain respects more enlightening,
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starting point from which one could derive noncovariant brackets in which both
the distribution function and the metric are treated as dynamical variables. From
the covaniant Vlasov-Maxwell bracket, one can derive a noncovariant 3 + 1 bracket
in a fashion that treats the electric and magnetic fields as independent dynamical
variables. And similarly, from the covariant Vlasov-Einstein bracket one could
derive a 3 + 1 gravitational bracket which treats the metric as a dynamical variable,
generalizing thereby a bracket for linearized perturbations [51] derived “by
inspection” from the linearized perturbation equations.

Throughout the analysis, Greek characters «, 8, ..=0, 1, 2, 3 refer to spacetime
indices, whereas Latin letters a, b, ... =1, 2, 3 refer instead to spatial indices. Units
are chosen so that the gravitational constant G and the speed of light ¢ are equal
to unity. Following Ref. [2 or 527, it is assumed that the metric has signature
(+, —, —, —)

2. NONCANONICAL HAMILTONIAN STRUCTURE

The Viasov—Einstein System

Consider a test particle located at some spacetime point x* with momentum p,,
e, a particle with coordinates (x% p,) in the cotangent bundle associated with
the spacetime. This particle’s four-velocity is of course u*= p*/m, where
m=|g*p,p.|'"? denotes the particle mass. In terms of an element of spacelike
hypersurface do, centered at x* and the proper time 7 of the particle, one can then
write the covariant configuration and momentum space volume elements in the
forms (cf. [427])

|gl'"? d*x =u*do, du
and
lgl~'?d*p=dw dm, (2.1

where dw denotes a three-dimensional volume element on the mass shell hyper-
boloid. Given these preliminaries, one defines the distribution function f by saying
that the quantity f(x*, p,) u* do, dw dm represents the number of particles of mass
m crossing do, at proper time t with momentum in the interval (p,, p,+dp,).

Suppose now that the spacetime is globally hyperbolic so that, as discussed in
Section 1, one can choose a gauge in which g, =0. This leads to a line element of
the form given by Eq. (1.8), which defines a 3+ 1 splitting. Given this splitting, it
is natural to view the fundamental variables as being the spatial coordinates and
momenta, x* and p,, and the mass m at time 7. With this choice of independent
quantities,

d3
,,—pdm
{p'/m)
= f(x%,, m, t)d>xd’p dm. (2.2)

S, po)wda, dw dm=f(x°, p,, m, 1) |g| “‘”Z%d% lgl ="
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Observe in particular that, even though the spacetime is in general curved, the
volume element d3xd’p dm has covariant meaning (provided, of course, that d°p
refers to the cotangent space).

Relative to this 3 4 | splitting, the Vlasov equation (1.1) takes the explicit form

o m (p" of 1 ég® of 1 " 8f> 23)

o p'

moxt 2m PPt oy ap. m PP e Op

Here, since one is viewing p® and m as the basic variables, there is no J/dp,
contribution. This may be understood geometrically if one writes Eq. (1.1) as

of

5= (2.4)

where D/Dt denotes a total (proper) time derivative evaluated along a geodesic
with

dx*®
dr

"
m

and

dpa 1 6g‘“’
dt 2m om PP ox*’

(2.5)

Indeed, one verifies trivially that the value of the mass m=|g*’p, p,|"? is conserved
along the characteristics (2.5), ie., that Dm/Dt =0, so that only three of the four
components of momentum vary independently. Note also that since the conserved
m, rather than p,, is treated as an independent variable, the physical energy £=|p,|
is to be viewed as a function of x% p,, and m at fixed time ;. And indeed, by
allowing explicitly for this functional dependence, one verifies immediately that
Eq. (2.3) is equivalent to the bracket equation (1.10).

The Vlasov—Einstein Bracket

Given this general setup, the desired Vlasov-Einstein bracket is straightforward
to define since it is in essence identical to that for the Vlasov-Poisson [11, 13, 23]
and two-dimensional Euler fluid [12] systems. Specifically, given any two
functionals A[ f] and B[ f], the bracket operation is defined via the prescription

(2.6)

(4, B]= Jdl"f{éA 53}

8f of
Here dI'= d*xd*p dm denotes the covariant seven-dimensional ¢ = constant volume

element, and 5/f denotes a functional derivative acting on a functional of f that is
viewed as a function of x°, p,, and m. (As discussed in Sections 3 and 4, other
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choices are possible.) It is easy to see (cf. Ref. [12, 13]) that this bracket is linear
and antisymmetric and that it satisfies the Jacobi identity

(4, [B,C]]1+[B, [C 411+ [C, [4, B]]=0. (2.7)

It follows that the bracket defines a Lie algebra, so that an evolution gencrated
by this bracket and any Hamiltonian H is Hamiltonian in a generalized sense
(cf. Section 5). Observe also that the bracket (2.6) is identical to that for the
Vlasov-Poisson system, provided that one allows for a distribution function that
depends explicitly on mass.

As noted above, for spherically symmetric configurations, one is to view the
metric g, as a functional of f. Thus, if 4 is an explicit functional of both f and
g,,[ /], one understands the functional derivative as meaning (via the chain rule)

84 oA

o4 _od +(5gm>’f oA
6f g 6f 6g;4v il

where (3g,,/df)" is the transpose of an operator. In particular, for a functional

(2.8)

A=[dra(g, L1,

the variation

da g,,v og v> da
= dr=14 £2) —dr 29
e 5f j f( o (29)

whence the origin of the second term of Eq. (2.8) is clear.

Suppose now that there exists some functional H for which the functional
derivative 6H/df = E= p,. One then concludes that Eq. (1.10) may be rewritten in
the form

af_ _ 5L‘I
E—MH}—{ﬂW} (2.10)

This follows trivially from the identity
J'dl“a{b, c}= —Idl"b{a, c},

which one obtains via integrations by parts for functions a, b, and ¢ that obey
appropriate falloff conditions.

Associated with the bracket of Eq.(2.6) are an infinite number of conserved
quantities that arise from Liouville’s theorem for the particle dynamics underlying

§95 225:1-9
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the Vlasov equation, i.e., conservation of phase space (see Ref. [22]). Specifically,
any function y(f) defines a conserved functional

CLf1=]dr x(s), 2.11)

independent of the Hamiltonian. To see this is straightforward. The derivative
6C/8f = 0y/df yields a quantity dy/df = A(f) which is a function only of /. But, by
virtue of the Leibnitz rule, it is clear that

{f,A}=%f:{ﬂf}so,

so that
[C.fl1={fi4}=0 (2.12)

and
[C, H]= —fdrE{f,A}zo. (2.13)

The degeneracy manifest by the presence of the quantities C, known as Casimir
invariants, is a feature that distinguishes the bracket of Eq. (2.6) from conventional
or canonical Poisson brackets. This bracket, like the Dirac bracket [53-56], fits
into the geometric setting of a so-called Poisson manifold (cf. Ref. [57]). A Poisson
manifold, unlike the conventional symplectic manifold, possesses kinematical
invariants that are built into the phase space: For field theories like that considered
here, through each point of the infinite-dimensional phase space there exists an
infinite-dimensional constraint surface determined by the constancy of all the C’s.
The key point then is that dynamics on the constraint surface is Hamiltonian in the
ordinary sense. Section 5 amplifies these remarks and then discusses a simple finite
degree of freedom model that exhibits this general structure.

Because of the existence of the Casimirs, the Hamiltonian, H, is not unique. One
has the freedom to implement an arbitrary renormalization H — F= H + C for any
Casimir C[f] without altering the evolution equation. Since it is evident from
Eq. (2.10) that extremals of the Hamiltonian correspond to equilibria, in certain
cases it is possible to choose a C for which the extremal condition 6F/éf = 0 yields
some desired equilibrium f;,. As indicated at the end of this section, this possibility
is of interest since it facilitates the derivation of a nontrivial sufficient criterion for
linear stability. However, as will be illustrated in Sections 4 and 5, one can do
considerably better by explicitly restricting attention to dynamically accessible
perturbations which embody all the constraints associated with the conservation of
phase space.

Quite generally, one can ask the form of the most general time-independent
solution to the Vlasov—Einstein system which manifests spherical symmetry. For the
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corresponding Vlasov—Poisson system, it has long been known [58] that the most
general (generic) solution with these symmetries is given as an arbitrary function
Jo(E, J* m), where E denotes the particle energy and J? the squared angular
momentum. Here E = p?/2m+ m®, with & the Newtonian gravitational potential,
and J?=|xx p|> For the corresponding relativistic system, one can show (cf.
Ref. [1]) once again that the most general f, = f(E, J2, m), where now E = p, and
J? represent conserved quantities associated with the time translation and rota-
tional symmetries. The special case of an fy(E, m) corresponds to an equilibrium
configuration characterized at each point in space by an isotropic distribution of
spatial momenta.

The Hamiltonian H ,py

The crucial remaining task in establishing the utility of this Hamiltonian
formulation is to verify that there exists at least one H for which 6 H/df = E. In fact,
it will be seen that, at least for spherically symmetric configurations, it suffices to
choose the “obvious” candidate for an energy, namely the ADM mass-energy
H,pm, €., the “conserved mass-energy” associated with the stress energy tensor
constructed from f. Assume for concreteness that the line element is of the form

ds? = e* di* — e* dr? — r¥(d6? + sin® 0 dg?). (2.14)

It then follows (cf. Refs. [32, 52]) that this H,py may be written as
Hyom =41 [ r2dr T, (2.15)
where T," denotes the t —t component of the stress energy

1/2

_jldpf

It is not hard to see that, in the Newtonian limit, this H .5y reduces to the
standard mean field energy H which generates the gravitational Vlasov-Poisson
system. However, the full ADM mass-energy differs froms its Newtonian counter-
part in that it may be written as a surface integral. This is also easy to see. By virtue
of the ¢ — ¢ field equation,

1 (1 1di
87!T,’=F—e"(—3—————>, (2.16)

r° radr

one observes that

w0 [ e | 1 1di
_ 2 (_ - 2 A
H,pm=4n ‘[0 redrT, —2f0 redr [r2 e (rz ra’r>:|

(2.17)
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But regularity at the origin implies that e *(r=0)=1, whereas M, the mass
observed at infinity, satisfies e ~*(r = 0c)=1—2M/r, so that H,py =M. With an
appropriate definition of ¢, the sum v + 4 =0 outside the spatial region in which f
has support, which provides the required boundary condition on v.

Having observed that H,p\ can be written as a surface integral, the proof that
OH spm/0f = p, becomes relatively straightforward. All that one need do is exploit
the perturbed r— field equation which, if x% p,, and m be taken as the basic
variables, reduces to

(8/0r)(r e —*)= —8nr? 6T/, (2.18)
where
. 4% [pp p.p' p.p"\ 04
oT, ‘f,g;m[ 4 5f—( Lb Bt )—2—f]. (2.19)

This expression for the perturbed 67, differs from Eq.(3.6) below or from
Eq. (14b; R) in Ref. [3] because, in constructing this variation, it has been assumed
that p, and m are the basic momentum variables. As discussed below, other choices
are possible.

By expanding out the volume element dI” and exploiting the perturbed field
equation (2.18), one sees that

1 = d ,
deP,5f= —EJ‘O dr e“‘“’/zgr—rée”'

+f dr dnrle ‘"“’Qéltj 7 |:(p,p £l )ﬁf:l (2.20)
lgl”

m 2

A simple integration by parts then shows that

o

I = o, O . 1
—EL dre“'*"’/zarée"= —Ee‘”"’””rée”1

0

—f dr re=* 8 = (Zv+‘;'l>e"'+m. (2.21)

However, the surface term in this expression reduces precisely to H ,pp, SO that,
by virtue of the identity

dv dAi

dr+d =8nre! (T, —T,"), (2.22)
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which follows from the unperturbed ¢ — ¢ and r — r field equations [52], one has

1 = o O
_Z v+ 4
2J; dre arrée

o0 d4 . f , r 5/{
=5HADM—J0 dr 4nrie + P2 Mj. |g152 [(pnf _pr: )7f] (2.23)

By combining Eqgs. (2.20) and (2.23), one thus concludes finally that

SH apn = f dr p, of; (2.24)

from which follows the desired result.

A Sufficient Criterion for Stability

Consider now a general renormalized Hamiltonian F= H,py+ C. The
unconstrained first variation éF = 6H ,py + 6C then yields

5F=fdr<%+ E) S, (2.25)

so that, for a given equilibrium f;, 6 F vanishes identically for all perturbations df
if and only if

dy
df+ E=0. (2.26)

It follows that, if the equilibrium f; is a function only of the mass m and the
particle energy E, and if, moreover, the derivative Fg= df,/0E is monotonic, and
hence presumably negative, it will always be possible to choose a Casimir C so that
the equilibrium f; extremizes F with respect to all perturbations df. Indeed, one
need only invert to view E as a function of f; and m, and then choose yx to satisfy

S/
)= [ Es)dr (227)

It is also easy to see that such a choice is impossible in either of the two following
cases: (a) if the equilibrium distribution of velocities is not isotropic, so that f;
cannot be expressed as a function only of E and m; or (b) if f; is not a monotonic,
and hence invertible, function of E, i.e., if Fg is not everywhere negative. In these
cases, there is no functional F which is extremized by f, with respect to all
perturbations /.

However, for monotonic equilibria fy(E, m), it now becomes completely
straightforward to formulate a sufficient criterion for stability. Choose that Casimir
C for which the renormalized Hamiltonian H is extremized by the equilibrium, ie.,
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for which 6F=0. 1t then follows that, if the second variation 6'*F>0Q for all
perturbations df # 0, the equilibrium is guaranteed to be linearly stable.

This construction is equivalent to considering constrained variations of the
Hamiltonian which preserve the value of some functional C[ /], and, in that form,
has been long known to both plasma physicists and galactic dynamicists. Newcomb
(cf. the Appendix in Ref. [59]) considered the special case of a plasma in thermal
equilibrium, where C takes the form of the Boltzmann entropy. The idea of varying
the energy with general C[ f] held fixed first appeared in the work of Kruskal and
Oberman [60] (although in a more general plasma physics context). Further
insight was given by Gardner (cf. the Appendix in Ref. [61]) [62]. In galactic
dynamics, Lynden-Bell and Sanitt’s [46] derivation of the energy associated with
a linearized perturbation uses exactly this idea (which they term “a trick due to
Newcomb”). This approach was later used [48] to formulate a sufficient criterion
for the linear stability of equilibrium solutions to the gravitational Vliasov—-Poisson
system and subsequently adapted to yield a sufficient criterion for equilibrium
solutions to the spherically symmetric Vlasov—Einstein system [31].

Unfortunately, however, this approach has the monotonicity and isotropy
limitations noted above. If some equilibrium f; does not satisfy these conditions,
one cannot pick a Casimir for which §"’F=0, so that the whole approach fails.
This does not, however, indicate that the equilibrium f, is linearly unstable. Indeed,
even if 'VF=0 and §”F <0, one cannot infer instability. Because of the nontrivial
constraint associated with conservation of phase space, the existence of a perturba-
tion with §*’F <0 does not necessarily guarantee that the system is unstable: one
must also verify that this negative energy df lives on the constraint surface and is
thus able to propagate dynamically, i.e., that the perturbation be dynamically
accessible. However, even this is not sufficient for linear instability because of the
possible presence of a negative energy mode, as will be clarified in Section 5.

The approach described above restricts attention to perturbations that preserve
the value of some particular C[ f]. However, phase space conservation implies that
one really needs to restrict attention to perturbations that preserve the value of a//
possible C[ /], i.e., the so-called dynamically accessible perturbations that will be
discussed in Section 4, using ideas developed in Refs. [22-25, 27].

3. LINEAR THEORY FOR SPHERICAL SYSTEMS

Identification of Perturbed and Unperturbed Phase Spaces

When considering an “ordinary” Vlasov equation, such as the Vlasov-Poisson
system of electrostatics or Newtonian gravity or the Viasov-Maxwell system, one is
of course working with distribution functions and forces that live in a fixed (albeit
possibly time-dependent), externally imposed spacetime and cotangent space. This
means that any two distribution functions, for example, the f;, associated with some
static equilibrium and another f associated with some displacement therefrom, live
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in the same space, so that one knows exactly what is meant by a perturbation
8f = f — f,- However, for the Vlasov-Einstein system, this is no longer true. In this
case the cotangent bundle itself is determined self-consistently by the Einstein equa-
tion, so that the “true” distribution function f* and the equilibrium f; actually live
in different phase spaces. To focus on what is meant by a physical perturbation §f
and to derive an equation for the evolution of this éf, one must first re-express the
“true” physics in the equilibrium bundie. This requires the specification of some
mapping .# from the “true” bundle T,,. to the equilibrium bundle T,,, ie., a rule
connecting pairs (x’%, p,) and (x*% p,).

A crucial point to observe is that the choice of such a mapping is not unique and
that different choices have their own advantages and disadvantages. For example,
the identification of variables {x* p,, m, ¢t} implicit in the analysis of Section 2 is
convenient in that it ensures that the phase space volume element dI” is invariant
under variations, but it is awkward in the sense that this coordinization fails to
preserve the causal structure and, hence, the mass shell constraint. To preserve this
constraint, the identification must satisfy p, p;g'** = p,psg**. An identification
which fails to meet this requirement is not wrong per se, but the details of the
associated linearized theory become more difficult to interpret physically if this
requirement is not satisfied. For this reason, most relativists working on this
problem have carefully tailored their identifications so as to preserve the mass shell
constraints. At least two alternative prescriptions have been considered.

The Israel-Kandrup [47] prescription is quite general, working whenever (as
has been assumed tacitly in the preceeding) the “true” and equilibrium spacetimes
have the same topology. Specifically, this prescription instructs one to (a) identify
spacetime points in the two spacetimes, i.e., to set x*=x"% and then (b) rescale
each component of momentum p* by the same function o(x’, p’), chosen to
preserve mass shell constraints and cross sections of the tangent bundle, ie.,
p*=ap'®, where

’ ' ra 1
o_zzglﬁ(x’) prap,ﬁ' (3])
L.(x") p°p
Given this mapping, one concludes that f, the “true” distribution function " viewed
as a field living in the equilibrium bundle, satisfies an equation of the form [47]
Df ¢
Dt dp,

(F.f), (3.2)

where (cf. Eq. (2.4)) D/Dt denotes the total proper time derivative associated with
the equilibrium bundle and the “gravitational force” F, manifests the fact that
geodesics in the “true” bundle do not look like geodesics when viewed in the equi-
librium bundle. In coordinates,

1 .
Fo=—— 4,00, p'p’, (33)
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where 4,;,=g.,—m ’p, p, is the spatial projection tensor orthogonal to p, and
oy, =rilg]1-T}lg] (3.4)

denotes the difference between the Christoffel symbols for the two metrics, which of
course transforms as a tensor. Note also that 8F,/dp, # 0, which indicates that, by
introducing the mapping between the two bundles, one has lost a manifest Liouville
theorem.

By contrast, the Ipser—-Thorne [2] prescription is especially geared to exploit the
symmetries of a spherical configuration, as manifest in Schwarzschild coordinates.
Here the spatial coordinates r, 8, ¢ have an obvious physical significance (6 and ¢
denote coordinates on the unit two-sphere and r is chosen so that the surface area
of a sphere with “radius” r is 4nr?), whereas, in the equilibrium spacetime ¢ is the
cyclic coordinate associated with the time translation symmetry. This implies that,
at each point in space, there is an obvious preferred local orthonormal frame, with
locally measured components of momentum p,,=1g**|"? p, (no sum over a). The
Ipser-Thorne prescription uses these symmetries by (a) once again identifying
spacetime points in the two spacetimes, i.e., setting x* = x'*, but now (b) identifying
components of momentum as measured in a local orthonormal frame, i.e., setting

P = Pl OF, equivalently,
Ig'“’l)
Pa=\ =) P (3.5)
(lg I

This alternative identification has the advantage that, for linearized disturbances,
the perturbed stress energy takes the very simple form

d’p 5f
Ti= | o[ o PP (36)

where df denotes the perturbation in the distribution function. The diagonal (« = f)
components of this formula also hold exactly for nonlinear perturbations as well, but,
in general, one must worry that p,, p'? # p, p? when a # f. It is easy to see that this
choice also leads to an evolution equation violating a manifest Liouville theorem.

Both these identifications agree in that they do not transform the coordinates, so
that x'*=x* This, however, is certainly not obligatory. Indeed, each mapping
involves four degrees of gauge freedom (cf. [47]), since one could transform the
coordinates x'* arbitrarily (without changing x*) before implementing the
identification x'*= x* The obvious point, however, is that if one chooses an
identification which “mixes” space and time, it may prove difficult to interpret the
solution to the perturbed evolution equation.

The Linearized Evolution Equations

The object now is to investigate the perturbed Vlasov—Einstein system associated
with a more general identification of the form

=x"  p.=[1+4,x,p)]p.  (nosum) (3.7)
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which includes both of these specific identifications as special cases. Given the
assumption of spherical symmetry, the “true” Poisson bracket takes the form

0A 3B 0A OB
By =282 297 .
{4, B} or' op, op.or’ (3.8)

and it is straightforward to verify that, for the coordinate transformation (3.7), this
bracket transforms to

{4, B}=(1+4,)

<6A 0B 94 0B>
or dp, @ép, Or

3 alogA,.<aA éB 04 6B>
dp;op, Op, dp;

+(1+Ar)lgl pl' ar

3 4, (04
P ) 69
The true Vlasov equation
(g1} =0 (3.10)
will thus be mapped exactly to an equation of the form
Uy p 2o g g (3.11)

o P o0 op,

with the bracket gives as in Eq. (3.9).

Suppose in the first instance that the unperturbed equilibrium configuration is
characterized by an isotropic distribution of velocities, so that f, = f,(E, m). It then
follows that the linearized version of Eq. (3.11) assumes a relatively simple form.
Indeed, let f'=fo(FE)+6f and E’'=E+ 6F, where, consistent to linear order,
0F = p,4,. By observing that, for any spherically symmetric function 4,

0E 0h OE 0h m

————— = ——gh, 3.12
or ép, Op, or p' ( )
where
p* 0 g™ ¢
_r 9% 1
= o PP i oy (3.13)
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denotes the unperturbed Liouville operator, one then concludes that

oof, 24,0y
ar P e op,

where, recall, Fo= df,/0E. Note, in particular, that 2F .= ZFE=0.

For a general transformation of the form (3.7), Eq. (3.14) only holds for the
special case of isotropic equilibria. In more general settings, one also acquires
additional contributions involving

(Ofo/0J>)(8J2/0pi)(84,/0r)

for k=6 and ¢. If, however, one exploits the Ipser-Thorne identification [2], the
perturbations 4, and 4, vanish identically, so that Eq. (3.14) remains valid even for
an anisotropic fy(E, J2, m).

Focus now, for specificity, on the Ipser~Thorne prescription. By writing the
“true” metric functions of Eq. (2.14) in the forms A'=4+ 4 and v' = v + dv, where
64 and év denote the “perturbations,” one observes that, to linear order,

= —g’—,@(éf—FEp,A,), (3.14)

57 5
A,zi'f and 4,22 (3.15)

And, by exploiting the identities

p ooy o oE p’
D ov=——— —=F, =—F, .16
i A (3:16)
one then sees that
P 65f l dov 1 0 oA
- fe— 4 — =0, 17
™ +29f Fuopip"— 45— Fep P 7 (3.17)

However, one can use the perturbed r — ¢ and r — r Einstein equations [3, 52]

aa; Jl lp 5f (3.18)

1/2

and

dov_[(av\ 1 p o
“57‘[(«#) :|5/L—87zre j’ T3y PP (3.19)

to eliminate the functions 0 d4/0¢ and @ dov/dt, in which case he or she concludes

finally that
oof dv o4
[8t +£36f——< +rdr>Fbp 2] 0. (3.20)
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Here
msg';,@wb.p: —{E Y}, + b, (3.21)
where
W——4nre FE(”"’ jlg'szp' LA —p””flzrfzp;:rzp). (3.22)

In Eq. (3.20), 64 may be viewed either as a solution to the evolution equation

d (64 . P
5_’<3)_ _dne’ ST = —dme jl T PiP (3.23)

or, alternatively, as being generated from the constraint equation

10 5 04 (5

Equations (3.20)-(3.24) are very much analogous to the equations appropriate
for the Vlasov—Maxwell system in flat space for the special case of spherically sym-
metric configurations. The assumption of spherical symmetry means that there will
be no magnetic field B, so that, in terms of the three-velocity v* = p?/(m* + p?)'?,
one is led to a linearized perturbation satisfying

aof of,
T =0 (3.25)

where, in terms of the unperturbed electric field Ej,

oy o
e +ekE, , . (3.26)

Dy =

and the perturbed electric field dE® is constrained to satisfy the two Maxwell
equations

g—t(éE")= 4 = —dne j d*p dm v* of (327)
and

v, 6E" =~ 02( *E") = dnp=dne [ d’p dm of (3.28)
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(Note that the curved space analogue of these equations can also be generated
trivially, starting from the super-Hamiltonian [cf. Eq. (1.4)]

1
'}fzz_g‘w(x)(py_eA;A)(pv_eAv)a (329)
m

with 4, the vector potential.)

The main difference between these two systems of equations is of course the fact
that, in the gravitational case, & is modified by the addition of the nonlocal integral
correction b. This sort of correction seems an unavoidable new feature in any
relativistic perturbation theory which identifies coordinates x'*=x* in the
perturbed and unperturbed spacetimes. Although the specific form of b depends
upon the choice of the Ipser-Thorne prescription in connecting the “true” and
equilibrium bundles, it is apparent that it cannot be eliminated altogether by
choosing some other identification which still sets x’*= x* One piece of b reflects
the contribution involving d4,/d¢ in Eq. (3.11), an unavoidable contribution when
the “true” spacetime is time-dependent, so that the identification between bundles
is necessarily a function of time. One can cast the linearized Vlasov equation in the
usual canonical form, but only by introducing an identification that “warps” the
space and time coordinates, i.e., a nontrivial x"* = x"*(x'?).

4, DYNAMICALLY ACCESSIBLE PERTURBATIONS

The discussion of extremization in Section 2 focused upon completely arbitrary
perturbations df. However, as noted already, this is more general than what one
actually needs. When studying the problem of linear stability, it suffices to restrict
attention to dynamically accessible, or phase space preserving, perturbations with
support restricted to the constraint surface determined by all the conserved
Casimirs C[ f]. These perturbations, unlike arbitrary perturbations, can arise from
gravitational forces.

The recognition that phase space conservation is important in the context of elec-
trostatic Vlasov stability theory goes back at least to Gardner [62]. Independently,
in the context of Newtonian galactic dynamics, Bartholomew [63] recognized its
importance and introduced a manifest form for phase space conserving perturba-
tions. Recently, and also independently, a more complete analysis, including the
relationship to the Hamiltonian structure, was given in a series of paper
[22-25, 27]. As noted above, the net upshot of this analysis is that any dynamically
accessible perturbation Jf can be generated from the equilibrium f; via a canonical
transformation, so that, to first order, 6")f = {h, f,} in terms of the ordinary
Poisson bracket and some generating function A.

Dynamically Accessible Perturbations with the Ipser-Thorne Identification

It is also straightforward to determine the form of a dynamically accessible per-
turbation for the Vlasov—Einstein system. As for other Vlasov systems, all that one
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needs to do is ascertain the conditions on 8f which will guarantee that 8C[f]
vanish identically for all functionals C[ f]. Suppose, as in Section 3, that variations
are to be performed subject to the Ipser-Thorne identification, so that x* and p,,,
are held fixed. It is then natural to write such a general Casimir in the form

C=fdfx(f)zjds e 21(f), (4.1)
where
P,
dS=_nTr dr d(COS 6) d¢ dp(:)dp(,) dp(g) dpl¢)' (42)

This dS is not a covariant entity, but it is invariant under the mapping between
cotangent bundles, so that its variation vanishes, i.e., 6 dS=0.
The first variation of this C leads to two terms, namely,

s0C = d [f5f+ ‘”] (43)

The form of the second term here might seem rather inelegant. However, it may be
rewritten by exploiting the readily verified identity (cf. [64])

d*p G
lgiﬁz —=(p) (p)=— Jlgll/z (2" (p.)

L (dPG
S [ ) () )

which holds for integers ¢ and b and any spherically symmetric function G. (Equa-
tion (4.4) is derived most easily by assuming the coordinization G = G(r, E, J>, m, t).)
Indeed, by evaluating (4.4) for G =y, choosing a=0 and b =2, and exploiting the
chain rule x = (dy/df’) F, one can rewrite the second term on the right-hand side of
Eq. (4.3) in terms of dy/df, obtaining thereby an expression of the form

dip,p

sOC = fdr [5f FE] fdr—ay (4.5)

This might seem even more obscure but, in point of fact, du admits to a simple
physical interpretation. For arbitrary f= f(r, E, J?, m, t), one observes that the
variation in f associated with a spherically symmetric change in the spatial metric
£°° may be written as

&f O SE
S ab ab _ F,—
E 5grr

5gub g —FEégabag

og"”. (4.6)
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But, by performing this variation explicitly, one concludes immediately that du
takes the form

of
5g ab

S
Sp= 5f+—fa,, og® = 6f —
og

08 - (4.7)

Here the first term Jf refers to a variation in the functional form of f at fixed metric,
whereas the second refers to the change in f induced by virtue of the fact that the
spatial metric itself has changed.

In a certain sense, Eq. (4.7) can be interpreted as defining a “dressed” variation
for the function f. If one chooses to implement the Ipser-Thorne identification, the
fundamental object is a variation that allows both for the obvious change in f
associated with a simple alteration of its functional form and an additional correc-
tion reflecting a change in the coordinate E associated with the shift in the spatial
g induced by the functional change of /. Alternatively, if the Ipser-Thorne iden-
tification is considered to be fundamental, one might actually choose to view Jf as
a dressed variation of dpu.

Since linear dynamically accessible perturbations correspond to perturbations df
for which §/VC =0, they are easily identified. Indeed, one verifies trivially that §'"'C
vanishes identically for any perturbation satisfying

6/":{h’f0}’ {4.8)

where {4, B} denotes the Poisson bracket for the unperturbed cotangent bundle
associated with f,,. All that one need do to see this is insert the Ansazz (4.8) into
Eq. (4.5) and exploit the identity following Eq. (2.10) to conclude that

a
d’

Note also that, even though the bracket operation {4, B} is not an invariant
construction, involving as it does the variable p,, the bracket

s = —fdrh{ fO}EO. (4.9)

A OB 04 OB
{4, B (,)Eg—m—mw (4.10)

is invariant. And, in terms of this bracket, the variation 6'"’C associated with a
dynamically accessible perturbation may be written in the manifestly invariant form

a
dfo
The interpretation of Eq.(4.8) is completely obvious. The dressed variation

éu must in fact correspond to a canonical transformation generated from the
unperturbed f, by some generating function A. This is hardly surprising. In the

5mc=[ds§‘; (h folor= ——deh{ ,fo}mEO. (4.11)



RELATIVISTIC STAR CLUSTERS 137

Newtonian limit, ¢ and Jf will coincide, but, as observed already, for the
Viasov—Poisson system, dynamically accessible linear perturbations correspond
precisely to perturbations of the form 8")f = {h, f,}, wich can be shown to arise
from canonical transformations of the underlying particle orbits.

Given this expression for dy, it is not too hard to solve explicitly for the “bare”
variation df. Indeed, by using the perturbed ¢ — ¢ field equation (3.6) for d4, one
verifies explicitly that

d'p p,p
gl m

SV = (h, £o) —4nre’1FEp'p—f)J Foh. (4.12)
For the special case of a generating function A that is odd under spatial momentum
inversion p,, = —p,), this of reduces to the quantity #F,h, in terms of the
operator 4 introduced in Section 3. In this sense, the replacement in Section 3 of
2y by By can be interpreted by observing that, given the Ipser-Thorne identifica-
tion, at a fundamental level it is the dressed dy, rather than the bare df, which is
the fundamental object geometrically. Indeed it is the quantity du which enters into
the energy functional derived by Ipser and Thorne [3] in their analysis of the
problem of spectral stability.

The First Variation 6V H s

For the case of the Newtonian Vlasov-Poisson system, it is known (cf.
Ref. [63, 29]) that the mean field energy H associated with an equilibrium f is in
fact an extremal with respect to all dynamically accessible perturbations Jf, i.e.,
6"H = 0. Indeed, one can actually view the demand that §VH =0 as defining an
equilibrium. For the Vlasov-Einstein system, the ADM mass-energy H,pn plays
an analogous role, so that one might anticipate similarly that, for a relativistic
dynamically accessible perturbation, §'H ,py =0.

Using only the unperturbed equations of motion, it is in fact easy to prove that,
for a dynamically accessible perturbation, the first variation 6'VH .,y vanishes
identically. Again identifying phase space coordinates via the Ipser-Thorne
prescription, one sees immediately that

SOH = j drp,e~C+A2sf - j dS p 6"V, (4.13)

Upon inserting the formula (4.12) for §f into this expression, one acquires two
terms, namely {4, f,} and an integral contribution. However, with an integration
by parts the bracket term yields

—fdrh{Pre_(v+“/21f0}=J‘drhei("+b/2{p1’f0}

p.p 1 a2 dv di
= — — . 14
+Jd1 hF g — 2e r-+- » (4.14)
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But, by virtue of the relation

dv di , d'p Fy ,

- E:gmei(ﬂ—Tr)=8nreif|gll/2_;.n’ip’prp’ (4.16)
which follows trivially given Eq. (4.4), one concludes that the second term in
Eq. (4.14) precisely cancels the remaining integral contribution, so that

3" Hyom= = [ d he™"* P2 (p,, fy} =0 (4.17)

Even if it is not a monotonically varying function of E, i.e., if F changes sign, and
even if it also exhibits a nontrivial dependence on the angular momentum J, the
equilibrium configuration is necessarily an extremal with respect to all spherically
symmetric perturbations which preserve all of the constraints associated with conser-
vation of phase space.

Dynamically Accessible Perturbations with Identified Coordinates {x°, p,, m}

One can equally well consider the form of a generic dynamically accessible
perturbation in terms of the coordinization {x* p,, m} exploited in Section 2. With
this choice of invariant coordinates, the volume element dI” is invariant under
variations df, so that

d
5C=de7;6f (4.18)

This implies, however, that to first order 8'")f = {, f,} for some generating func-
tion 4. In this case, it is df itself which is generated via a canonical transformation.

Using this parameterization, it is again easy to verify that §VH, =0 for a
dynamically accessible df. All that one need do is observe that, with an integration
by parts,

SH s =Jd1"p,5‘”f= f dI E{h, f,} = —_[dl"h{E, f}=0.  (4.19)

With this choice of variables, the extension to higher orders in perturbation theory
also becomes trivial. Indeed, one concludes perturbatively that, quite generally,

f=f0+5f=e7(p({h’ '})foE {h,fo} +% {h’ {hafo}}+ (4.20)

for some generating function 4. This is the same form that arises in the Newtonian
[29, 30, 63] and plasma [23-25, 27] theories, a fact that is hardly surprising since
one is treating the bare Newtonian variables x* p,, and m as fundamental.
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The Second Variation §*'H ,p

Given the expression (4.20) for a dynamically accessible df, it is also
straightforward to compute the second variation 8@ H,p,, associated with a
dynamically accessible perturbation. Noting that 8H = [ dI p,8"f, it is clear
that

8P H o= | d p,82f +1 [ dI 51,5, (4.21)

But by substituting Eq. (4.20) into the first term in this expression and integrating
by parts, one concludes immediately that

jdrp,aﬂ)f: —jdr{h,fo}{h, E}=jdr Y2, (4.22)
The second term requires more work.
It follows from the readily verified identity
6p,=2Lp, (p,p'ov+p,p d4) (4.23)
that
%J-d1"6“’p,5“_’f=%jdl“éf(évp,+5,i‘p—;,i>. (4.24)

However, by using the definition of 67 (cf. Eq. (2.19)) and the identity (4.4) with
a=1 and b =2, the first term on the right-hand side of (4.24) may be re-expressed
in the form

FE
j|g|1/2 d3x ov <6T' > J.I |l/2 p.p. P _> (425)

By using the t—¢ field equation (2.18) to eliminate 67, in terms of 8d2/0r and
integrating by parts, one then concludes that (4.25) may be written as

o
321 Jdr dme MV 2pe = 510—5;2 (4.26)

By using the r—r field equation (Eq. (3.19) with the integral replaced by a
generic 67,) to eliminate d 6v/0r in terms of 4T, one sees that

1 _—1 12 73 et 5
4fdr5f5vp,_32nj|g| dx (1+72) =5 (94)

1 ,
+Zj |g|'2 d%x 6T, 64 (4.27)

595:225/1-10
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However, by observing that, with the coordinization {x*, p,, m},

d*p , P\ 84
o1/ = |g|”2[pp‘5f e <3 ip')"z“f]’ (428)

he or she then concludes that

: LU S} | N
SOH oy = 2j “F zjdraz Ch o) — fdr((mf = (3 p’p)

—A
3; f|g|'/2d3 (1 er (52)2 (4.29)

The first three terms in this expression may be combined by completing a square
to yield

(60)* 1 prp’( p.p ) (p p’)z]
ar — | dreiy?| re=2(s F, , 4.30
j —Fg 8J 62) [f P +p,p * p (4.30)

where

bo={hfo} —% o P (4.31)

However, the second integral in Eq. (4.30) vanishes by virtue of the identity (4.4)
for a= —1 and b=4, so that, finally,

(d0)? . dy\ e "
= ar?r 2 g3x had
2J —F, 3n J' | ( L

where of course §4 denotes the metric perturbation associated with a dynamically
accessible of = {A, f;,}.

The energy functional §PH,,\ can also be evaluated in terms of the local
orthonormal coordinates {x¢ p,} considered in Section 3. The net result of a
somewhat more lengthy calculation is the rather similar expression (arrived at in a
different way in Ref. [317)

3P H spm = (84)%, (4.32)

8f)Y 1 ‘ dv\ e *
5(2)HADM-§fd (_fF) E-Z;flg|”2d3x<1+r;17> 007 (433)

where 0f is given by Eq. (4.12), so that, by virtue of the » —  field equation (3.18),

) d4 r
83=8mre | |gr€’2 BL (4.34)
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A Stronger Stability Criterion

Given Eq. (4.32) or (4.33), one can immediately formulate stringent criteria for
the stability of spherically symmetric equilibria f, with respect to spherically
symmetric perturbations. Consider an arbitrary spherically symmetric equilibrium
fo(E, J%, m). For any such f, the first variation 6""H ,\, vanishes identically for
all dynamically accessible perturbations. Stability thus hinges on the second
variation 8 P H ,pum. If 6P H o0 is positive for all generating functions 4, then the
equilibrium fj, is guaranteed to be linearly stable. If, alternatively, there exists some
generating function for which 6*'H,,\ is negative, it follows that it is possible to
decrease the energy of the system with a phase space preserving perturbation. The
existence of such a perturbation suggests that the system may be linearly unstable,
but, as will be illustrated in Section 5, this perturbation may correspond instead to
a stable negative energy mode.

The energy functional (4.33) looks the same as that derived by Ipser (cf. Eq. (39)
in [31]), except that his energy W is evaluated for an arbitrary perturbation Jf.
It is, however, very different in its interpretation. In deriving his Eq. (39), Ipser did
not impose all the constraints of phase space conservation, but instead only
extremized H,p\ subject to the conservation of a single Casimir C[f]. For this
reason, W really plays the role of a variation 6‘*'F, as discussed in Section 2. Ipser
was thus constrained to assume an equilibrium f, for which F is monotonic and
the spatial momentum distribution isotropic. By contrast, the stability criterion
derived here holds for arbitrary f,. Note also that, even if the equilibrium is of com-
pact support in phase space, so that F ' diverges for sufficiently large energies, the
first integral in Eq. (4.32) or (4.33) will not diverge, since a dynamically accessible
perturbation can only have support in the same phase space regions as fj.

The energy functional (4.34) is also very similar to the energy & =3(k7k
derived by Ipser and Thorne [3] in their normal mode analysis, the sign of which
determines the stability or instabilty of some normal mode. Suppose, as did these
authors, that f, is isotropic so that {h, fo} =Fz{h, E}= —F,2h. If one then
restricts attention to generating functions 4 that are odd under spatial momentum
inversion p,— —p,, it follows that 6f = —F %h. But, with the redefinition
k=Fh, Eq.(4.33) then reduces to 1 [ k7 k. The assumption of an odd generating
function entails no loss of generality since, for a monotonic and isotropic equi-
librium, the energy 6>’ H ,py associated with an even 4 is intrinsically positive.

5. FiNITE DEGREE OF FREEDOM HAMILTONIAN SYSTEMS

This section discusses several Hamiltonian systems with only a finite number of
degrees of freedom, in order to elucidate a number of points made in the preceeding
sections and to set the stage for comments to be made in Section 6. Generally,
infinite dimensional Hamiltonian systems possess all of the features of finite degree
of freedom systems; for example, the noncanonical Hamiltonian structure, the
existence of negative energy modes, the existence of the special Hamiltonian
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bifurcations [57, 657, and the existence of action-angle variables for stable linear
systems. Note, however, that the latter occur [27] in spite of the presence of
continuous spectra, a feature of infinite systems that cannot exist in finite systems.
(Continuous spectra will not be considered here in detail.)

A Linearly Stable Equilibrium That Is Not an Energy Minimum

First, to some readers it may seem odd that an equilibrium can be linearly stable
yet not correspond to an energy minimum. To illustrate this sort of behavior,
consider two uncoupled linear oscillators, a regular one and another that is running
backwards in time, i.e., one with negative energy. The Hamiltonian for this system,
which is of course the energy, may be taken as

w (&)
H== (pi+a)—=5 (P3+43), (5.1)

so that Hamiltonian’s equations assume the form

., OH . OH
= —— = ——= —)
U ap, Wy Py, Py E 191
and
. oH . OH
‘12=$;=sz2, Pzza_qz: —W;y4q>, (5.2)

with frequencies w; , > 0. It is evident from these equations that both oscillators are
stable and undamped, despite the fact that the second oscillator is a negative energy
mode. This is therefore an example of a system which is stable, but for which the
energy (5.1) is not a positive definite quadratic form. The extremal equilibrium
state, ¢, =¢q,= p, = p, =0, does not correspond to an energy minimum.

Negative energy modes are not exceptional, but are in fact common for systems
that are linearized about dynamical, rather than thermodynamical, equilibria. In
fact, they generaly occur in Hamiltonian systems that possess eigenvalues with non-
zero real (ie., oscillatory) parts, which are stabilized as some parameter is varied.
Consider, for example, the inverse bifurcation, where, as a system parameter is
varied, two stable modes match frequencies at a nonzero real value. Krein’s
theorem [57, 65] states that a necessary condition for the transition to instability
is that one of these modes have positive energy while the other has negative energy.

Sometimes the dynamical equilibria for equations that describe media in terms of
Eulerian variables can possess energies of the form common for particle motion,
namely the sum of a kinetic energy, each term of which ocp? is positive, and a
potential energy, involving only the coordinates, which will in general be of indeter-
minate sign (cf. [66-68]). In this case, necessary and sufficient criteria for stability
follow immediately from the curvature of the potential: the equilibrium will be
linearly stable if and only if it corresponds to a (local) minimum of the potential.
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These systems do not possess negative energy modes and the transition to
instability occurs when the frequency of some mode becomes zero.

In general, however, the Hamiltonian may be an arbitrary function of both the
coordinates and the momenta, so that the problem of stability becomes
considerably more complicated. In this case, linear stability is still guaranteed
if the Hamiltonian has a definite sign, since the motion will then be restricted to a
compact surface of constant energy. But, as is illustrated by the example above, the
system can be linearly stable even if the Hamiltonian is indefinite, i.e.,, when there
exist negative energy modes.

Equilibria that are linearly stable, but not energy extrema, can in fact be
nonlinearly unstable even to infinitesimal perturbations. The dynamics generated by
the following Hamiltonian, due to Cherry [69], illustrates this point:

o

5 (9295 — 49207 — 29, 1 P2)- (5.3)

w
H=5(pf+qf)—w(p§+q§)+

In the limit that =0, the solutions to this Hamiltonian system involve two
independent, stable oscillations. However, for « 3 0, the behavior can be completely
different. In this case, the system possesses the exact two parameter (e, y) family of

solutions
NE V2

2l +¢) e,

g, = sin{w? +y), P cos(wt + )

and

q-> sin(2w? + 2y), Pr= cos(2wt + 2y). (5.4)

=a(t+8) ~cx(t+£)

It is thus evident that any neighborhood of the equilibrium point ¢,=g,=
P, = p,=0 contains initial conditions for solutions that diverge in a finite time.
Physically, this instability arises because the nonlinear term transfers energy from
the positive mode to the negative mode. Since the frequencies of the linear
oscillators have been selected here to be in a ratio of 1:2 this can occur for
arbitrarily small perturbations. Generally, however, for systems out of resonance a
finite perturbation is required to trigger this rapid instability, although a slow
instability can occur for infinitesimal perturbations [70]. For infinite degree of
freedom Hamiltonian systems, like Vlasov-Poisson and Vlasov-Einstein, it is
expected (but not proven) that such instabilities will also occur. Thus, e.g., one
knows [30] that rotating axisymmetric equilibrium solutions to the gravitational
Vlasov-Poisson system will in general admit negative energy dynamically accessible
perturbations, although there is no direct evidence that these equilibria are in fact
linearly unstable.

If one adds dissipation to a Hamiltonian system like (5.1) and if this dissipation
acts to remove energy from the negative energy mode, then intuitively the negative



144 KANDRUP AND MORRISON

energy mode should grow in amplitude and the system should be unstable. This
kind of structural instability is clearly illustrated by adding a linear damping term
to the equation for p,, ie., setting

D2=02q,— VD, (5.5)

It is a simple matter to work out the dispersion relation for the modified equations
of motion and to observe thereby that one has a linear instability with a growth
rate proportional to the dissipation rate v.

In summary, one sces that linear stability need not necessarily imply an energy
extremum. However, when it does not, there will exist a negative energy mode, so
that nonlinearity and/or dissipation may provide avenues for instability. If the
energy 6°H,pnm of Section 4 is indefinite and if for other reasons it is known that
the system is linearly stable, one can infer the existence of a negative energy mode
for the Vlasov—Einstein system.

Noncanonical Hamiltonian Dynamics

In order to clarify the Hamiltonian structure outlined in Section 2 and the energy
arguments presented in Sections2 and 4, consider now a generalization of
Hamilton’s equations that constitutes a finite degree of freedom analogue of the
Hamiltonian form possessed by a// theories that describe matter in terms of
Eulerian variables. Examples of such Eulerian variables include the usual fluid
variables of momentum density, particle density, and entropy density, and in addi-
tion for magnetohydrodynamics [10] the magnetic field. The phase space density
of the Vlasov-Poisson or Vlasov-FEinstein system is also such an Eulerian variable.
Eulerian variables are not canonical and, for this reason, this generalization has
been called noncanonical Hamiltonian dynamics, a formalism that has roots
extending back to Sophus Lie in 1890 (cf. [71]).

Upon defining z'=gq' for i=1,2,..,n and z'=p, for i=n+1,n+2,.,2n,
Hamilton’s equations may be written in the compact form

; OH .
Z=J" —=[z, H], (5.6)
0z;
where the Poisson bracket
-
[/ gl=230!5> (57)
with
) (0 1
U — n n
JD (—In On)' (5.8)

In Eq. (5.8), O, is an nx n matrix of zeros and 7, is the n x n identity matrix.
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Given a change of coordinates z''= z''(z), and assuming that H transforms as a
scalar, so that H(z)= H'(z'), Eq. (5.6) is transformed to

1]

-1i= if _ ri ’
z J azfj [Z k] H ]5 (59)
where the Poisson bracket is now given by
of . og
=—JV—= .1
L/ gl=557" 5 (5.10)
and
9z 0zY
= gyim =
J e oo (5.11)

The essential Hamiltonian character of this description is embodied in the quan-
tity J, which is the inverse or dual of the symplectic two-form that is oftentimes
taken as the basic element in a geometrical description of mechanics. For this
reason, J is termed the cosymplectic form. It is evident from the preceding that J
transforms as a contravariant tensor. However, under general transformations J
assumes a form more complicated than Eq. (5.3), acquiring an explicit dependence
upon the coordinates z'. Only under canonical transformations is J form-invariant.
Nevertheless, although there is in general a lack of form invariance, the important
Lie algebraic properties of antisymmetry and the Jacobi identity are maintained,
ie.,

[/ gl=—-[gf] (5.12)

and

[/ (& A1+ [g [Af11+[A LS g11=0, (5.13)

respectively. Given these algebraic conditions—most importantly the Jacobi
identity—and the condition det J:£0, Darboux’s theorem (cf. [57]) asserts that
there exists a coordinate transformation for which equations of the form (5.9) can
be reduced (locally) to the canonical Hamiltonian form.

As important generalization of the preceding obtains if the condition det J#0 is
removed, but the conditions of Egs. (5.12) and (5.13) are retained. Suppose now
that J is an r x r tensor, where r need not be even. (Recall that odd-dimensional
antisymmetric matrices have zero determinant.) In this case, there exists a change
of coordinates whereby J is transformed (locally) into the form

0, I, O (5.14)
Jh=| -1, 0, ©
0O 0 O0,,,



146 KANDRUP AND MORRISON

As will become clear below, the first 2m variables in this representation, which are
canonical, now contain all of the dynamics, and the remaining r — 2m variables, the
null eigenvectors of (J7), are essentially trivial. In this sense, one observes that there
is a “regular” m degree of freedom Hamiltonian system embedded in the larger
r-dimensional phase space.

Although in principle canonical coordinates always exist, for practical reasons
these may be unwieldy of unphysical, and hence undesirable. And, moreover, par-
ticularly for infinite-dimensional systems they may be extremely difficult to obtain.
For these reasons it is desirable to define Hamiltonian systems in terms of more
general coordinates. Suppose therefore that {z'} represents a collection of such
arbitrary noncanonical coordinates. A system of equations involving these coor-
dinates is then termed a noncanonical Hamiltonian system if it can be written in the
form

. . 0H
2‘=J"§, i=12,.,r, (5.15)

where the only requirements on (JY) are that the bracket it defines be
antisymmetric and satisfy the Jacobi identity. The form of Eg.(5.15) is the
finite-dimensional analogue of Eq. (2.10) for the Vlasov-Einstein system.

Because of the degeneracy, det /=0, the phase space of noncanonical
Hamiltonian systems has an interesting structure. If the rank of (JY) is equal to 2m
in the vicinity of some point in phase space, there will be »r — 2m null eigenvectors
of (J¥). The possibility then exists that one or more of these null eigenvectors can
be written as the gradient of some phase space function C, so that

. 0C
i

P27

J (5.16)

This in fact turns out to be true. Indeed, it can be shown [14, 72] that the null
space is actually spanned by a set of gradients 8C*/0z, a=1,2,..,r—2m. The
quantities C* are the Casimir invariants. They are constants of motion that are built
into the phase space since, for any Hamiltonian H,

C*=[C* H]=0, a=1,2, .,r—2m. (5.17)

These identities imply that any trajectory generated by the equations of motion is
constrained to lie on the hypersurface defined by the constancy of the C*’s. These
hypersurfaces have dimension 2m and are embedded in the whole phase space of
dimension r. One observes, moreover, that they are actually symplectic manifolds;
i.€., they are ordinary Hamiltonian phase spaces.

The cosymplectic form for Eulerian continuous media theories possesses a special
form, the finite dimensional analogue of which is given by

(J9) =iz, (5.18)
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where the quantities ¢/ are the structure constants of (the dual of) some Lie
algebra. The Jacobi identity satisfied by the structure constants, namely,

clemk 4 ket 4 ckiem =0, (5.19)
ensures the Jacobi identity for the Poisson bracket,

;I %

{5 (5.20)

[f gl=z"

Brackets of the form of Eq. (5.20) are calied Lie-Poisson. (Observe that the bracket
of Eq. (2.6) like (5.20) is linear in f.) This Lie-Poisson form will be used below
(cf. Eq.(5.25)] to generate dynamically accessible perturbations analogous to
Eq. (4.20).

It is evident from the preceding that noncanonical Hamiltonian systems are
simply ordinary Hamiltonian systems written in terms of variables that are non-
canonical and, if det J=0, partially redundant. For this reason, the essential
ingredients of the energy arguments described above and notions such as negative
energy modes remain applicable, although some modifications do occur.

Because of the Casimirs, the Hamiltonian is not unique: one can always replace
H in Eq. (5.15) by the quantity

F=H+1,C* (5.21)

(implicit sum over «) for arbitrary constants A, without altering the dynamics. It
follows, however, from Eq. (5.15) that, at any critical point of F, the time derivative
2*=0. And thus, it is evident that equilibria may be constructed by extremizing H
subject to some subset of the C* as constraints, with the 4, serving as Lagrange
multipliers, i.e., as solutions to

0H oc*
= —=0. 5.22
oz tha oz' (5.22)
This is the procedure of Section 2, Eq. (2.25), the first step in obtaining the stability
criterion derived in that section.

Observe that if the sum on « in Eq. (5.22) extends over all the null eigenvectors
of J7, then (5.22) represents a complete solution of the equilibrium equation

5 O0H

0z

J (5.23)

It follows that at least formally one can obtain all equilibria as extremals from a
variational principle. However, at points where the rank of J changes, a fundamen-
tal ambiguity arises which would appear to preclude the possibility of deriving
certain equilibria from such a variational principle. Thus, for example, it is known
that nonmonotonic Vlasov—Poisson equilibria cannot be obtained by extremizing
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the energy subject to constant Casimir invariants in the usual way. The methods of
Section 4 overcame this difficulty. In what follows, it will be seen in general how
this works for finite-dimensional systems.

Linear stability can sometimes be inferred by an examination of the second
variation of F,

1
OV =~
2

O*H o:ce o
1 J
<6zi 6zj+ * 37 6zf> 6z oz, (5.24)
If this variation is positive definite, the system is of course guaranteed to be linearly
stable. However, since dz' is arbitrary, Eq. (5.24) does not represent the curvature
of the functional F appropriately restricted to the constraint surface. This
constrained curvature is the free energy, i.e., the energy of a dynamically accessible
perturbation. As observed below, it is possible for the §*'F of (5.24) to be indefinite
in general, but to have a definite sign when the perturbations dz are restricted to
the constraint surface.

Section 4 exhibited the construction of dynamically accessible perturbations for
the Vlasov equation. Consider now the analogue of this construction for a general
finite-dimensional system with the cosymplectic form (5.18). The analogue of
Eq. (4.20) is given by

z'=exp(g,cy) z =0, z6 + g,cizb + 18, g ez + -, (5.25)

where g, is the generator of the perturbation. However, by expanding
g=g"V+ g?+ --., one then obtains first- and second-order variations of the form

52 = cfzb g = Fig!M (5.26)
and
5(2J i ik (2)_,_1 (1) (I)C/I k=Jﬂ (2)+1Jﬂaig (g (1) (5 27
zda Ckzogj 2gt gj kZO Ogj 2 0 621 gl gj ’ . )
(V]

where J,=J(z,). A general perturbation can of course be decomposed into
dynamically accessible and nondynamically accessible pieces: 6z =0z, + 82,4,
But inserting this decomposition into (5.24) yields

5(2)F=5(2JFda+5(2)Fndaa (528)
where
1/ 0*H 2*C ) .
SOF . —_ LI} —\ Jlig(D phig(1) )
da 2(62’8z’+ “62’02’)J°g’ o8 (5:29)

It is now evident that the 6PF of Eq.(5.24) can be indefinite because of the
presence of the nondynamically accessible contribution §*'F,,,, even if the dynami-
cally accessible 6'*'F,, involving only perturbations of the form Jig!" is of definite
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sign. A simple example thereof, involving a rigid body rotating in a uniform
magnetic field, was described in the Appendix of Ref. [28] and will be examined in
further detail below.

To some readers it may not be clear that §*F,, is the second variation §'2’H
restricted to the constraint surface. It is, however, straightforward to show that the
dynamically accessible perturbations (5.26) and (5.27) preserve all the Casimir
invariants to first and second order, respectively, and that, using these, the
constrained second-order variation 82 H is identical to §*'F,,.

Expanding some Casimir C* to second order about the equilibrium yields

ac* ., C e
ANCH == 5z b 5Pz 5 e 3 )z (5.30)

but, when restricted to the constraint surface, Eq. (5.30) reduces to

ac ac* 16C* Uy
ACCh = ol + T el 4y T Tagl e
1 62 o
+5 a0 Y081 osy (531)

The first and second terms in Eq. (5.31) clearly vanish because of Eq.(5.16).
However, by exploiting the local nature of the constraint surface, it is also possible
to show that the last two terms cancel, so that, to second order, 4°C%, vanishes
identically. Indeed, one can realize Eq.(5.16) as a Taylor series about the
equilibrium point z, and observe that, since this equation holds for all z, each
power of dz in the expansion

0=Ji ==Ji = + I
a7 00 T\ o T e o

if o 2/
ocC oC 45z (6J ocC . 0°C )+ (5.32)

must vanish identically. The first term in Eq.(5.32) is clearly zero, while the

vanishing of the second term oc 8z’ yields the desired relation

oJyect . a2C*
ozl 6zl "%azlaz)

(5.33)

between the first and second partial derivatives of C*. If follows immediately that
the second variation 4°C,, =0.
Similarly, expanding H to second order yields

oH oH 1 &’H
(&3] 7 St ST ()1 (i (1).,1 5.34
ATH=5500z a“s t25i 0 20 (3.34)
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which, when restricted to lie within the constraint surface, takes the form

1 °H 18H 87§
APH 4y =0 H gy =5 — = Jog | ISRl +5 o5 = ?Jfggg”gj” (5.35)

It is evident that the first term of Eq. (5.35) is the same as the first term of the free
energy 6'2'F,, of (5.29), but in order to compare the second terms in these relations,
one must again use Eq. (5.33) and the equilibrium condition {5.22) involving the
Lagrange multipliers. Indeed, by summing (5.33) over A, and then exploiting
Eq. (5.22), one concludes immediately that

PC L aject_arjoH
T j, 000 oo 536
b T e = T a el el o (5.36)

It thus follows that, as was asserted, the constrained variation 6'2H_, =6?'F,,.

For some equilibria the §'?F and the > H procedures are equivalent. This is, for
example, the case of monotonic isotropic equilibria for the Vlasov—Poisson and
Vlasov-Einstein systems. However, for nonmonotonic equilibria the §*F proce-
dure is limited in applicability and can give singular results if it is not interpreted
properly by restricting attention to perturbations lying on the constraint surface.
Such a restriction by means of Eqs. (5.26) and (5.27) automatically removes the
singularities that occur at places where the rank of JY changes.

A Simple Physical Example

A simple physical example that illustrates the rank changing behavior, due to the
authors of this paper, was summarized in an appendix in Ref. [28]. What follows
is a generalization thereof.

Consider a charged rigid body that is subject only to the forces associated with
an external magnetic field. Assuming a magnetic moment equal to unity, the energy
(i.e., Hamiltonian) for this system takes the form :

3 LZ
Hy=Y (2I+BL,>, (5.37)

i=1

where L, and B, denote respectively the components of the angular momentum and
the magnetic field, and the I, are the principal moments of inertia. (Note that the
subscript N is included since, as will be seen below, this system appears to mimic
the Newtonian gravitational Viasov—Poisson system.) Since here the distinction
between contra and covariant indices is irrelevant, all indices below will be written
as covariant. The noncanonical Poisson bracket for this system [73] is then the
natural bracket associated with the three-dimensional rotation group, namely,

o % _, o 3

3L,3L,~7"3L,3L; (5.38)

[/ glv= ykLk
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One verifies trivially that the Casimir invariant for this bracket is given by

1

3
Cy==Y L2 (5.39)
i=1

N

Insertion of (5.37) into (5.38) yields the equations of motion

. oH
Li=euL, 6_LN =euLi(17'L;+ B)), (5.40)
7

which, modulo the magnetic field, are simply the standard Euler equations for a
freely rotating rigid body. The conditions for an equilibrium are then

Li(I; Lo+ By)— Loy(I, L7 '+ B)=L,(I'Ly+ By) — Ly(/, L' + B))

=L,(I7'Ly+ By)— Ly(I,L; '+ By)=0.  (541)

A nonrotating configuration with L, = L, = L, =0 is thus an equilibrium, but there
exist other, uniformly rotating equilibria as well.
Extremizing the free energy Fy = H, + AC, yields the conditions

aI;‘N
A TI7'L.+B,+iL,= 42
6[’- i i I A i O’ (5 )

which imply that
LiI7'"+A)=—B,, L,(I;'+A)=—B,, Ly(I;'+4i)=—B,. (543)

It is evident from Eq. (5.43) that there exists no choice of A for which the
equilibrium

Li=L,=L;=0 (5.44)

extremizes F,. If, however, the variation of the Hamiltonian H is restricted to the
constraint surface, by demanding that 6L, be of the form

OL,=eulyg; (5.45)
for an arbitrary generating function g;, one observes immediately that
OHy=(7"'Li+B)oL,=(I;7"'L,+B)eul,g, (5.46)
It follows that equilibria with 6 H , =0 satisfy
(I7'Li+ B)) e L =0, (5.47)

in agreement with (5.41), but not necessarily (5.42). It is thus evident that the
equilibrium point L, = L, = L; =0 arises at a place where J;=¢;, L, changes rank.
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Turn now to the question of how conclusions pertaining to equilibrium and
stability can be altered by changes in the bracket (5.38) and/or the Hamiltonian
(5.37), changes that might mimic general relativistic effects. In particular, suppose
that the equations of motion are now induced by the altered bracket

Ob(L)\ éf g
=g | L — 4
[/ g] syk( P’ 6Lk>6L,-5L_, (5.48)
with a modified Hamiltonian
H=H,+ uh(L). (5.49)

Here H, is again given by Eq. (5.37), the quantity u is a constant, not necessarily
assumed to be small, and, at present, » and 4 are arbitrary functions of the angular
momentum L;. As will be discussed in Section 6, this modified Hamiltonian system
mimics two important aspects of the Vlasov-Einstein system, viz: (1) the existence
for some equilibria of negative energy nondynamically accessible perturbations in
the Newtonian limit, which corresponds here to u—0 and H=H,, and (2) the
onset of linear instability at the first Poincaré turning point, which corresponds
here to a critical value g, .

One verifies that the new bracket (5.48) also satisfies the Jacobi identity which,
for three-dimensional brackets of the form

of o

LS gl=¢enVi(L) aLaL; (5.50)
can be shown to be equivalent to the geometric condition
V-VxV=0 (5.51)
The Casimir invariant for this modified bracket is
3
C=3) L}+ub=Cy+pb. (5.52)

i=1

It is straightforward to linearize these new equations of motion about a general
equilibrium L?, obtaining thereby a linearized system that can be solved via the
Ansatz 8L ~ ¢™*, This procedure reveals the presence of a zero frequency mode with
an eigenvector

ob

L, o L0+ u—2.
;o L+ uzr

(5.53)

This is not surprising since one can show (cf. [20]) that to every null eigenvector
of the cosymplectic form J¥ there corresponds a zero frequency mode.
Now focus for specificity on a deformation of the special case considered in



RELATIVISTIC STAR CLUSTERS 153

Ref. [28], with B, =B and B, = B, =0. For the unperturbed Hamiltonian H,, the
equilibrium of interest arises by extremizing the quantity

Fy=Hy+ACy, (5.54)
which yields
BI
0: —————1 0= 0=
1 j.]] + la Lz L3 0, (555)

and the linearized energy is given by

13 /1 1 B
SOF. =— ——— =LV (8L 5.56
=k (L I, L?)( ! (5:36)
The zero frequency eigenmode in this case has an eigenvector with 6L, #0 but
0L, =06L,=0. It thus follows that the energy corresponding to this motion (which,
lying outside the constraint surface, is of course not dynamically accessible), is
given by
1 B

SPF = — Ef? (8L;)% (5.57)
(Note that, since the unperturbed configuration has L,=L,=0, dynamically
accessible perturbations have 6L, =0.) This is to be compared with the dispersion
relation

oi=(LY U, =17 =B "I =1 = B(LY) ]
=(LYYP (I + AT+ 4) (5.58)

for the remaining two modes. Comparing Eqgs. (5.57) and (5.58), it is evident that,
as noted in Ref. [287, the sign of the free energy and the question of linear stability
are essentially decoupled. In particular, the equilibrium can be stable even if there
exist negative energy perturbations for which 2F, <0.

Now consider the effect of the deformation, supposing for simplicity that
h=hy L3 and b=b,,L2, where h,, and b,, are constants. Since dh/0L; and db/L,
vanish for L, =0, these choices for 2 and b do not alter the direction of the eigen-
vector for the zero mode, do not change the noncanonical bracket when evaluated
at the equilibrium point, and do not alter the form of the equilibrium, which is still
given by (5.47). However, the free energy and the dispersion relation become,
respectively,

@ 12 /1 1 B, 3 2
0UF=2 ¥ (77— ) L)+ k(ibn + hy)(SL,)
1N 4

i=

=8P Fy+ pu(iby, + hy)(OL,)° (5.59)
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and
@ =(LY? (I7 "+ A5 "+ A+ Apbyy + phyy). (5.60)

It is thus evident that if w3 >0 and the system is linearly stable when =0, it
will remain stable even for infinitesimal u#0: since §*’F, >0 for all nontrivial
dynamically accessible perturbations and the squared frequency w3 is strictly
positive, no modes with w? <0 or 6*”F <0 can exist for infinitesimal x. However,
for sufficiently large u> u., one can have

17"+ A+ Auby, + phy, <0, (5.61)

whence follows the existence of a negative energy dynamically accessible perturba-
tion 6PF <0 (cf. Eq. (5.59) evaluated for a perturbation 6L,) and (cf. Eq. (5.60))
an unstable mode with w? < 0. The free energy 6®'F, associated with a nondynami-
cally accessible perturbation is of course unchanged for nonvanishing g, and its sign
remains decoupled from the problem of linear stability.

6. SUMMARY, DISCUSSION, AND SPECULATIONS

Known Facts about the Stability of the Gravitational Viasov—Poisson Equilibria

The gravitational Vlasov—Poisson system exhibits features that can be interpreted
in light of the finite degree of freedom models of Section 5.

The first point to observe is that all the members of a broad class of physically
interesting equilibria are guaranteed to be linearly stable. Specifically, any spheri-
cally symmetric equilibrium distribution fy(E, J2, m) with &f,/0E = F everywhere
negative is guaranteed to be linearly stable towards spherically symmetric perturba-
tions. And, moreover, if that equilibrium 1s a function only of E and m, and thus
characterized at each point in space by an isotropic distribution of spatial
momenta, it will be linearly stable towards nonspherical perturbations as well. The
proof of linear stability (cf. [29, 40, 41]) for these equilibria involved an explicit
demonstration that, for the restricted class of dynamically accessible perturbations,
the energy 8'H is positive. Specifically, if the perturbation is of the form
of =[h, fu], where the generating function 4 is given by 4 =rp"y, with 5 identified
as the new unknown, one can show that the Newtonian energy
n’ dq)o)

1
30H >3 [ar(=Fotpy? (£ + L5 (61)

where @, denotes the unperturbed Newtonian potential. Given, however, that the
first term in the integrand is positive semi-definite (vanishing only when 75 is a
constant of the motion), and that d®,/dr>0, it is evident that 6’ H must be
strictly positive, so that (at least for perturbations that are suitably regular at r and
p" — 0) the equilibrium must be linearly stable.
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However, even though these equilibria are all guaranteed to be linearly stable,
they may well admit negative energy nondynamically accessible perturbations [cf.
Eqgs. (5.28) and (5.57)]. This was in essence first established by Antonov [74] for
the special case of a spatially truncated isothermal distribution

const x exp( — BE), r<R,
= 6.2
fo {O, r>R,. (6.2)

Translated into the language of this paper, what Antonov did was investigate the
sign of the energy 62 H associated with perturbations df that conserve the value of
one particular Casimir, namely the Boltzmann entropy,

S= —jd3x d*p dm flog f. (6.3)

More precisely, he first observed that the truncated isothermal is necessarily an
energy extremal with respect to linear perturbations which preserve the entropy,
and then ascertained the conditions under which, for variable R,, this extremal
configuration is also an energy minimum. The principal conclusion of his analysis
was that, if R, is sufficiently small, the isothermal is in fact a local energy minimum,
but that, if R, is too large, there will exist perturbations of fixed entropy that
decrease the energy. The critical R, is perhaps best characterized by observing that,
for this R, the density contrast p;,/p,, between the center of the system and the
edge takes a value ~709 (cf. [75]). As will be discussed below, the aforementioned
proof of linear stability for these equilibria shows that this negative energy
perturbation actually corresponds to a nondynamically accessible perturbation.

One might perhaps worry that the existence of this kind of negative energy
perturbation is somehow a special feature of the truncated isothermal, especially in
that this distribution exhibits a discontinuity at r= R,. This, however, does not
seem to be so. Other, more smoothly truncated distributions are known to exhibit
the same qualitative behavior [76], and it is now believed that this behavior may
in fact be quite common.

When Antonov’s result was first obtained, it was not yet known that the isother-
mal distribution is linearly stable; and, consequently, it was unclear what his result
actually implied about the problem of stability. Now, however, it is well understood
that, even though the existence of a negative energy perturbation does not impact
on the problem of linear stability, it does at least imply an instability in the
presence of an appropriate source of “dissipation” which breaks the constraints
associated with conservation of phase space. This is evident from the simple
example of Section 5 [cf. Eq. (5.5)], where removing energy from the negative
energy mode gave rise to linear growth.

A key observation that renders this quite trivial is the fact that, since the energy
is not a minimum with respect to perturbations of fixed entropy, the entropy is not
a maximum with respect to perturbations of fixed energy. Given this realization, it

595,225 1-11
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is obvious physically how to trigger an instability. All that one need do is modify
the Vlasov equation by appending a collision operator 4[] which (i) vanishes
identically for an isothermal distribution and (ii) satisfies an H-theorem, so that the
entropy S can never decrease: dS/dt = 0. Given such a modified equation, now
introduce a perturbation Jf that increases the entropy. The subsequent evolution
can only result in a further increase in S, so that the system must move yet further
away from the original equilibrium. This intuition can also be implemented mathe-
matically, by considering an “orbit average” of the modified Vlasov equation,
assuming that, at each instant of time, f/ is nearly a function of adiabatic invariants
E and J? and thereby eliminating effects proceeding on a dynamical, or crossing
time, f,. Indeed, a linear stability analysis of such an “orbit-averaged” equation
leads immediately to the prediction of a linear instability proceeding on the time
scale ¢, set by the collision operator €[ f] [77, 78].

The net effect of this stability is also well understood, both in terms of simple
physical arguments [79] and through direct numerical computations [77, 80].
Specifically, this instability results in the evolution of a pronounced core-halo struc-
ture, in which the system evolves a high density central region surrounded by a
much lower density outer envelop. Interestingly, this is qualitatively the same sort
of behavior associated (cf. [37-39]) with the linear instability of Vlasov-Einstein
equilibria, where a high density central core eventually forms a trapped surface, the
only difference being that, in the relativistic setting, the instability develops
“spontaneously,” without the introduction of dissipation.

Known Facts about the Stability of Viasov—Einstein Equilibria

The stability of the relativistic analogues of the above Vlasov—Poisson equilibria
is considerably less well understood. Hitherto, three rather differents tacks have
been adopted in approaching the problem of stability.

The first of these entails an application of the Ipser—-Thorne [3] variational
principle to obtain sufficient criteria for the instability of isotropic equilibria
Jo(E, m) for which F, is everywhere negative. By decomposing the perturbation §f
into components ¢f, and Jdf_, respectively even and odd under spatial momentum
inversion p.,— —p,, the linearized equation (3.17) can be converted into an
equation of the form

1 8%ef.
—F; or

+7 8f_ =0, (6.4)
where 7 is a linear operator which is symmetric with respect to the inner product
(& m)=[areen. (6:5)

Assuming that F is everywhere negative and ignoring pathologies at the spatial
boundary of the system, Eq. (6.3) is of the form “common for particle motion”
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discussed in Section 5, so that one can conclude immediately that the equilibrium
fo is linearly stable if and only if 7 is a positive operator; ie., if
&=38f_ 7, 6f_)=0. Given, however, that J is symmetric, one can immediately
obtain a criterion for stability via a Rayleigh—Ritz variational argument: if one can
find some test function ¢ for which the inner product (£, 7 &) is negative, one
knows that the system must be linearly unstable.

A second tack has involved an application of a “turning point” method due
initially to Poincaré [33]. Suppose that one is given a sequence of equilibria,
characterized by some monotonically increasing parameter y, and suppose further
that the first element of the sequence, say 4 =0, is known to be stable. For each
element in the sequence, one is now instructed to evaluate some characteristic
property B of the equilibrium which, at least for small g, is an increasing function
of p. One can then show that all the elements of the sequence must be stable at least
up to the first turning point, where B ceases to increase monotonically. At this
critical point, there will exist a perturbation of zero energy and, for larger values
of p, that perturbation will acquire a negative energy. In the present context, u is
typically chosen to correspond to the central redshift z, of the equilibrium, ie., the
redshift of light emitted from the center of the system and detected by an observer
“at infinity.” The value z, — 0 thus corresponds to a stable, essentially Newtonian
configuration, and z_ > 0 corresponds to more centrally condensed, and hence more
relativistic, configurations. The parameter B is typically taken (cf. [34]) to be the
energy per particle or, equivalently, H,py.

A third tack has involved a direct numerical investigation of stability using a
“hybrid” N-body code [37-39]. With this algorithm, one first specifies an initial
equilibrium distribution function f;,, then samples the distribution randomly with
some collection of particles, next evolves these particles forward in time along the
geodesics associated with f,,, and then finally uses the advanced particle coordinates
and momenta to generate an updated f, at which point new geodesics are
computed, and the particles are evolved forward for another time step. The idea
here is that, if the system is extremely unstable, even small fluctuations associated
with the discrete sampling of the distribution will suffice to drive the system away
from the original equilibrium.

These three tacks have all been applied to analyze various equilibria, including
both polytropic configurations, which are particularly simple analytically and trun-
cated isothermal configurations, which are arguably more realistic since “collisions”
between nearby stars, i.e., gravitational Rutherford scattering, may be expected to
drive the system towards an isothermal configuration (cf. {81] for a justification of
this assertion in the context of general relativity). The net result (cf. [35, 82]) of
this analysis is quite interesting.

First of all, one discovers that, typically, if the system is “too relativistic” there
will exist test functions & for which the inner product (&, 7 £) <0, thus guaranteeing
a linear instability. One observes moreover that, largely independent of the form of
the equilibrium, “too relativistic” corresponds typically to a central redshift
z.~0.55. And, finally, it would appear that the onset of linear instability occurs
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invariably at {or very near) the central redshift at which the binding energy curve
exhibits its first turning point. There are (contrived) equilibria with z_> 0.55 that
appear to be linearly stable [ 83, 84], but there are no known examples of equilibria
beyond the first turning point that are not linearly unstable. In any event, the
numerical simulations indicate that, if an equilibrium is unstable, this instability
will correspond typically to a catastrophic collapse, in which a substantial portion
of the system is engulfed within a trapped surface and hence presumably forms a
black hole.

As noted already in the Introduction, the idea that a linear instability will arise
at the first turning point in the binding energy curve was essentially assumed by
Zel'dovich and Poduret [2] in their original 1965 paper. However, even now no
rigorous proof of this assertion exists, and in fact there is no a priori obvious reason
why this should be so. Indeed, in the Newtonian case, turning point methods do
not suffice to predict the onset of linear instability. Thus, e.g., Antonov’s [74] proof
of the existence of a negative energy perturbation for truncated isothermals, and
Katz’s [76] generalization thereof, actually entail a turning point argument. (For
the case of the truncated isothermal, the radius R, of the box can be chosen as
the monotonically increasing parameter p). The problem is now clear: for the
Vlasov-Poisson system, the negative energy perturbation is nondynamically
accessible, and hence cannot propagate dynamically. There is no obvious reason
why the negative energy perturbation associated with a relativistic turning point
should not also be nondynamically accessible.

Conjectures Regarding the Stability of Viasov-FEinstein Equilibria

The final objective, therefore, is to ascertain, on the basis of what had been
known previously about Viasov—Einstein equilibria, the Hamiltonian reformulation
presented in Sections 2-5, and the finite-dimensional examples of Section 5, what is
really going on regarding the problem is stability for relativistic equilibria. Several
points are in fact evident.

Suppose for simplicity that the equilibrium f, corresponds to an isotropic
distribution of spatial momenta and that the energy derivative F, is everywhere
negative. In this case, the free energy extremization trick works, both in the
Newtonian limit (ie., for Vlasov-Einstein equilibria) and for the fully relativistic
case (i.e., for Vlasov—Einstein equilibria), and one can always find a Casimir C, for
which the unconstrained first variation 6'"'F=0. One then observes further that, for
the special case of dynamically accessible perturbations, the second variation §*'F
coincides exactly with 6*H, and that this §2H yields precisely the functional
E=Xof_,T 8f_) of Eq.(6.3), derived directly from the perturbed evolution
equations. It thus follows that the equilibrium will be linearly stable if and only if
8@ H >0 for all dynamically accessible perturbations.

One also knows that, in the Newtonian limit, all equilibria are guaranteed to be
linearly stable [40, 41]. The proof of linear stability for such Vlasov-Poisson equi-
libria involves an explicit demonstration that, in the Newtonian limit, 6'H is
strictly positive for all dynamically accessible perturbations (cf. Eq. (6.1)): there are



RELATIVISTIC STAR CLUSTERS 159

no dynamically accessible perturbations with negative energy and none with zero
energy. One thus infers that the negative energy perturbations found by Antonov
[74] and Katz [76] must necessarily be nondynamically accessible: these negative
energy perturbations cannot entail dynamically accessible perturbations that are
simply decoupled from the dynamically accessible perturbations of positive energy.

However, to properly interpret the connection between the aforementioned
results about Newtonian equilibria and the stability of relativistic equilibria, it is
also critical to understand the effects of allowing for small deviations from
Newtonian gravity. Only by so doing can one ascertain whether Newtonian
equilibria are in some sense singular limits of fully relativistic equilibria, or whether
instead the transition from Newtonian to relativistic is more “smooth.” Fortunately,
this can, and has, been done in the context of a systematic post-Newtonian
expansion (cf. [85]). Specifically, by working to lowest nontrivial post-Newtonian
order, Sudbury [86] has shown (using a somewhat different coordinization) that
the (analogue of the) Ipser—-Thorne [3] energy functional & can be written as the
sum of the Newtonian energy &y and an additional correction &,,, which vanishes
smoothly in the Newtonian limit: & =&y + &pn.

The critical point then is that, as noted already, the Newtonian energy functional
éy is in fact strictly positive for all dynamically accessible perturbations, i.c., that
there exist no dynamically accessible zero modes which could be destabilized by
infinitesimal post-Newtonian corrections. It follows, therefore, from continuity
(modulo pathologies in infinite-dimensional spaces such as the existence of
continuous spectra) that, for sufficiently weak relativistic corrections (i.e., G -0
and ¢ - o) the complete energy functional & =&y + &y must remain strictly
positive. And thus, one anticipates that equilibria that are sufficiently nearly
Newtonian will also be linearly stable.

There would thus appear to be only two possibilities. The onset of linear
instability reflects (1) a negative energy mode which, for nearly Newtonian equi-
libria, is nondynamically accessible but which, for sufficiently relativistic equilibria,
becomes dynamically accessible; or (2) a dynamically accessible mode which, at a
certain critical point, exhibits a change from finite positive energy to zero energy.
The former possibility—a nondynamically accessible perturbation becoming
dynamically accessible—might seem plausible if even infinitesimal relativistic
corrections could suffice to trigger a linear instability, since one could attribute this
to an additional symmetry obtaining in a singular Newtonian limit. However, given
that slightly relativistic equilibria remain stable, this would seem doubtful. This is
especially so in view of the recent proof by Rein and Rendell [87] that spherically
symmetric solutions to the Vlasov-Einstein system converge uniformly to solutions
to the Vlasov—Poisson system in the limit ¢ — oo. It is therefore reasonable to con-
jecture that the onset of linear instability for relativistic Vlasov—Einstein equilibria
is associated with an always dynamically accessible mode which changes at a criti-
cal point from positive to zero energy.

It is important to point out that intuition based on finite degree of freedom
models is not perfect. In the case where the Vlasov-Poisson system describes
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electrostatic plasma oscillations about homogeneous equilibria, the linear theory is
completely understood and the role of continuous spectra is essential. In this case
the transition to instability generally occurs in such a way that an unstable mode
is “born” out of the continuous spectra. Thus one cannot track an ordinary
eigenmode in the manner described by Krein’s theorem. Nevertheless, this type of
transition can only occur if the energy becomes indefinite, so that a generalization
of Krein's theorem is apparent [27].

Thus, modulo this caveat, the relativistic Vlasov—Einstein system, when restricted
to spherically symmetric configurations and allowing only for isotropic and
monotonic equilibria, has stability properties rather analogous to the final example
discussed in Section 5, with u playing the role of a parameter like z, which deter-
mines how relativistic the system is. These ideas may be summarized as follows:

(1) Both for u=0 and u#0, there always exist nondynamically accessible
zero frequency modes, reflecting the underlying noncanonical Hamiltonian
structure, and, under certain circumstances, these modes may have negative energy.
This, however, is irrelevant for the problem of linear stability. Linear stability hinges
completely on the sign of the energy 6 H of dynamically accessible perturbations.

(2) In the Newtonian limit x4 — 0, all the dynamically accessible modes have
strictly positive energy and squared frequencies w3 >0, so that, by continuity,
equilibria with infinitesimal, but nonvanishing u, must also have 6*’H >0 and
w?>0 as well.

(3) However, as u is increased to finite values, one eventually reaches a criti-
cal point u., where there exists a dynamically accessible perturbation with
8'VH = 0. This u,, corresponds presumably to the first Poincaré turning point, and,
for u> p.,, there exist dynamically accessible perturbations for which §®'H and w?
can be negative, thereby signalling a linear instability. (Note that, although there
exist negative energy perturbations, the energy of the unstable mode is not negative.
Insertion of the unstable eigenmode into the energy expression must give zero
energy since energy is conserved.)

Quite generally, it is important to stress what can happen at a turning point.
Ultimately, the turning point method devolves into finding critical points where, for
finite systems, the eigenvalues of the matrix d°H(z.,)/dz' 0z/ change sign. For
ordinary Hamiltonian systems, such a change in sign necessarily signals either a
change in linear stability or the occurrence of a negative energy mode. However,
for noncanonical Hamiltonian systems another possibility exists. The perturbed
evolution equation

v o OPH(ze) o o
— Jy - 47
ozt=J PN oz (6.6)
involves both the linearized energy and the cosymplectic form, so that one can have
a change in sign of an eigenvalue of ¢*H(z.,)/0z' 3z/, where the corresponding
eigenvector points out of the constraint surface, i.e., is nondynamically accessible.
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Historically, two different sorts of turning point arguments have been used to
analyze the stability of gravitational Vlasov equilibria: (1) sequences of Newtonian
equilibria, like truncated isothermals, characterized by some measure of their
increasing linear size, and (2) sequences of relativistic equilibria, characterized by
some quantity like the central redshift z, which measures “how relativistic” the
equilibrium is. One knows that, for the first of these, the turning point always
involves a change in sign for the energy of a nondynamically accessible perturba-
tion. There is, moreover, no reason to suspect that, for relativistic equilibria, this
would not continue to be true. The “gravothermal catastrophe” identified by
Antonov [74], and popularized by Lynden-Bell and Wood [75], need not trigger
a linear instability. There is, however, every reason to believe that the turning point
arising in the second sort of sequence actually does involve a change of sign for the
energy of some dynamically accessible perturbation. Indeed, as noted already,
variational calculations indicate that the turning point appears to coincide with the
emergence of a mode with a squared frequency w?=0, this associated typically
(cf. [35]) with a test function & = —Frp", the natural choice in view of Eq. (6.1).

APPENDIX: CoVARIANT BRACKET FOR THE VLASOV-EINSTEIN SYSTEM

The objective of this Appendix is to construct a manifestly covariant analogue of
the bracket (2.6) which does not entail any particular choice of 3 + 1 splitting or
even assume that the spacetime of interest is globally hyperbolic. This will be done
following the procedure of Marsden efal. [49], who were interested in the
analogous problem of an electromagnetic plasma (in flat space) characterized by
the Vlasov—Maxwell system.

The first thing to do is to find an action S which generates the correct equations
of motion for both the distribution function and the metric. If one chooses to treat
the metric g,, and the connection 7}, as dynamical variables, this action can be
taken to be of the form [49, 50]

STem f1= 1 [ 181" d* g2 R glm] — [ 181" d*x el /1, (AD)

where the Ricci tensor
; A
Raﬂ=aln;ﬂ_aﬁnal ﬁnul+nu af (A2)

is viewed as a functional of the connection, and %,,,.., denotes the matter contribu-
tion to the action, which must be so chosen as to satisfy

d'p f
gl m

o
5o [ 1817 4% Lo =3 T =3 [ S8 L 0 (A3)
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It is in fact also easy to see that it suffices to choose
/2 74 _ 4 4 f af
|81 d'x Lonien = | x| dp o 8P s (A4)
since, viewing x* and p, as the basic variables, one computes immediately that

5 ( [a*x[a%p 2—{7; g*'p, p,;) = [d*x [ap 5% PPy o8
e
= [ 1817 d* T,y 087" (AS)

The next task is to define the covariant bracket. Here the simplest possible guess,
which actually works, is obtained by adding the Marsden er al. [49] bracket for the
vacuum Einstein equation and the “natural” covariant analogue of the 3+1
bracket defined by Eq. (2.6). Specifically, for any two functionals F(g, n, ) and
G(g, n, /) and an arbitrary vector field V* (which can be interpreted as defining a
“time direction™), set

O0F 6G 6G OF
F, =(atxpr (oo 22 22 L
(Ro)=ats v (i =)
or 56
6f’ 5f I

where {4, B) denotes the covariant Poisson bracket of Eq. (1.3).

It is clear by analogy with the discussion in Section I that Eq. (A6) satisfies all
the requirements to constitute a bona fide bracket, so that all that one need do is
verify explicitly that the demand that {{F, S}},=0 for all F is equivalent to
imposing the correct equations of motion. This is in fact straightforward.
Assuming appropriate falloff conditions, a simple integration by parts involving the
contribution <{F, §> shows that

+jd4x d4pf< (A6)

oF oS 65 OF
F =|d* V* —
{{ ’ S}}V Jd XV (5gaﬁ 5”ﬁﬁ og™* 57‘5/3)

oF oS
fdxfdp5f<f,5f>. (A7)
But, if this is to hold for arbitrary F, it must be true that
5S/8g*F =0, 08/omhs =0, {f, 6S/6f > =0. (A8)

The functional derivative

oS 1 1 ) 1-dp f
—_——— —_— RA _——f ———
og® 16n (Raﬂ 28 A) 2 g m PxPp: (A9)
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so that the first of Eqs. (A8) is in fact the Einstein equation G,'=8xnT,’". The
second of Eqs. (A8) is equivalent to the demand that

V.(lgl"*g*)=0, (A10)

where V, denotes the covariant derivative operator associated with the connection
nhs. This implies that n4; must in fact be the Levi-Civita connection, i.e., the
ordinary Christoffel symbol. And finally, since

oS 1
_—— aﬂ =
o 2 & PaPs A, (Al1)

it is clear that the last of Eqs. (A8) is equivalent to the correct Vlasov equation
A, [H=0.

To extract a 3+ I formulation from this sort of manifestly covariant setup, it is
useful to consider an alternative matter Lagrangian %, ,,... which generates the field
equation for f in the form (1.7) in terms of the constrained #' = |g*’p pyl'”? To
do this, it suffices to identify a new matter action

aier = | d*x d*p £ 187, p,l " (A12)

which, “on shell,” (i.., imposing the equations of motion), yields the desired
55/5g"" = 4T,

Given this alternative choice, the extraction of a 3 + 1 formulation is immediate.
The Ansarz (1.8) for the metric, together with a choice V*=73/dt, yields a 3+ 1
splitting of the field equations which leads immediately to the ADM form of the
Palatini variational principle. And, noting that

5Smancr B 172
ZM matter o, A
of (8°p.ps)""s (A13)

one sees that the equation of motion for f is nothing other than the collisionless
Boltzmann equation for a free particle in a spacetime with metric (1.8). One is thus
led immediately to a particle Lagrangian

dx* dx®\'?
Lem(gut eugar) - (A14)

which implies a canonical momentum,

dx® dx® dx®\1/?
Pa=mgab7<gu—gcdwyt—> , (A15)
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and hence a canonical Hamiltonian,

oL

H=p* — L= ty1/2 2 pab 12 _ , Al6
P ) (8")"" (m" —g“p.ps)"" = p, (A16)

which is nothing other than the expected generator of the 3 + 1 Vlasov equation.
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