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Drift Wave Vortices in Inhomogeneous Plasmas

W. Horton, X. Su, and P.J. Morrison

Institute for Fusion Studies and Department of Physics,
The University of Texas at Austin, Austin, TX 78712, USA

Drift wave turbulence in weakly driven or decaying states possesses strong corre-
lations requiring the concept of a weakly correlated vortex gas. Recent progress on
the effects of inhomogeneities on the structure, stability and life-time of the vortices
is reviewed. In particular, two cases (i) of a finite temperature gradient, and (i) of a
shearing of the magnetic field across the vortex structure are analyzed. A new formu-

lation of drift wave turbulence proposed by Zakharov (1991) in terms of the separation

of short and long scales is applied.

I. Rossby-Drift Wave Equations

In rotating fluids and magnetized plasmas the vortex state is an important structure that
naturally arises. An example of such a long-lived structure is shown in Fig. 1, which is a
weather map taken from the April 1, 1985 Los Angeles Times. The figure sh&;ws a cyclonic
vortex with radius of 1000 km that produced severe cold weather for many days. In plasmas
such vortex states are thought to be responsible for part of the anomalous transport measured
in confinement systems. The fundamental equations for the dynamics of the slow neutral
fluid flows on rotating planets and the E x B drift flows in inhomogeneous magnetized
plasmas are isomorphic problems governed by what is now known as the Charney-Hasegawa-
Mima equation (CHM). This important result was established by Hasegawa, McLennan and
Kodama (1979) and Petviashvili (1980).

The reason for the coincidence of the two different systems and the conditions for the

breakdown of the CHM are seen by considering the conservation laws

-a—E+v'Vn+nV-v=0 (1)
ot

and
d—v=—VU+va (2)

dt
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1. Large cyclonic vortex structure bringing heavy snow in late spring over the New York-

Great Lakes area. The radius is approximately 1000km and & = ép/p = 1/30.

where for shallow water flows the conserved field n — H(z,y,t) — the depth of fluid layer
and U = gH(z,y,t) from the hydrostatic pressure p = pgH, while for plasmas, n is the ion
density and U = e®/m; where ® is the electrostatic potential. On the rotating planet Q2 is
the Coriolis force parameter = f = 2Q, sin 0, where @ is the latitude and Q, = 2x/T with
T the period (day) for rotation, while for plasmas Q = eB/m; is the cyclotron frequency.

Taking the rotational part of Eq. (2) and defining the vorticity as w =V x v we obtain

<%+V~V) (R4+w)==-(Q+w)(V:V)+(Q+w) Vv

and using Eq. (2) yields ' L
=(Q+w)Z T+ (Q+w) Vv (3)

The last term in Eq. (3) is the “vortex stretching term” that gives rise to the kinking and
the reconnection of vortex filaments in the non-rotating or unmagnetized hydrodynamics.
In the presence of large |/w}, however, the vortex filaments are forced to remain nearly

straight (Taylor-Proudman Theorem) from the z,y-components of Eq. (3), and thus it is
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often a good approximation to drop this last term in Eq. (3), which describes the parallel
compression of the fluid. Assuming (€ +w)- Vv, = 0 8, v, is small, the parallel component

of Eq. (3) gives Ertel’s theorem

%(Q-%—wz):() (4)

n

where w, = 8;v, — 0, v;. The conservation law (4) gives the CHM equation when w, is
evaluated in the geostrophic or E x B drift approximation and only linear gradients are

taken into account.

A. Oraering for slow flow motions

For flows that evolve slowly compared with © we introduce the small ordering parameter

19 v-V ;
€= a a’ ~ . L1. (3)
In the first order Eq. (2) yields
vl X VUQ(J:,y,t) ~ (6)

and the inertial acceleration —dv/dt correction gives

v 2XVU 1 d gy (M)

Using Eq. (6) to calculate w, and the convective derivative, Eq. (4), leads to the Charney

equation ( )
dg _ gHo Q+ 22 vih)]
Fri (a( +g b }) [ AT B (8)

where h = (H — Ho)/ Ho is the relative depth of the shallow fluid. In the case of the plasma we
assume that the electrons quickly thermalize in the potential & giving n = N(z) exp(e®/T.)
and the calculation of w; = (2 p2 ¢/T.)V?® so that the corresponding nonlinear p.d.e. is

d ! QL+ (P TIVA(eR)] _ |
£=@+§WD[Nm;wwm]‘“ ®

Thus with the identification of p? = m; Te/e? B? with L} = gHo/Q? and e®/T. with h and
the expansion of the Boltzman distribution as exp(e®/T.) =~ 1 + e® /T, the two equations

(3) and (9) are the same and can be written in units of p, & Lg and 1/9Q as

@+ {p, N(Vie—ptwz)=0 (10)
where ¢ & V2p — ¢ + vz, and vg = ¢2/QLn & gHo/QR, is the linear long wave phase
velocity. Here z is in the direction of the gradient (northward) and y in the direction of the

linear wave propagation (westward).
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Equation (10) is the CHM equation which has the following properties:

(1) conserves mass, energy, enstrophy and integrals of arbitrary functions of g
(2) translationally invariant in z,y

(3) possesses the exact Larichev-Reznick (1976) dipole vortex solutions.

The dipole vortex solution is a two-parameter family (ro = radius, u = speed) of solitary
vortex solutions. The speed ¢ of the wave components of Eq. (10) are in the range 0 <
¢ < vy and the speed u of the vortex solutions is either u > vg or uva < 0. Soliton-like or
weakly inelastic collisions with zero impact parameter are given by Makino et al. (1982) and
McWilliams and Zabusky (1982), and the strongly inelastic collisions that occur when the

impact parameter b 2 ro are shown in Iorton (1989).

B. Inhomogeneous systems

Now when the size of the vortex rg is taken comparable with the variation of the inhomoge-
neous background of the medium, the structure of the Rossby-Drift Wave equation changes,
Petviashvili (1977) and Tasso (1967) have shown that in a plasma the inhomogeneity in-
troduces the KdV nonlinearity ¢ d,¢ into Eq. (10). This change alone, however, spoils the
conseArva.tion from (9) of the equation. The correct treatment of the nonlinear-inhomogeneous
systems expands Eq. (9) to obtain the generalized g-conserving equation (Su et al. (1991))

1 2) 92 ' — K)o TRo] =
(ﬁx—)-—V) at+(vdn+vdz [\Tnp)ay [p, Vi) =0 (11)

where vgo + v}z is the inhomogeneous drift-Rossby speed and Kp = (d/dz)(1/T) = -T'|T?
is the inhomogeneity of the dispersion scale p} = T/Q? or L} = gHo/Q?. Here T(z) is the

dimensionless temperature profile normalized to unity at the center of the vortex. Equa-

tion (11) has the following important properties:

(1) mass, energy and moments of ¢ are conserved, but not the usual enstrophy

(2) the dipole vortex is split into monopole vortices with only one sign (cyclone or
anticyclone depending on the sign of v}) being a long-lived vortex

(3) the equation is not translationally invariant in the z (north-south) direction —
there is now a preferred direction for wave propagation which is toward the cqua-

torial zone or to the hot plasma region.
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We have shown in Su et al. (1991) that Eq. (11) has monopole vortex solutions given by

!/

g
Vo = k¥ (u,z)p + 553 (12)

where k? = (1/T(x) — va(z)/u) ~ . The expansion of &*(u,z) about the location of the

vortex leads Lo
4% = kg + ar

where

a = (K1 = vj/u) ~ € (13)

and the monopole vortex is given by

2 4.2
SRR s (g kom) . (14)
Vg0 4

The speed u of the vortex depends on the amplitude ¢, with

R

o(z,y,t)

[va0 + (v} + 0.83 vl om)' /2] & vao(1 + 0.210] o) (15)

B

U=

for small, positive vy . Thus the shear in the drift-Rossby speed vy(z) acts to change the
solitary solution from a dipole to a monopole. One recalls that the monopole vortex is the

natural solution in sheared Hows (Horton et al., 1987).

II. Propagation and Collisions of the Monopole
Vortices

A. Vortex-vortex interactions

We have established that the monopole vortices in Eq. (14) can behave under coilisions either

as

(1) soliton-like collisions with the stronger vortex overtaking and passing through the

weaker vortex

or
(2) point vortex-like interactions where two strong monopole vortices, which by Eq. (14)

must be of the same sign, rotate about one another.

In Fig. 2 we show an example of the soliton-like pass-through collision. In Fig. 3 we show
an example of the second case where two nearly equal strength monopole vortices interact

like point-vortices rotating around one another.
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2. Nearly elastic overtaking collision of a strong monopole vortex with a weaker monopole. 3. Point
The profile of 1/T(z) = 1/L} = exp(.046z) gives a variation of 1.6 over the core of the and ¢
vortex. The gradient in the Rossby speed is vp(z) = 1 —z/20. The solution conserves arour
q = V¥ — @/T(z) + [*vpdz’. The speeds are u; = 1.1 and uz = 1.7 giving the
expected collision time A¢/Au = 20/0.6 = 33 compared with observed overlapping , whe‘re
at ¢ = 22 in frame (b). After separation (c)—(d) the weaker vortex still has 5 closed
contours. -
and the
B. Wave radiation The
As the amplitude ¢, of the vortices becomes small, the speed of propagation in Eq. (15)
approaches the linear wave speed and the coupling to the wave field radiates energy from ! is given
the vortex. Su et al. (1991) calculate this radiative decay of the vortex. The local energy
conservation equation is
The ex
o€
—+V:5=0
7 (16) (Eq. (1
et 286
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3. Point vortex type of interaction of two strong monopole vortices with speeds u; = 1.30

a weaker monopole.
over the core of the and u, = 1.35. Although merging might be expected here, instead the vortices rotate
- solution conserves around one another after pulling together from the initial separation of 20 L.
12 = 1.7 giving the

>served overlapping where

x still L[ &
x still has 5 closed E(z,y,t) = 5 [T(%t_)- + (V(p)z] 17

and the “Poynting” flux is
1 L., ~ d -
s=(3ul@)¢ -3 Krg?) 3 -V 2f = ViR x V(/D) (18)

The results of a lengthy calculation are that the decay of the vortex energy

. 8.2rutkd /4
ropagation in Eq. (15) E, =/8d1z = (:’u)’ ) (3 + kg) (19)
40
| radiates energy from is given by
rtex. The local energy EJ-E"- = _u|a|<p,’,, exp il Gl ud/u)a/" (20)
T 3la ' )

The exponential decay factor is controlled by the strength of the inhomogeneity through «

(16) (Eq. (13)) and the closeness of the speed of propagation u to the drift speed vy at the center
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of the vortex through &3 = (1 — vgo/u)*/?~Simulations fo;' k3 > o and kj < « are shown i,
Su et al. (1991).

The decay of the vortex amplitude in Eq. (20) via the coupling to the radiation field wi)
cause the speed u to decrease through Eq. (15), and as the speed u(t) decreascs the vortey
decay rate incredses exponentially t:hrough Eq. (20). Thus, the vortex will decay slowly
initially and then suffer an abrupt death.

In the case of magnetic shear, which is another form of inhomogeneity that gives rise to
a coupling to vertical v, oscillations, Meiss and Horton (1983) show that the decay rate of

the dipole vortex soliton is given by

dBqsy ,( ud)-l/2 (w[,,( v,))
= "Wem(l-y) el -y (21)

where L,/ L, is magnetic shear (inhomogeneity) length over the density gradient scale length

L.. We have also performed simulations for the shear induced decay of the vortex structures.

These vortex structures appear to be a natural or “self-organized” way. in which the
plasma can fecd upon the free energy available in the density gradient and limit the radiation
damping inherent in small amplitude waves. Recent simulations indicate that the vortex
localization process in systems with rather different linear growth rates (due to damping
caused by magnetic or velocity shear) can end up in similar final turbulent states when
enough energy is fed into the system. This is because the localization to vortex structures
essentially eliminates the shear damping mechanisms. This nonlinear dynamics and the
shear damping introduces a form of hysteresis into the system, due to the slow decay rate of

the vortices once they are formed.

III. Driving of the Large Scale Vortex Structures by
the Small Scale Rossby-Drift Wave Turbulence

Finally, following the suggestion of Zakharov (1991), we consider the interaction of the
small scale, weakly correlated Rossby-drift wave fluctuations ¢ (small scale)
- = Ty Yilez, et)e® k! with

_ Sy M(X,T)

o = ek e 22

(Yrlex, t)y (ex,t)) 1+ k2 p? ’ (22)
where the wave density Ny(X,T) satisfies
- v -
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as in Horton (1986), and the local drift wave frequency depends on the large scale oy, 7iy,

variations through
k Z x V(ng +#p)

e =k-2x Vi, + TT5 72 )

with large scale motions governed by ¢ (large scale) — o(X,Y,T) that satisfies the CHM
equation containing the average of ({1, V?}) over the small scale turbulence. The driven

large scale CHM equation is given by

(L = V)8re + vady — {9, Vo) = (% — 0))A+ 8y B (21)

where ’
A(X, Y\ T) _ Z (kz ky) M(X, Y, T)
BX,Y,)) | T (k=K

1+k% 5}
This system of equations leads to the modulational growth of large scale structures from the

inhomogeneity of the distribution of the small scale fluctuations. In a tokamak the small
scale turbulence is known to have a strongly increasing strength toward the low density side
and, at a given radius, an increase in strength toward the outside of the torus compared with -
the inside. In planetary atmospheric turbulence it may be expected that the intensity of the
small scale turbulence is stronger in the equatorial zones than in the high latitude regions.
It is clear from the structure of Eqs. (23)-(25) that when the basic assumptions of the scale
separations are satisfied, that anisotropy and inhomogeneity in the small scale turbulence
is a driving force on the large scale structures. We are in the process of investigating the
driven CHM equation (24) and the propagation of the small scale turbulence by the nonlinear
wave kinetic equation (23) for various systems. This separation of space-time scales appears
to be an effective method for extending the study of Rossby-Drift Wave turbulence to more
realistic inhomogeneous turbulent states compared with the previously studied homogencous

turbulent states, as for example, in Horton (1986).
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