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INTRODUCTION

In theory of fluids, plasmas, and stellar systems, we frequently encounter the
question of the stability of equilibria. The answer is provided in part on determining
the evolution of an infinitesimal disturbance away from equilibrium, an approach
that usually goes by way of a normal mode expansion. This approach can at times
be very powerful, and amounts to solving an eigenvalue problem. It can, however,

run into difficulty in circumstances for which that eigenvalue prob]em is, in some

sense, irregular.
‘What we might call regular eigenvalue problems involve the solution of a set of
ordinary differential equations with regular coefficients on a domain of finite size. As

illustrated by the classic Sturm-Liouville problem, the eigenvalue spectrum turns

out to be composed of an infinite number of distinct points. Like the characteristic
frequencies of a vibrating string, these correspond to the distinct, normal modes.
One might say that the set of irregular problems consists of everything that doesn’t
fall into this category. For many examples, the eigenvalue spectrum retains a simple
form, but in general this is not the case, and the spectrum may consist of only a
finite number of discrete modes or continuous intervals.

Here we are concerned with situations for which the eigenvalue problem is
irregular and the resulting spectrum is at least partly continuous. This kind of a
spectrum can arise as a result of solving the problem on an infinite domain, in which
case there is simply no quantization condition. Of more interest are problems in
which the set of ordinary differential equations is not autonomous and contains
coefficients that become singular at pomts within the domain.

In physical situations, singularities in the equations governing the evolutlon of
an infinitesimal disturbance can result from a variety of effects, and they do not
always affect the form of the eigenspectrum. An important class of problems for
which the singularity has direct repercussions on the eigenspectrum occurs in fluids,
plasmas, ‘and stellar systems. These are ideal problems in which there are wave-
mean flow or wave-particle resonances that result in the creation of a continuous
cigenvalue spectrum. In these circumstances, coeﬂicxents in the differential problem
are formally singular at the point at which resonance occurs. Moreover, that point is

- determined by the speed of a wavelike perturbation or, equivalently, the eigenvalue.
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The existence of a continuous spectrum for arl inviscid, shearing fluid was

==

known to Rayleigh,! although he was not directly interested in it. In this context, an -

explicit solution for the spectrum was given by Fjortoft and Heiland in the 1940s
for the special case of incompressible Couette flow.> The complications associated
with finding the eigenvalues surround the presence of the singularity in the equa-
tions, which occurs where the advection of the perturbation exactly cancels its
natural speed; a layer in the channel associated with such a singularity is commonly
referred to as a critical layer.

In plasma theory we have an analogous situation at the points in phase space
for which the equilibrium particle velocity matches the phase speed of the dis-
turbance. This led to a classic problem in plasma theory that was eventually solved
by Landau, leading to the celebrated phenomenon of Landau damping. That solu-
tion went by way of Laplace transforms, which are naturally tailored to the initial-
value problem. The parallel procedure using a continuum variety of normal modes
was proposed by Van Kampen,® and considered in fluid contexts by Case.* In this
paper we follow the directions indicated by Van Kampen for more general problems
than the relatively simple plasma and fluid equilibria considered by Van Kampen
and Case.

In what follows, we first describe the general method (which is discussed in
greater detail and applied to parallel shear flow by Balmforth and Morrison®).
Then, in the general context, the problem of plasma oscillations is reviewed. The
remaining sections’ on parallel shear flow, shear flow in shallow water theory,
incompressible circular vortices, and differentially rotating disks, are the bulk of the
paper. We conclude with a discussion of the uses of singular eigenfunctions.

METHOD

An important feature of the solutions that compose the continuous spectrum is
that they are not regular functions; they can contain kinks, discontinuities, or.singu-
larities at the critical layers. Finding the solutions with standard numerical tech-
niques for regular ordinary differential equations is then problematic. Here we
describe an alternative method to contruct the singular eigenfunctions. Related pro-
cedures have been used in neutron transport theory, scattering theory,”-8 and
plasma physics.®

Most informally we can speak of a system governed by an equation of the form,

(x—x)Lrt=Meb, m

for some eigenfunction ¢, and differential operators &, and .#,. The point x,, i3
contained within the domain, @, and is really the eigenvalue. The operator &,
contains the leading derivatives in the problem, and consequently the equation is
formally singular at the critical point x = x,.

Our method follows Van Kampen’s treatment of plasma oscillations in the

“Vlasov-Poisson equation (we give their solution in the next section). We first divide

through by the coefficient x — x, . Such an operation is not mathematically defined,
however; the resulting equation has a right-hand side that is not a well-behaved
function of position. We attach meaning to the expression by interpreting it in a
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where € is an arbitrary amplitude and &(x) is the delta function.

The solution of a differential equation like (2) with a delta-function inhomoge-
neous term is most easily found by converting that equation to an integral equation.
In order to achieve this result, we introduce the Green function of the operator Les
which we denote by o#(x, x). Then we can write (2) in the form

M P(x
) =P I H(x, x) —3—‘1’(-—7 dx’ + €(x, )0 (x, x,)- 3)

9 X = Xy
Equation 3 is an inhomogeneous integral equation. Its kernel is singular at the
critical point, and we could.use the methods of singular integral equation theory'®
to solve it. However, as yet this is no clear simplification of the problem, but we
have not specified 4. At our disposal is a normalization condition. If we fix the
normalization of the eigenfunction, we determine %. Certain normalizations lead to

simplifications in our problem. In particular, if we require that

J P ¢ dx =A, . @
D
we observe that
€=A-2 A= dx. 5)
N £ X — x* .

If we substitute this relation into our integral problem (3), we see that

¢ =AX(x, x,) + I F . (x, x)p(x) dx', - ©.
P

where

H(x, x)— H(x, x,) “,
X' — X,

F x.(x: x)= ™
is a kernel with a parametric dependence on x, . This is another integral equation,
but, whereas (3) was singular, (6) is not. In other words, our normalizing operation
(4) has regularized the integral problem. In fact (6) is a standard Fredholm equa-
tion.!!

Fredholm theory tells us that (6) has two kinds of solutions. There are homoge-
neous solutions that satisfy

F=1 Jsfx.(x, X)d(x) dx, ®
R £ '

for certain values of 4, but if there are no values of x, for which 4 = 1, then there
are no homogeneous solutions to (6). Fredholm theory then demonstrates that there

certain values of x, , then a solution only exists if the inhomogeneous term satisfies
an additional relation (the so-called Fredholm alternative), and it is not unique.

Provided we have no homogeneous solutions, then the method allows us to
construct. singular eigenfunctions by solving a simpler, regular problem. Moreover,
it would establish the existence of a unique solution of the kind we seek. Sometimes
it can be verified directly that no such homogeneous solutions exist; also, numerical
techniques can be used. Should homogeneous solutions exist, precautions must be
taken to assure a unique and bounded solution to our original problem. One way to
do this is by suitably scaling the amplitude of the singular mode, A. In particular,
we can select A = @(x*)f\, where the function 9(x,) vanishes at the eigenvalues for
which there exists a homogeneous solution (it is the Fredholm determinant), and A
is bounded. This scaling forces' the inhomogeneous term to vanish whenever a
homogeneous solution appears, and so we always find a unique, bounded eigen-
function.

PLASMA OSCILLATIONS

We first apply the method to the one-dimensional, Vlasov—Poisson equation,
which reproduces Van Kampen’s original solution. In this problem we have an
equilibrium described by a distribution function, fo(v), where v is the phase-space
velocity coordinate. Infinitesimal perturbations of the distribution function, f(x, v, 1),
satisfy the linearized Vlasov equation together with the Poisson equation for the
electric field, E(x, #). Because the equilibrium is independent of the spatial coordi-
nate x, we can Fourier transform the equations, or, equivalently, look for solutions
where the perturbations of the distribution function and the electric field are, respec-
tively, of the forms f(v) exp [ik(x — ut]) and E exp [ik(x — ut)}, where k is a wave-
number and u is the wave speed. The governing equations are then,

(u—v)f+£§fi—f2=0 \ ()]
m dv
and
k*E = —4ne J.wf(v) dv, (10)
o

where e and m are the particles’ charge and mass. If we take a solution of the form
(2) for £, by dividing (9) by (4 — v), we obtain

29 %o | qusw—nu (11).
m u—v

If we integrate this expression over v, and use the normalization indicated by (4), we
find that
4ne? 2 ° fo

%=A—
mk? o u—v

dv. (12)



In this problem, there is no dispersion relation; solutions exist for all eigenvalues, u.
The associated eigenfunctions are given by (11) with (12). It is not necessary to solve
a Fredholm problem in this case because the Poisson equation has the simple,
“degenerate” kernel, # = 1. The kernel of the Fredholm equation therefore van-
ishes everywhere, and ¢ = 1.

INCOMPRESSIBLE SHEARS

A slightly more complicated example is the problem considered by Rayleigh.'?
He studied an inviscid fluid configuration consisting of a shear flow contained
within a channel. If we denote x and y as the spatial coordinates along and across
the channel, then a flow with velocity profile U(y) within the domain —o <x <
and —1 < y < 1 exists as an equilibrium of the two-dimensional Euler equations.
Infinitesimal perturbations about this equilibrium can be taken to be of the form
u(y) exp ik{x — ct), o) exp ik(x — ct), and p(y) exp ik(x — ct) for the two velocity
components and pressure fluctuation. The eigenvalue is ¢, and there is a critical
layer at y=y,, at which point U(y) = U(y,) = c. The perturbations satisfy the
equations

ik(U — cju + U'v = —ikp, (13)
k(U —cjp=—p (14)

and
iku + v' =0, (15)

where the equilibrium density has been set to unity. By representing the pertur-
bation’s velocity field in terms of a stream function, /(y), we can formally manipu-
late these expressions into Rayleigh’s equation,

(U — X" — k) = Uy (16)

Rayleigh’s equation is a relatively well-studied equation.> Various integral rela-
tions can be derived from it. These indicate that there are no discrete eigenmodes
unless there is an inflexion point, U” = 0, somewhere within the flow. Such modes
are either purely real, in which case their critical layers lie exactly at the inflexion
point, or they are complex, indicating decaying/growing pairs. All other neutral
modes must have critical layers that lie within the channel; they are intrinsically
irregular and we expect them to make up a continuum, that is, the singular, contin-
uous spectrum.

Rayleigh’s equation is clearly of the form of (1), provided U(y) is a monotonic
function. If we assume this to be the case, then the generalization of the Van
Kampen eigenfunction is.

U (yW(y) LUy W(y) ]
=P ——— A—-2 — av' 18ty — ! 17
) U(y)—c +[ J_l Uly) — ¢ y' {8y — y4) 17
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which is the vorticity fluctuation, and ¥ satisfies the Fredholm equation (6) (but in
the variable y), with

,__f(y,y')—f(y,y*) o

and ' (y, y') being Green’s function of the two-dimensional Laplace equation, that
is, :

Ao, o) = {—sinh K1 — y? si‘nh k1 + y)/k sinh 2k fgr y>y, (19)
—sinh k(1 — y’) sinh k(1 + y)/k sinh 2k fory<y.

Some solutions to the Fredholm problem are shown in FiGURE 1. These are
computed for the flow profiles, U(y) = y + y3/10 and U(y) = y + y>. The continuity
of fluid elements requires that i remains continuous across the channel, but it does
have a discontinuity in slope. In these cases, the absence of homogeneous solutions
to our Fredholm problem can be established numerically by constructing the Fred-
holm determinant.!! Hence, we set A to unity.

It is not necessary to assume that the profile is monotonic. If U(y) is multivalued
in places, we have multiple critical layers for the corresponding wave speeds. This
complicates the construction of singular eigenfunctions, but it can still be done, with

some modification to the method.

SHEARS IN SHALLOW WATER

A more complicated situation than Rayleigh’s problem is when the shearing fluid
is compressible. An example in which the two-dimensional character of the configu-
ration is retained is for the flow of shallow water through a channel, a physical
situation of interest in an oceanographical context.!3~!3

_ From a physical point of view, we expect a different spectrum for the stability
eigenvalue problem, because compressibility introduces an additional degree of
freedom into the dynamics of the fluid. In particular, in Rayleigh’s problem there are
only vortical motions. For compressible fluid we also expect sound waves, or, in the

- shallow-water system, surface gravity waves. (The similarity between the acoustical

dispersion relation of a two-dimensional compressible fluid and that of the surface
gravity waves of a shallow fluid system has led to some confusion in the past.'®)

In addition to the singular modes, we therefore anticipate a new class of modes,
and from the earlier studies these are expected to compose a discrete portion of the
complete eigenspectrum.

The equations for perturbations to a shearing, shallow fluid of undisturbed,
uniform depth and velocity profile U(y) (using a coordinate system like before and
assuming monotonic velocity profiles), are'?

. ok _
k(U — cu+ U=~ h, (20)
ik(U — c) Ly 1)
—cW= ——> .
I v Fr2

e



iU — b + ik + v’ =0, @)

where the velocity components are again given by u and v, h is the y-dependent
piccg of the depth perturbation, and the dependence exp ik(x — ct) has again been
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FIGURE 1. A sclection of singular eigenfunctions, ¥(y), for U(y) = y + ay?, with (a) « =0.1
and (b) « = 1. Also, k = 1. Streamfunctions of various modes with different critical layers are
displayed. The critical-layer amplitudes are indicated by stars.
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. introduces the Froude number, Fr, which is the ratio of the characteristic, mean
flow speed to a typical surface gravity wavespeed (or a characteristic Mach number
of a two-dimensional, compressible fluid).

From these expressions we can derive a second-order equation for h; namely,

(U — o){h" + K*[Fri(U — c)* — 11k} = 2U'K. (23)
Another relation of interest comes from the vorticity and continuity equations,
(U — e{v” — k*v) — U"v = —ik[(U — c)*h]". (24)

The incompressible limit, in which we should recover Rayleigh’s equation, is
obtained by taking Fr — 0 and h — 0, but with the ratio h/Fr? finite. Accordingly,
(24) reduces to Rayleigh’s equation since ikyy = v.

The next step is to divide through by a factor of U — ¢, take a principal part,
and add a delta function. In our current example, we need to be a little careful
about how we should accomplish this. In analogy with Rayleigh’s equation, we can
! clearly divide the second relation (24) by U — ¢ and proceed along the lines outlined
. by the method. A similar procedure for (23) does not seem to work for the following
reasons. '

Equation (23) contains a singular point, namely y = y,. About that point, we
have Frobenius expansions of the form!3

he(y=y° 2 a(y—y)

n=0
and

U,
207y,)

If, for the moment, we consider Couette flow, for which U” = 0, then we observe
that the singular point in the equation for h is entirely regular. In other words, it is a
removable singularity (in fact the equation for u in this case contains no singular
. terms). Moreover, the solutions of (23) form a complete basis set of regular functions
(the surface gravity modes). There does not seem to be any need, then, to include
singular eigenfunctions. However, in order to determine the evolution of the fluid,
we need to represent both an initial height and an initial velocity field. This requires
- two independent sets of basis functions, and the surface gravity modes alone are in
general insufficient. The singular mode spectrum is still therefore needed in order to
i complete the problem. ’
; Even though there is no principal-value singularity in (23), we could nevertheless
add a delta function on dividing by U — ¢. This leads to a particular solution for h
' that might represent the singular ejgenmode. Indeed, that solution generally has a
discontinuity in its first derivative of h. However, such an eigensolution is ruled out
- if we use the physical requirement that the pressure gradient be continuous. Even
were this objection not to preclude such solutions, we would then be forced to work
with highly divergent vorticity fluctuations (in the sense that the singularity at the
critical point is not just a simple pole). Moreover, these appear to be of no relation

h~ (v =y log (y — y) Y aly — y,.)"‘+ T h(y—y) (25
n=0 n=0



to the singular modes of Rayleigh’s equation, yet Rayleigh’s solutions should be
recovered in the incompressible limit.

The resolution of this difficulty lies in (24) and the fact that (23) was derived from
the continuity equation (22). The continuity equation contains information only
about the divergence of the velocity. In deriving (23) we therefore omit crucial, sin-
gular details of the vorticity field. That field evolves according to (24). Applying our
procedure to this equation gives

252 "
F ;{f [(U—ov —Up]l=2 UU_"C

D“ - sz + ZU' + gé(y — y*). (26}

where
K? = k*[1 — FriU — ¢)?]. @7

This is the shallow-water version of Rayleigh’s equation. In writing this equation,
we have introduced another singular term, namely the term with a denominator of
K2. That quantity vanishes at the points y = y*, for which

U =t (8)
Fr

These singular terms have no counterpart in the equation for h, (23), reflecting how
they are removable singularities (the Frobenius expansions for v about these singu-
lar points are both purely regular). Formally we can write the equation for v in the
form of (2), thence solve it according to our method. This requires us to build a
Green function for the operator on the left-hand side of (26), but then our Fredholm
problem is straightforward to solve.

Buried in (26) are both the eigensolutions of the continuum and the discrete
modes which correspond to the surface gravity waves. In addition, should the flow
profile violate Rayleigh’s criterion, there may be discrete solutions related to the
vortical instabilities of the incompressible problem. When the Froude number is
very small, we expect that the two types of solutions are well separated on the
spectral plane. For larger values of Fr, the distinction may not be so clear.

This particular problem is interesting in that it provides an example where we
have to be a little careful about simply writing down principal values and delta
functions in order to find singular eigenfunctions. Applying the method to the equa-
tion for h produces ambiguous results; the equation for v seems to be the best way
to go. None the less, there is a certain amount of freedom in choosing which equa-
tion to work with, or into which physical quantity we should introduce a principal-
value singularity or delta function. At the end of the day, it is how well the resulting
eigenfunctions behave as a unique, complete basis set that determines the optimal
choice.

The problem also highlights another ambiguity. We decided not to treat the
singularities occurring in (26) at the points y = y¥ by the method since they were
removable (of zero dividing zero form), and so no principal-value piece was neces-
sary. However, for linear shear in both compressible- and incompressible fluid,
U” =0, and there is no principal-value singularity in the equation for v even at the
critical layer. In Rayleigh’s equation, the delta function piece must still be added

into the equation in order to find a solution (this is the Hailand and Fjertoft’s

i result?). Similarly, in the shallow-water equation (26) we could also rctaix‘]‘thc dc!ta
function, but now there is no distinction between the importance of the critical point

and the other, removable, singular points y = yi¥. In principle, then, we could add

: alternative terms, &8(y — y), to the equation. This would lead to another two sets
: of singular eigenfunctions.

. In practice it is unlikely that the new sets of solutions are as useful as the orig-
inal one because we expect continuum eigenfunctions for every wave sl')ced' that
matches the mean flow. From (28) we see that this would give solutions »tv:th singu-
larities outside the channel. From a physical point of view, we in}erprct yE to be the
turning points for the surface gravity waves (the points for Whl?h these waves are
reflected). There is no obvious reason why we should allow the eigenfunctions to be

irregular at these points.

INCOMPRESSIBLE VORTICES

As a prelude to discussing an astrophysical applica.tion of our met!xod we now
discuss another simple situation. This is the incompressible, two-—dunensmna‘l_vortt?x.
Kelvin!? considered such configurations with piecewise continuous vorticity dis-
tributions. These equilibria support interfacial-type discrete modes that were of
interest to Kelvin, but not directly relevant to the contin'uum modmf we derive here.
More recently, the stability of a two-dimen.sional, mcoxppr&ssmlc ‘vortex hlz:s
regained importance; since it has become feasible to ex?:nmentally simulate the
dynamics of such a configuration with an electrf)_n Plasma:. o

In polar coordinates, (r, 6), we have an cqu111‘b.num given by an angular ve ocity
distribution, V{r) = rQ(r). For the sake of simplicity we again takfa monotonic pro-
files for Q. Perturbations to the vortical structure can be described by a strez_xm
function, ¥(r) exp im(6 — vt), where m is the azimuthal quantum number, for which

the perturbed velocity components are given by

QD
<
QD
<

=—-—  and v=— (29)
r 96 or

Then Rayleigh’s equation for ¥ can be writte_n in the form
1 " mz '’ (w)

T(Q—V);(rl//)—FIII =0y,

where the mean vorticity is given by
=2 (1)
r

A straightforward app]icativon of our method yields the singular eigenfunctions,

'y _ _ (32)
w=—2 _—_r(Q ) ?é(r r
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stream function ¢ satisfies the Fredholm equation ‘
e A . “’.Y(r,r’)—.%’(r,r*)',, ’
Y) = Ak, r )+ , T om—0ry) {eW(r) dr', (33) .

and the Green function of Laplace’s equation in these coordinates is

A, )= —jme(ker(er % _ (34)
0 )

The stability criterion for the vortex is simply that {' does not vanish. This also
excludes any discrete modes in the spectrum.

DIFFERENTIALLY ROTATING FLUID DISKS

Compressible generalizations of Kelvin’s vortices have lately prompted interest
regarding noise-generation problems in aerodynamic contexts!® and in disk theory
in astrophysics.?®?! In the latter sitvatians, we consider slender configurations like
the shallow-water shears considered earlier. These disks are essentially two-
dimensional being hydrostatically stratified in the vertical, and variations in thick-
ness provide the most important effects of compressibility. Equilibria are determined
by a surface density distribution, X(), in addition to the rotation rate, Q(r). If we
consider barotropic configurations that are not self-gravitating, but rotate abouit
some central mass, then a disturbance can be represented (to leading order in
thinness), in polar coordinates, by the velocity components u(r) exp im(d — vt) and
ofr) exp im(6 — vt), and by perturbation in the enthalpy, h(r) exp im(6 — vt), in the
midplane of the disk. The equations of motion can be written in the form

im(Q — vu —2Qv = —F, (35)
im(ﬂ-—v)v+{u=—-i7mh (36)
and
im(Q — v)o + -:j (rZu) + % Zv=0, (37)
where the surface density perturbation, g, is related to the midplane enthalpy by
o= f—;, (38)

with ¢, & function of the local vertical structure of the disk, or the local surface

gravity wave speed. The undisturbed vorticity has again, been represented by

{ = Q).

From these equations we can derive the relation,

1/ Y m> > 2 /Q%V
Q- \pkF) - —Sh|+=(=)h=0, 39
¢ v)[r(Dh) rzph 22 ]+r<D) 39

3

D = 2Q¢ — m¥Q — v~ (40)

This is the counterpart of (23) for the shallow-water shear. Like that equation, it is

- singular at the critical point, r =r, (the singularities for which D = 0, the so-called

Lindblad resonances are removable; these are the analogues of the tugning .points
(28) of the shallow-water problem discussed earlier), except for the case in which the

potential vorticity,
Q=1/%, (41)

is uniform. Then there are two regular solutions at the critica.l ring. This case corre-
sponds to the Couette, shallow-water shear flow example. Lfke that example, thc‘tc
would therefore appear to be no need for singular cigenfunctlons: a:nfi the regularity
of the pressure derivatives in (35) and (36) precludes us fron:x dividing througl} by
Q — v and adding a delta function. In other words, once again we cannot straight-

forwardly apply the method to (39). o )

In order to find the continuum modes we first consider an anelastic approx-
imation to the equations. This is obtained by taking the limit €, = . Then 'thc
surface gravity waves are filtered out of the problem and the continuity equation

becomes
Losy + 2so=o. 42)
r r.
We can introduce a stream function, ¥, to solve this equation. It is given by
i 1
= = - (43)
U=~ Yy and v > [/
In terms of this variable, we write the perturbed potential vorticity equation as
L) -2 y]-ov “9
"““”’[:(Ew) T7E ] A
This is a Rayleigh-like equation that generalizes the incompressible version, (30).

Since the source of the singularity is now evident, we can apply our meth?d to (44)
and derive singular eigenfunctions for this anelastic approximation. In particular, we

have g

1 r ’ m2 Ql.l'
(W)~ S Y= =+ 1) (4s)
1 r(E"b) V=7 0Ty *
for the potential vorticity fluctuation, with determined from a suitable Fredholm

equation. . ] ) N
To return to the full problem, we again write down the potential vorticity equa-

tion. Without approximation it is,

’ 2
- (Ev) - |-ov+@-we (46)



where now { = rXu, and

~ N s>
.-9’ = —r{[r’(ﬂ —v) E? h] + mr = h} a7

S

;l;hlmslslso;h; gcrcllcl:ahzati.on f)f the anelastic equation (44), and, on writing h and 4’ in
torms 't;nth its denvi«.ltlve, cqrresponds to (26) of the shallow-water example. In
oo tcﬁmb - e aflelfls:lc equation, we can divide (46) by @ — v, treating the singu-
il gmb]e]::?;:;}:p . value, and add a delta function. Eventually we solve a
‘As in the shallow-water problem, (46) contains t

easily di-slinguished i.n the anelastic limis. ?r)\ the disks p:;’gl:zsfh: Esnt‘:md:stezihg :;:l?
:ﬁ:c v;)[rltxhczlo motim c:tl;lcr .Rossb)./ waves or r modes, in analogy with the nomencla-
rs of ddinrz'jtc;d g;ophysmal fluid dynafmcs or stellar pulsation. These form a con-
Voo el thm:y the rlangt: of rotation speed, but, as suggested by Schutz and
yerdague ,(gmdicmsn}ay a ?o be some d1sc§ete modes as a result of topographical
e (&1 in surface density), which break the Laplacian structure of the

and side of (30). Moreover, when the potential vorticity reverses sign, we

V]olate thc gCIlcra]lzatlon Of RBYICl h S crite on alld unStablC deCay“l andC
1
g T / g

THE USES OF SINGULAR EIGENFUNCTIdNS

um;nﬁf)rcwou§ scctiogxs we have constructed eigenfunctions of the singular contin-

sum £ arr ahvancfy of lfieallzed pl:oblems. These eigenfunctions are characterized by
ssg:[l, : ts ages, pl:lnctpal-pa_lrt singularities and delta functions. As a result it is not

:;)uﬂib:i m(; a tdta SI{I%:C continuum mode with any finite amplitude onto the basic

state without immediately leaving the linear ime i i
, t in regime and introducin,
singular behavior at the critical la i iti .
t at | yer. An integral superposition of singul
however, with a distribution of amplitudes, A(x,) say, such as - WOdeS»

_ Ax A P(x; x,) s
S(x)=P | — X xT "H] M PX'; x
(x) J; ey dx, + [1 - L —-j%x——) dx’]A(x), (48)
;,wdhnot bc so pathological®* (principal-value integrals are well-behaved functions).
e have mtrodlgoeq a second dependence on x, into the arguments of ¢ in (48) to
explicitly reveal its implicit dependence through the Fredholm problem (6), and set
A=1to ma_kc the fon:m of the superposition more transparent. ,
.Intcgral superpositions like (48) can be used to represent an initial condition
which Fnables us to consider the initial-value problem. In fact, methods Borroweti, '
frqm smgu!ar mtcgra% 1:h<?orylo allow us to invert the intcgral,’relation (48), and to
write a.x.nphtlfdc dlsmbut}on, A(x), in terms of the initial condition, S(x). T,his pro-
cedure is typically complicatéd by the presence of discrete modes, but often we can
prove t!lat the combination of continuum and discrete modes ’can represent the
initial filsturbanoe.5 This establishes that the combination of the discrete and conti
uous eigenfunctions form a complete set of basis functions. .

Once we have a superposition like (48) to represent an imual wuunuuu:wo van
determine the evolution for all subsequent time and show the equivalence with the
solution of the problem using Laplace transforms.* This amounts to reinstating the
temporal dependence, exp(—ikct) or exp{—imvt) within the integral superposition
(48). Integrals of various physical quantities over the domain (such as the total vor-
ticity across the channel) then contain factors of the form, exp — ikU(x)t, within
their integrands. By the Riemann-Lebesgue lemma, these integrals must vanish as
t — co (unless there is some additional irregularity), revealing the usual phase-
mixing property of an ideal system. In many situations, the integrands can be
analyzed further to estimate the asymptotic temporal dependence. If this is exponen-
tial, we observe the fluid analogue of Landau damping, but in general, that pheno-
menon is overshadowed by algebraic decay.

Another application of a complete set of singular eigenfunctions is in pertur-
bation theory. Superpositions like (48) can be posed as approximate solutions about
which we can open asymptotic expansions. We can then attempt weakly nonlinear
theory and investigate the ideal limit of some dissipative systems. These amount to
avenues we intend to explore in the future.

A final issue that we have not mentioned until now is Hamiltonian structure.
The ideal fluid or plasma equations can be recast as Hamiltonian field theories.
Typically, these theories are not canonical in the sense that they do not have a
standard Poisson bracket.2* However, by defining a transformation to Hamiltonian
coordinates based on the amplitudes of the singular eigenfunctions, the Poisson
bracket can be transformed into a canonical form. Moreover, in these linear
“normal” coordinates, the Hamiltonian itself is diagonal and of iction-angle
form.>2%26 This indicates that the singular eigenfunctions. are in some sense the
intrinsic degrees of freedom of the linear fluid or plasma system, like the normal
coordinates that describe the modes of vibration in the classic triatomic molecule.
However, the degrees of freedom are not discrete in our case; we have a continuum
analogue in an infinite-dimensional Hamiltonian system.
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INTRODUCTION

Disks play a role in many astrophysical phenomena, typically as mixers of
angular momentum. In most cases, we can think of the disk as an astro-fluid-
dynamical phenomenon responsible for the redistribution of matter and angular
momentum in the universe, concentrating the matter at its center and dispersing the
sangular momentum as far from the center as possible. How the disk is able to mix
as efficiently as observations suggest is an unsolved problem, although it is unlikely
that there is an all-encompassing explanation satisfactory for all disks. The redistri-
bution of angular momentum this way in an orbital “flow” depends on there being
anisotropic internal stresses (viscosity) within the disk.! In a simple fluid, molecular
viscosity, turbulent viscosity, and wave interaction are important mechanisms for
providing such stresses, although molecular viscosity is negligible for most length
scales of the disk. When strong magnetic fields are present or the disk is very parti-
culate (to cite two examples) mixing may be dominated by magnetic or collisional
effects, respectively. However, even in the absence of these last two effects, the
behavior of a general continuum (fluid) disk is not a completely solved problem.
On the contrary, little is fully understood about the behavior of rapidly rotating
strongly sheared fluid layers, even as they occur in the laboratory. This study
addresses the disk in a simplified incarnation based on the premise that there are
fundamental fluid dynamical questions to be answered before developing more com-
plete models. While astronomical studies often stress the distinctions among differ-
ent manifestations of disks and relevant boundary conditions (source of material
infall, presence of a companion, etc.), we argue that some of the essential actions of
disks are performed by dynamical processes that occur on the shortest of all disk
timescales for which radial infall velocities (1,) and boundary conditions are largely
negligible.

THIN DISKS

We distinguish those disks that have a dominantly massive central object
(accretion disks in binary star systems) from those in which self-gravity is dominant
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