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This paper discusses a general method for approximating two-dimensional and quasigeostrophic
three-dimensional fluid flows that are dominated by coherent lumps of vorticity. The method is
based upon the noncanonical Hamiltonian structure of the ideal fluid and uses special functionals of
the vorticity as dynamical variables. It permits the extraction of exact or approximate finite
degree-of-freedom Hamiltonian systems from the partial differential equations that describe vortex
dynamics. We give examples in which the functionals are chosen to be spatial moments of the
vorticity. The method gives rise to constants of motion known as Casimir invariants and provides
a classification scheme for the global phase space structure of the reduced finite systems, based upon
Lie algebra theory. The method is illustrated by application to the Kida vortex@S. Kida, J. Phys.
Soc. Jpn.50, 3517~1981!# and to the problem of the quasigeostrophic evolution of an ellipsoid of
uniform vorticity, embedded in a background flow containing horizontal and vertical shear
@Meachamet al., Dyn. Atmos. Oceans14, 333 ~1994!#. The approach provides a simple way of
visualizing the structure of the phase space of the Kida problem that allows one to easily classify the
types of physical behavior that the vortex may undergo. The dynamics of the ellipsoidal vortex in
shear are shown to be Hamiltonian and are represented,without further approximationbeyond the
assumption of quasigeostrophy, by a finite degree-of-freedom system in canonical variables. The
derivation presented here is simpler and more complete than the previous derivation which led to a
finite degree-of-freedom system that governs the semi-axes and orientation of the ellipsoid. Using
the reduced Hamiltonian description, it is shown that one of the possible modes of evolution of the
ellipsoidal vortex is chaotic. These chaotic solutions are noteworthy in that they are exact chaotic
solutions of a continuum fluid governing equation, the quasigeostrophic potential vorticity equation.
© 1997 American Institute of Physics.@S1070-6631~97!00608-9#
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I. INTRODUCTION

An ubiquitous feature of fluid motion is the occurren
of long-lived localized vorticies. Notable naturally occurin
examples are the recirculating vorticies generated at vorti
fronts associated with western boundary currents in
ocean, Meddies~saline lenses that originate near the Strait
Gibraltar!, and Jupiter’s Great Red Spot and White Ova
Since such vortices can exhibit relatively uncomplicated
havior, several authors have developed low degree
freedom models to describe their dynamics.1–5 Melander
et al.2,3 used moments of the vorticity as dynamical variab
and showed that their reduced model was Hamiltonian.
model of Kida1 ~K hereafter! is also Hamiltonian, but Mea
chamet al.5 ~MPSZ hereafter! had some difficulty deciding
whether their stratified quasigeostrophic~QG! model was
Hamiltonian in the most general case. MPSZ used a class
Eulerian approach to determine a finite set of ordinary d
ferential equations~ODEs! that exactly described the motio
of a uniform ellipsoidal vortex in a shear flow given by
streamfunction that was quadratic in the spatial variab
For a restricted set of forms of this background shear, t
were able to obtain an appropriate Hamiltonian by inspec
of the ODEs. For the case of a general quadratic backgro
2310 Phys. Fluids 9 (8), August 1997 1070-6631/97/9(
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streamfunction, the ODEs did not yield their secrets
gracefully. In the present paper, a systematic proced
based upon the Hamiltonian structure of the ideal fluid eq
tions, is given for obtaining exact or approximate mome
reductions where the resulting finite degree-of-freed
model is manifestly Hamiltonian. We illustrate the procedu
by applying it to the problems of K and MPSZ.

In our application of the Hamiltonian reduction tec
nique to the Kida problem, Sec. III, we obtain a simple w
of classifying the possible types of phase space traject
This consists of looking at different ways in which Ham
tonian and Casimir surfaces can intersect in the thr
dimensional phase space. The different types of intersec
which are readily visualized, correspond to different types
physical behavior of the vortex~tumbling, nutation, and
stretching!. Useful choices of variables with which to repre
sent the Kida problem are already known, e.g., Ref. 2;
will see that they arise naturally in the Hamiltonian approa
once the problem has been couched in terms of normal
ordinates. We are led to similarly simplified sets of variab
in the more complicated problem of the quasigeostrop
ellipsoidal vortex in Sec. IV. The Hamiltonian reduction r
sults in a much simpler set of equations for the thre
dimensional problem than those derived by MPSZ. We go
8)/2310/19/$10.00 © 1997 American Institute of Physics
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to use these equations to demonstrate that one type of be
ior that the quasigeostrophic ellipsoid can undergo is a c
otic tumbling. Since solutions of the reduced Hamiltoni
equations for the quasigeostrophic ellipsoidal vortex are
act solutions of the inviscid quasigeostrophic govern
equations and since these latter equations are contin
equations, the chaotic solutions we observe correspon
chaotic behavior in a continuum model of a rotating stratifi
fluid.

The Hamiltonian form possessed by the ideal fluid eq
tions arises in many guises, because of the various varia
that are used to describe fluid motion. The natural Ham
tonian structure of the ideal fluid equations is most clea
seen when the fluid is represented in terms of Lagrang
variables. One describes the fluid as a continuum of fl
particles and it naturally inherits the Hamiltonian descripti
of particle mechanics.6,7 The Hamiltonian form of point vor-
tex dynamics8 and the Hamiltonian form of the Euler equ
tions in terms of Clebsch potentials9 can be shown to arise
from this underlying structure. However, in terms of Eu
rian variables, the Hamiltonian nature of ideal fluids is le
immediately evident. The degenerate Lagrange brac
description,10,11 the commutator description,12 and the non-
canonical Hamiltonian description in terms of a degener
Poisson bracket13 can also be shown to arise from the und
lying Lagrangian form. The same is true for the noncano
cal Hamiltonian description of vortex dynamics in three13,14

and two15–17 dimensions. It is this latter description that
the starting point of this paper.~For review see the works b
Salmon18 and Morrison.19! We now briefly sketch this non
canonical formalism.

The noncanonical Hamiltonian description amounts
writing the fluid equations in the form

]x

]t
5$x,H%, ~1!

wherex(x,t) is a shorthand for the set of fluid variable
e.g.,ru, r,..., andH@x# is the Hamiltonian functional. The
noncanonical Poisson bracket,$,%, has the following form for
Eulerian media fields:

$F,G%5 K x,FdFdx
,
dG

dx G L , ~2!

whereF andG are functionals,̂,& is ~for the purposes here!
an integration over the volume corresponding to the spa
variablex, and the functional derivative is defined by

dF@x;dx#5: K dx,
dF

dx L . ~3!

The bracket of~2! is a Lie algebra product for functionals
i.e., is bilinear, antisymmetric, and satisfies the Jacobi id
tity, ˆF,$G,H%‰1 ˆG,$H,F%‰1 ˆH,$F,G%‰5 0,provided the
‘‘inner bracket’’ @,# is a Lie algebra product for functions
Brackets of the form of~2! are called Lie–Poisson bracket
The analogous bracket in finite degree-of-freedom syst
can be written out in coordinates as follows:

$ f ,g%5zkck
i j ] f

]zi
]g

]zj
, i , j ,k51,2,...,N, ~4!
Phys. Fluids, Vol. 9, No. 8, August 1997
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where f andg are functions of the dynamical variableszi ,
which span the phase space, and the quantitiesck

i j are the
structure constants for some Lie algebra. Repeated sum
tation is used here~and henceforth!.

Suppose now that a physically significant class of fun
tionalsF andG of ~2! is comprised of those that depend o
x only as functions of a finite set of simpler functionals ofx.
We will call these simpler functionals, ‘‘moments ofx,’’ and
refer to the class asF . What we mean by moments can b
left fairly general, but we have in mind a procedure th
involves integration over the spatial variables. The num
of moment variables may be arbitrarily large. Since var
tionsdx induce variations in the moments, the chain rule c
be applied to map the bracket of~2! to one on the moments
This procedure results in a bracket where the inner brack
a filteredLie algebra product.20,21Significantly, it is possible
to obtain reduced descriptions in terms of a finite number
the moments where the Lie algebra product is closed. De
of the general mathematical structure will not be presen
here, rather we will demonstrate this by specific example

The moment reduction described above does not give
whole story, since specification of the dynamics requires
Hamiltonian as well as the Poisson bracket. The above p
cedure is only of interest if the Hamiltonian belongs toF or
can be sufficiently closely approximated by an element ofF ,
i.e., if the Hamiltonian can be written in terms of these va
ables. In general, this is not possible. However, for a
stricted class of initial conditions it may be possible, which
the case for the examples presented here. Alternatively, t
may exist an expansion in terms of a small parameter
renders the Hamiltonian a function of the moments. This
the case for the Hamiltonian structure in terms of mome
given by Melanderet al.,2 which has been generalized t
include background flow and worked out from first pri
ciples by the methods presented here.22,23

The paper is organized as follows. In Sec. II, we revie
the noncanonical Hamiltonian structure for a class
vorticity-like systems and sketch the general procedures
moment reduction. Then, in Sec. III, we illustrate this wi
the Kida1 exact reduction. Kida obtained the equations
motion for an elliptical vortex patch in a background flow
where the dynamics involves time dependence of the elli
aspect ratio and angle of orientation. Later, in anad hoc
manner, Melanderet al.2 and Meachamet al.4 showed that
Kida’s equations were Hamiltonian. Here, we briefly revie
the Kida reduction and derive the Hamiltonian structure
projecting the noncanonical Poisson bracket for the tw
dimensional Euler equation onto quadratic moments of
vorticity. Constants of motion are described and related
the underlying Lie algebra structure, where new and natu
sets of canonical variables are obtained. A qualitative
scription of the motion is given by comparing the dynam
of the Kida vortex, which is shown to possess a phase sp
described by the Lie group SO~2,1!, to that of the free rigid
body, which posseses the phase space SO~3!.

As a model for an intrathermocline vortex in a she
flow, Meachamet al.5 considered a blob of uniform potentia
vorticity embedded in an unbounded, uniformly stratifie
quasigeostrophic flow. The motivation for this work, whic
2311Meacham et al.
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is a generalization of the Kida reduction to an ellipsoid in t
quasigeostrophic flow, was to understand the conditions
der which a shear flow might cause a vortex to break up
MPSZ it was conjectured, but not shown, that the equati
which describe the ellipsoid are Hamiltonian. In Sec. IV th
is shown by beginning from the noncanonical Poiss
bracket that describes continuously stratified quasig
strophic flow and projecting onto moments. The result
moment algebra is decomposed into the direct sum of se
simple and solvable components. The decomposition all
one to obtain the Casimir constants of motion and points
natural sets of variables which can be used to classify
dynamics. In the absence of vertical shear, the system
integrable. Using the equations of motion based on the n
ral variables, we consider the way in which phase trajecto
are perturbed by the addition of weak vertical shear.
demonstrate empirically the presence of chaotic dynam
near homoclinic trajectories in the original system.

In Sec. V the paper is summarized, concluding rema
are given, and generalizations are suggested.

II. VORTEX DYNAMICS AND MOMENT REDUCTION

A. Review of the noncanonical Hamiltonian
structure of vorticity-like systems

Consider a class of vorticity-like systems with dynam
governed by

]q̃

]t
1@c̃, q̃#50, ~5!

whereq̃(x,y,z,t) is a vorticity-like variable,

@ f , g#:5
] f

]x

]g

]y
2

]g

]x

] f

]y
~6!

is the normal Jacobian or Poisson bracket, andc̃ is a
‘‘streamfunction’’ that is related toq̃ by means ofq̃5Lc̃,
where the linear operatorL is formally self-adjoint, i.e.,

E
D
fLg dx dy dz5E

D
gL f dx dy dz. ~7!

HereD, the domain of integration, can be taken to beR2 in
the case of the two-dimensional~2-D! Euler equation. The
conserved fieldq̃(x,y,t) is the scalar vorticity, andL: 5 ¹2

5 ]2/]x21 ]2/]y2 so that

q̃5¹2c̃5S ]2

]x2
1

]2

]y2D c̃. ~8!

For continuously stratified quasigeostrophic flow, the dom
is R3, q̃(x,y,z,t) is the potential vorticity, and

q̃5S ]2

]x2
1

]2

]y2
1

]

]z

f̂ 2

N2

]

]zD c̃, ~9!

where f̂ is the Coriolis parameter andN(z) is the Brunt–
Väisälä frequency. In the case of uniform stratificatio
which we assume in Sec. IV,z can be scaled byN/ f̂ so that
the potential vorticity relation becomes isotropic:q̃
2312 Phys. Fluids, Vol. 9, No. 8, August 1997
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5 (]2/]x2 1 ]2/]y2 1 ]2/]z2)c̃. Multi-layer quasigeostrophic
potential vorticity dynamics and other systems are given
different choices forL.

The noncanonical Poisson bracket for this class
system15,24 is given by

$F,G%5E
D
q̃ FdFdq̃

,
dG

dq̃ G dx dy dz, ~10!

from which ~5! is obtained in the form

]q̃

]t
5$q̃,H̃%, ~11!

with the Hamiltonian functional given by

H̃@ q̃#52
1

2 E
D
q̃c̃ dx dy dz. ~12!

The evolution equation~11! can be verified by observing tha
dH̃/dq̃ 5 2c̃, making use of the identity

E
D
f @g, h# dx dy dz52E

D
g@ f , h# dx dy dz, ~13!

from integration by parts and the neglect of surface ter
~which is justifiable in the case of interest here wheref has
compact support!, and by using the relation

dq̃~x8,y8,z8,t !

dq̃~x,y,z,t !
5d~x2x8!d~y2y8!d~z2z8!,

which follows from ~3!.
In the examples considered below, we wish to inclu

stationary background flows with horizontally uniform vo
ticity, q̄(z) and streamfunction,c̄. The uniformity of q̄
means that integrals such as those in~7! may not formally
converge. This is easily remedied as follows. We introdu
the decomposition

c̃5c̄~x,y,z!1c~x,y,z,t !,

q̃5q̄~z!1q~x,y,z,t !, H̃5H̄1H@q#,

whereq5 Lc and

H52E qS c̄1
1

2
c D . ~128!

We will make the restriction that the perturbation vorticit
q, has compact support, although this could be relaxe
little. Then, using the self-adjoint property ofL, we have that

dH

dq
52~ c̄1c!.

The perturbation vorticity satisfies an evolution equati
similar to ~5!:

]q

]t
1@c̄1c,q#50. ~58!

Defining a new Poisson bracket

$F,G%5E
D
qFdFdq

,
dG

dq G dx dy dz, ~108!
Meacham et al.
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this becomes

]q

]t
5$q,H%. ~118!

In addition to the modified Hamiltonian~128! ~the ‘‘excess
energy’’!, the system~5! conserves the Casimir invariant

C@q#:5E
D
C ~q! dx dy dz, ~14!

whereC is an arbitrary function. Casimir invariants are d
fined by

$C,F%50, ~15!

for all functionalsF. This type of invariant is a property o
the noncanonical Poisson bracket and should be dis
guished from invariants that depend upon the particular fo
of the Hamiltonian, namely,

$P,H%50. ~16!

Of course,$P%.$C%. The following linear momenta are ex
amples of this latter type of invariant:

Py52E
D
xq dx dy dz, Px5E

D
yq dx dy dz, ~17!

and follow if H has spatial symmetries~invariance with re-
spect to translations iny andx!.

B. Reduction

There are physical situations in which parts of the flu
are behaving coherently so that the number of ‘‘interestin
degrees of freedom is finite, at least over some limited tim
Examples include the evolution of a vortex blob of finite si
in an external shear flow and the interactions of multi
blobs of vorticity. In the latter case, though, the vortex blo
may eventually filament in a complicated way; if they are n
too close together, in the initial phase of their evolution t
blobs will behave qualitatively like point vortices. In th
phase, the many internal degrees of freedom that corresp
to rearrangement of fluid parcels within each vortex may
relatively unimportant. We are interested in obtaining a
nematic reduction that allows us to focus on the degree
freedom that dominate the dynamics when the vorticity fi
is distributed in coherent lumps. This amounts to finding
particular set of reduced variables for describing the dyna
ics that contain less information thanq(x,y,z,t). In general,
this approach will yield low-orderapproximationsto the full
equations of motion. However, there are special cases
which the reduced equations are an exact representatio
the flow dynamics. We provide examples of exact reduct
in Secs. III and IV. Since we would like the set of reduc
variables to inherit a Hamiltonian structure, we begin w
the Poisson bracket of~108!. In actuality, we are seeking
Lie subalgebra associated with this bracket; this amount
expressing the Poisson bracket in terms of projections oq,
which will be seen to be an exercise in the chain rule
functional derivatives.

Suppose we have a set of functionsmj (x,y,z) and define
the projections ofq on them
Phys. Fluids, Vol. 9, No. 8, August 1997
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aj5E
D
mjq dx dy dz. ~18!

If the set of functionsmj is not complete, the transformatio
betweenq and thea’s is not invertible; however, the chain
rule can still be effected in ‘‘one direction.’’ To this end
suppose that the functionals ofq that we choose to deal with
are restricted so that their dependence onq occurs only
through functions,f , of the momentsa, i.e.,

F@q#5 f ~a!, ~19!

and consider variations ina that are induced by arbitrary
variations inq:

dai5E
D
midq dx dy dz. ~20!

Variations inF and f are thus related according to

dF@q;dq#5E
D

dF

dq
dq dx dy dz

5d f ~a;da!5
] f

]ai
dai5

] f

]ai EDmidq dx dy dz.

~21!

Sincedq is assumed to be arbitrary, comparison of the s
ond and last terms of~21! results in

dF

dq
5

] f

]ai
mi . ~22!

Substitution of~22! and a counterpart for the functionalG
into ~108! yields

$F,G%5
] f

]ai
]g

]aj EDq@mi , mj # dx dy dz5:$ f ,g% ~23!

with

$ f ,g%5:
] f

]ai
Ji j

]g

]aj
, ~24!

where the matrixJ, the cosymplectic form, is given by

Ji j5E
D
q@mi , mj # dx dy dz. ~25!

The crucial closure property necessary for reduction is e
dent from~25!, namely thatJ can be expressed in terms o
the reduced variables,a. The moment reduction used belo
is a special case of a more general situation where reduc
leads to Lie–Poisson form: if

@mi , mj #5ck
i jmk, ~26!

the cosymplectic form becomes

Ji j5ck
i j ak ~27!

and the Poisson bracket takes the form~4! with the ai vari-
ables serving as coordinates.
2313Meacham et al.
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III. QUADRATIC MOMENT REDUCTION—THE KIDA
PROBLEM

A. Kida review

The Kida reduction presupposes a two-dimensio
~z-independent! velocity field composed of an elliptical patc
of uniform vorticity in a background shear flow. It is a
sumed that the elliptical vortex patch has unit vorticity, a
that the background flow is given by a quadratic streamfu
tion,

c̄5 1
4v~x21y2!1 1

4e~x22y2!, ~28!

wherev is the background vorticity and the principal rates
strain in the directionsy 5 6x are6 1

2e. Kida
1 showed that

the subsequent evolution of the vortex patch maintains
elliptical shape, though the semi-major and semi-minor a
of the ellipse,a andb respectively, and the ellipse orienta
tion, f, are time dependent and governed by

ȧ5
a

2
e sin 2f,

ḃ52
b

2
e sin 2f, ~29!

ḟ5
ab

~a1b!2
1
1

2
v1

1

2
e
a21b2

a22b2
cos 2f.

Incorporating the constraint of area preservation, these e
tions may be simplified,

l̇52el sin 2f
~30!

ḟ5
l

~11l!2
1

v

2
1
e

2

11l2

12l2 cos 2f,

wherel: 5 b/a is the aspect ratio of the ellipse.
The above equations can be expressed as a sim

Hamiltonian system with one degree of freedom:1,2,4,25

l̇5
1

2 S l2

12l2D ]H

]f
,

~31!

ḟ52
1

2 S l2

12l2D ]H

]l
,

where the Hamiltonian is given by

H5e
12l2

l
cos 2f1v

11l2

l
12 ln

~11l!2

l
. ~32!

Equations~31! are Hamiltonian and canonical up to the pre
actor 12l

2/(1 2 l2), which is easily transformed away. Oth
canonical variables are discussed in Sec. III H.

B. Bracket quadratic moment reduction

For ellipses, the quadratic moments completely char
terize the orientation and aspect ratio. Therefore we s
examine the projection ofq onto the functions

m15x2, m25xy, m35y2, ~33!

with the moments given by
2314 Phys. Fluids, Vol. 9, No. 8, August 1997
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ai5E
D
qmi dx dy, i51,2,3. ~34!

The closure property necessary for reduction,~26!, follows
by examining the product@mi , mj #:

@m1, m2#52x252m1, @m1, m3#54xy54m2,

@m2, m3#52y252m3. ~35!

Therefore, the matrixJ can be written in terms of the mo
ments as follows:

J5S 0 2a1 4a2

22a1 0 2a3

24a2 22a3 0
D . ~36!

SinceJ is proportional toa, this has the Lie–Poisson form
c.f. ~4!. In Sec. III D we will discuss the corresponding L
algebra. Consequences of the form ofJ are discussed in
Secs. III C and III D below. We postpone a consideration
H until Sec. III E.

The closure property observed above occurs for q
dratic and lower moments, but in general fails for collectio
containing higher moments. However, there do exist spe
sets of higher moments that result in closure.

C. Casimir invariant of reduced system

As observed in Sec. II, associated with noncanoni
Poisson brackets are special invariants known as Casimi
variants, which for the finite-dimensional bracket obtain
above satisfiy

$ f ,C%5
] f

]ai
Ji j

]C

]aj
50, ~37!

wheref is an arbitrary function. Sincef is an arbitrary func-
tion, the phase space gradient of a Casimir invariant co
sponds to a null eigenvector ofJ. Since

S 0 2a1 4a2

22a1 0 2a3

24a2 22a3 0
D S a3

22a2

a1
D 50, ~38!

it is seen that

C5a1a32~a2!2 ~39!

is a Casimir and hence a constant of the motion.
In terms of the vorticity,q,

C5F E
D
x2q dxdyGF E

D
y2q dxdyG2F E

D
xyq dxdyG2.

~40!
Observe that by Schwarz’s inequality,C>0 whenq is uni-
form. C has a simple physical interpretation whenq is uni-
form within an elliptical area centered on the origin~Kirch-
hoff’s elliptical vortex!. Then,

C5
q2

16p2 ~Area!4. ~41!

In this case, constancy ofC is equivalent to constancy of th
vortex area.
Meacham et al.
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We can make a related interpretation ofC in the case of
a spatially varying vorticity distribution with a Gaussian pr
file,

q~x,y!5Q
Al1l2

2p
e2~1/2!~l1x

21l2y
2!. ~42!

Contours of constantq are ellipses with semi-major an
semi-minor axes in the ratio (l1 /l2)

1/2. The area within the
contour

x2l11y2l251

is

ASD5
p

Al1l2

,

and the value of the Casimir is

C5Q2
p2

16

1

l1
2l2

2 .

Thus

C5
Q2

16p2 ~ASD!4. ~43!

Equation~43! remains true even when the orientation of t
elliptical Gaussian is rotated around the origin. Again we
that C is related to the fourth power of the area inside
particular vorticity contour of the vorticity distribution. Thi
should remain true for any smooth vorticity distribution th
contains vorticity of only a single sign and has a single
tremum. However, it is unclear how to generalize this int
pretation ofC when the vorticity distribution is more com
plicated.

D. Lie algebra normal coordinates

The matrix~36!, being linear in the dynamical variable
is of Lie–Poisson form and can be written as

Ji j5ck
i j ak, ~44!

where, as noted above,ck
i j are the structure constants fo

some Lie algebra. Since the indices range over 1,2,3, this
algebra is of dimension three. It is known26 that all Lie alge-
bras of dimension three belong to one of nine equivale
classes, where equivalence is defined by identification un
real coordinate transformations. It remains to determ
which algebra is associated with~36!. This is an easy task
which can be based upon a quantity called the Killing for
and leads to natural sets of coordinates, both for the alg
and for the dynamics of the Kida problem.

The Killing form, for the purposes here, is defined by

gi j :5ck
itct

jk . ~45!

Sincegi j is symmetric under the interchange ofi and j , it
possesses three real eigenvalues. If none of these eigenv
vanish, i.e.,gi j is nondegenerate, then the algebra is cal
semi-simple. This is the case for the algebra associated w
~36! for which the Killing form is
Phys. Fluids, Vol. 9, No. 8, August 1997
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28S 0 0 2

0 1 0

2 0 0
D . ~46!

The eigenvalues of~46! are 8 and616. There are two semi
simple Lie algebras of dimension three, which are dist
guished by the signature of the eigenvalues: either all
eigenvalues have the same sign or one sign is different.
first case is so~3!, the Lie algebra associated with the L
group SO~3!, the group of rotations, while the second cas
which applies to the algebra of~3.9! that was obtained here
by reduction of the noncanonical bracket, is so~2,1!, the al-
gebra associated with the group SO~2,1!, where the argu-
ments indicate the number of eigenvalues with positive a
negative signs, respectively.

In terms of the Killing form, the Casimir invariant fo
semi-simple algebras can be written as follows:

C5gi j a
iaj , ~47!

wheregi j is the inverse ofgi j . For the case here,~47! is
equivalent to~39!. In order for the expression~47! to be a
Casimir it must satisfy

Ji j
]C

]aj
52ck

i j gjta
tak50. ~48!

With at 5 :gtaaa anda
k 5 :gkbab , ~48! is equivalent to

ck
i j gjtg

taaag
kbab5ck

iagkbabaa5ck
iact

klcl
btabaa50, ~49!

where the first equality follows fromgitg
ta5d i

a and the sec-
ond from ~45!, the definiton ofgkb. To establish the las
equality we use the Jacobi identity for the structure co
stants,

ck
iact

kl1ck
alct

ki1ck
li ct

ka50, ~50!

which results in

ck
iact

klcl
btabaa52ct

ki~cl
btck

al2cl
atck

bl!abaa50, ~51!

where the last equality is now evident because of the a
symmetry ina andb of the term in parentheses.

One can definenormal coordinatesas those in which the
Killing form is diagonal. For our present system normal c
ordinates can be obtained by the following orthogonal tra
formation:

z15~a11a3!/A2, z25a2, z35~a12a3!/A2,

or equivalently

z5Aa, A5
1

A2 S 1 0 1

0 A2 0

1 0 21
D .

The associated cosymplectic matrix transforms according

J̃5AJAT5S 0 2z3 24z2

22z3 0 22z1

4z2 2z1 0
D

and can be expressed asJ̃i j 5 : c̃ k
i j zk, which defines the struc

ture constants in terms of the normal coordinates.
2315Meacham et al.
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In what follows, we will use a nonorthogonal transfo
mation to an alternative set of normal coordinates which
the advantage of making the Casimir symmetric with resp
to z2 andz3 and simplifying the cosymplectic matrix, i.e.,

z15~a11a3!/4, z25a2/2, z35~a12a3!/4, ~52!

or equivalently

z5Aa, A5
1

4 S 1 0 1

0 2 0

1 0 21
D . ~53!

The corresponding cosymplectic matrix transforms as

J̃5AJAT5S 0 z3 2z2

2z3 0 2z1

z2 z1 0
D ~54!

and can be expressed asJ̃ i j5: c̃ k
i j zk, which defines the

structure constants in terms of the normal coordinates.
In the normal coordinates, the Casimir invariant po

sesses the following diagonal form:

C54@~z1!22~z3!22~z2!2#. ~55!

The surfaces of constant Casimir are hyperboloids of re
lution with theOz1 axis the axis of symmetry. Since thes
surfaces extend to infinity, the algebra so~2,1!, although
semi-simple, is not compact. We note thatC is a homoge-
neous polynomial inzi . We can rescale any positive value
C simply by applying a uniform rescaling to thezi without
affecting the nature of the kinematical constraint imposed
the Casimir. Similarly we can rescale any negativeC into
any other negativeC. Whether or not this rescaling affec
the dynamicsof the motion will depend on how the Hami
tonian is affected by the rescaling. In the particular case
the Kida ellipse, we know27 that the dynamics are insensitiv
to the area of the vortex and so inspection of~41! tells us that
the way in which trajectories on any single positive Casim
surface vary ase andv are varied~and so as the positions o
constantH surfaces vary! will provide a representative pic
ture of all of the possible behavior of the elliptical vortex
shear. In Sec. III E, we will choose to fix the area of t
elliptical vortex atp which means thatC5p2/16.

E. Hamiltonian moment reduction

Now we return to the remaining task of reduction, wr
ing the Hamiltonian~32! in terms of the moments. It is at thi
point of the reduction process that we introduce the assu
tion that the initial condition for the vortex dynamics is a
elliptical vortex patch. Since, as Kida1 has shown, an initially
elliptical vortex remains elliptical in background flows of th
form of ~28!, the reduction is exact. The crucial reason
this is that the Hamiltonian can be written exactly in terms
the quadratic moments,a, which in turn determine the sem
axes and orientation of the ellipse.

The centroid position is determined by the linear m
ments, which together with the quadratic moments form
closed algebra. However, for the Kida problem these m
ments are not needed, since in the background flow~28! the
2316 Phys. Fluids, Vol. 9, No. 8, August 1997
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vortex centroid remains fixed. In the case of two or mo
vortex patches with dynamics as described in Refs. 2,
and 23, the linear moments possess time dependence.

Relative to the fixed coordinate frameOxy, the principal
axes of the ellipse are determined by the time-dependent
entationf(t), as described in Sec. III A. We define coord
nates x̃:5( x̃,ỹ) in the frame instantaneously co-rotatin
with the ellipse:

x̃5MTx, ~56!

where

MT5S cosf sin f

2sin f cosf D . ~57!

Using ~56!, moments in the co-rotating frame can be relat
to those relative to the nonrotating frame.

The Hamiltonian is the excess energy for the syste
i.e., with the logarithmic divergence subtracted off, and h
two parts, one associated with the background flow~28! and
a contribution due to the elliptical vortex patch:

H52E
D
qS c̄1

1

2
c D dxdy5:H1H8, ~58!

whereq 5 ¹2c is unity inside the ellipse and zero outsid
andH8 describes the self-interaction.

From ~28! we have

c̄5 1
4~v1e!m11 1

4~v2e!m3. ~59!

Recall thatv is the background vorticity ande is the back-
ground strain. From~59! the first term of the Hamiltonian is
readily calculated:

H52 1
4~v1e!a12 1

4~v2e!a3.

To evaluate the self-interaction term we use the expres
for the streamfunction due to an elliptical vortex patc
which can be found in the work by Lamb~art. 159!,27

c

5H 1

2

l x̃ 21 ỹ 2

11l
2
1

4
1c0 , j,j0 ,

1

2
~j2j0!2

1

4

l21

l11
e22~j2j0! cos 2f1c0 , j.j0 ,

~60!

wherej is an elliptical coordinate,

x̃5A~12l2!/l coshj cosf,
~61!

ỹ5A~12l2!/l sinh j sin f,

and tanhj05l. Here we have normalized the area of t
ellipse top so that the semi-major and semi-minor axes
l21/2 andl1/2, respectively. Note that this fixes the value
the Casimir surface, on which the motion lies, to beC
5p2/16. The quantityc0 is necessary for obtaining the co
rect behavior at infinity.28 This quantity is not trivial since it
depends upon the time-dependent ellipse aspect ratio,l. To
see this, we writec in terms of the Green’s function a
follows:

c5E
D
G~ ux2x8u!q~x8! dxdy, ~62!
Meacham et al.
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and observe that this expression asymptotes to

c;G~r !E
D
q dx dy2

1

r 2
G8~r !x•E

D
x8q dx8dy8. ~63!

The terms of~63! are, respectively, the monopole and dipo
terms of the two-dimensional multipole expansion. The i
portant point here is that this representation of the stre
function has only a ln(r) term, with no constant term. Requi
ing the same of expression~60! selectsc0 . Since

j2j0; ln~r !1 1
2 ln~l!2 ln~11l!1 ln~2!, ~64!

the asymptotic form ofc, according to~60!, is

c; 1
2 ln~r !1 1

4 @ ln l22 ln~11l!#1 1
2 ln~2!1c0 .

~65!

Thus

c052
1

4
ln

l

~11l!2
1const52

1

4
ln V1const, ~66!

whereV: 5 l/(1 1 l)2 is the natural rotation rate of th
Kirchhoff ellipse. The constant terms do not depend on
time-dependent ellipse parameters and therefore can
dropped from the Hamiltonian.

We can now evaluate the self-interaction energy. Fi
the part of the streamfunction that depends uponx̃ and ỹ
yields

2
1

4 E
D

l x̃ 21 ỹ 2

11l
dx dy52

p

16

l11

11l
52

p

16
, ~67!

which is constant and can be dropped. The integral of
21

4 term likewise is not important. This leaves only the co
tribution fromc0 . Using Eq.~67! and the fact that the are
of the vortex has been set top gives

H85
p

8
ln V. ~68!

The complete Hamiltonian is thus

H52
1

4
~v1e!a12

1

4
~v2e!a31

p

8
ln V. ~69!

In ~69! H still depends uponl in addition to the moments
a1 anda3. It remains for us to express the rotation frequen
V~l! in terms of the moments. The moments are seen to

a15
p

4
~l21 cos2 f1l sin2 f!,

a25
p

4
~l212l!sin f cosf, ~70!

a35
p

4
~l21 sin2 f1l cos2 f!,

Equations~70! imply
Phys. Fluids, Vol. 9, No. 8, August 1997
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a11a35
p

4 S 1l 1l D ,
a12a35

p

4 S 1l2l D cos 2f,
~71!

a1a32~a2!25
p2

16
,

4

p S a11a31
p

2 D5
~11l!2

l
.

Using the last of Eqs.~71!, V can be expressed in terms o
the moments as follows:

V215
4

p S a11a31
p

2 D . ~72!

The remaining equations of~71! are recorded for later use
The Hamiltonian,H, is then given by

H~a!52
1

4
~v1e!a12

1

4
~v2e!a3

2
p

8
lnFa11a31

p

2 G , ~73!

where we have dropped a constant term. Making use of

a152~z11z3!, a352~z12z3!, a252z2, ~74!

the Hamiltonian in terms of the coordinatesz of Sec. III D
becomes

H~z!52vz12ez32
p

8
lnFz11 p

8 G1const ~75!

and is2p/16 times the quantity~32!.

F. Equations of motion

The equations of motion, either in terms ofa or z, are
given in a straightforward manner. Using

ȧi5$ai ,H%5Ji j
]H

]aj
, ~76!

with ~36! implies

ȧ152a1
]H

]a2
14a2

]H

]a3
,

ȧ252a3
]H

]a3
22a1

]H

]a1
, ~77!

ȧ3524a2
]H

]a1
22a3

]H

]a2
,

where, with~73!, we arrive at the noncanonical Hamiltonia
system

ȧ152a2H v2e1

p

2

a11a31
p

2

J ,
2317Meacham et al.
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ȧ25
1

2 H e~a11a3!1v~a12a3!1

p

2
~a12a3!

a11a31
p

2

J ,

~78!

ȧ35a2H v1e1

p

2

a11a31
p

2

J .

Similarly, using~54! and ~75! in

żi5$zi ,H%5 J̃ i j
]H

]zj
~79!

yields

ż15ez2,

ż25ez11z3H v1
p/8

z11p/8J , ~80!

ż352z2H v1
p/8

z11p/8J .
As a check, we show that Eqs.~78! imply ~30!, the equations
derived by Kida. Differentiating~71! yields

l̇~12l22!
p

4
5~ ȧ11ȧ3!52ea2

52
p

4
el~12l22!sin 2f, ~81!

where the last equality follows from~70!. Therefore

l̇52el sin 2f. ~82!

Similarly, from ~71!,

~ ȧ12ȧ3!
4

p
5

d

dt
~l212l! cos 2f

52l̇~l2211!cos 2f

22~l212l!sin 2fḟ, ~83!

while from ~78! and ~70!

~ ȧ12ȧ3!
4

p
52~l212l!sin 2fH v1

2l

~11l!2J . ~84!

Equating the terms of~83! to ~84! and making use of~82!
yields

ḟ5
l

~11l!2
1

v

2
1
e

2

11l2

12l2 cos 2f. ~85!

Equations~82! and ~85! are the equations of Kida.

G. A geometric characterization of dynamics:
Comparison to rigid body

From the preceding sections it is evident that in t
Hamiltonian description of a dynamical system, one can d
tinguish two aspects: the ‘‘dynamics’’ as embodied in t
2318 Phys. Fluids, Vol. 9, No. 8, August 1997
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form of the Hamiltonian and the ‘‘kinematics’’ represente
by the algebraic properties of the underlying cosymplec
structure. In the case of three-dimensional systems like
of the Kida problem, the kinematics implies that the syst
is integrable, i.e., that one can use the Hamiltonian and
Casimir invariant to write down a quadrature that determin
the dynamics. For systems of this type there is a geometr
way to understand the qualitative nature of the solutions.
demonstrate this, we now compare the Kida problem to
free rigid body.~This should be compared to the charact
izations given by Meachamet al.4 and Baylyet al.25!.

The free rigid body is governed by Euler’s equation
which is the statement of zero torque in the rotating princi
axes frame of reference. They can be written as follows:

l̇ i5$l i ,H%52e i jk l k

]H

]l j
, ~86!

wherel is the angular momentum, and

H~ l !5
1

2 S l 1
2

I 1
1
l 2
2

I 2
1
l 3
2

I 3
D , ~87!

with I 1 , I 2 , and I 3 being the three principal moments o
inertia. The structure constants,e i jk , are represented by th
Levi–Civita symbol for the completely antisymmetric tenso
~Note, since the structure constant is completely antisymm
ric all the indices have been written in the down positio
Repeated indices are still summed.! The algebra associate
with the cosymplectic form in this case is so~3! and the Ca-
simir invariant is the square of the magnitude of the angu
momentum,

C~ l !5l 1
21l 2

21l 3
2. ~88!

Conventionally, the qualitative description of the rigid bod
dynamics is given by examining the intersection of the C
simir sphere with the Hamiltonian ellipsoid. This is depict
in Fig. 1, where we have selected a value forC and then used
a grey scale to show the values ofH on the Casimir surface
Lines of constant shading correspond to the curves al

FIG. 1. An isosurface of the Casimir,C, for the rigid body problem,~86!–
~88!. The value of the Hamiltonian on this surface is shown by the shad
Trajectories are constrained to follow lines of constant shading~Hamil-
tonian! on the Casimir surface.
Meacham et al.
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llow
which the Hamiltonian ellipsoids intersect the Casim
sphere. The principal moments of inertia are assumed to
distinct. AsH increases, we first observe a point of tangen
which corresponds to the equilibrium point of rotation abo
the axis of the dominant principal moment of inertia. T
nearby ellipses of intersection, for larger values ofH, indi-
cate that this equilibrium point is stable. AsH is increased
further the point of tangency corresponding to the equi
rium point of rotation about the intermediate principal axis
observed. Nearby locally hyperbolic intersections indic
that this equilibrium point is unstable. Finally, for still large
values ofH the point of tangency corresponding to stab
rotations about the smallest principal axis is seen. Hence
examination of the intersection has characterized the equ
rium points and qualitative nature of the solutions of th
system.

For the Kida problem in normal coordinates,z, the Ca-
simir surfaces are hyperboloids of revolution and theOz1

axis is an axis of symmetry. From~41!, we see that, on
physical grounds, we are restricted to the sheetsC.0. These
fall into two groups—those wholly above the planez150
and those wholly below. Sincea1 1 a3 must be>0, we have
that z1>uz3u and so we are restricted to the sheets
z1.0. These surfaces are depicted in Fig. 2. A simplificat
occurs in the Kida problem because, in terms of thez coor-
dinates, the Hamiltonian has a symmetry direction; i.e., i
independent ofz2. Surfaces of constantH are curved sheet
with symmetry in thez2 direction and these sheets can inte
sect the Casimir hyperboloid in various ways depending
the parametersv ande. Because of the symmetry we nee
only examine these intersections in thez1z3 plane in order to
understand the motion. In Fig. 2 the various kinds of int
sections are depicted. Case~a! of the figure shows intersec
tions of the Hamiltonian surface with the Casimir hyperb
loid that correspond to two types of trajectory. One is a cu
that extends to infinity and is topologically equivalent to
hyperbola.~The reader must imagine the continuation of t
intersection in thez2 coordinate.! This type of intersection
represents a continual elongation of the elliptical vor
patch; it typically occurs when the background straine is
large. The second corresponds to an intersection that is t
logically circular but does not enclose thez1 axis. The mo-
tion in this case corresponds to nutation of the elliptical v
tex patch. Case~b! of the figure represents an intersecti
that corresponds to a closed curve, topologically equiva
to a circle thatdoesenclose thez1 axis. This type of inter-
section represents a rotation of the elliptical vortex pa
with periodic dependence in the aspect ratio,l. From Eqs.
~52!, ~70!, and ~71! we see that motion around the circle
related to rotation of the patch according to

tan f̄:5z2 /z35tan 2f, ~89!

and similarly sincez15(p/16)(1/l 1 l), excursion in the
z1 coordinate corresponds to variation in the aspect ra
Warping these coordinates yields action-angle variables
further case~not shown! relies on the effect of the logarithm
in the Hamiltonian to produce two regions of nutation del
eated by a ‘‘figure-8’’ separatrix.~For details, see Refs.
and 25.!
Phys. Fluids, Vol. 9, No. 8, August 1997
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H. Reduction of order using a Casimir—canonical
coordinates

Wecanuse theCasimirC54@(z1)2 2 (z3)2 2 (z2)2# @see
~55!# to reduce the system~80! as follows. We introduce
coordinatesb defined by

b15z2, b25z3, b35C54@~z1!22~z3!22~z2!2#. ~90!

FIG. 2. Each plot shows an isosurface of the Casimir,C, for the Kida vortex
in shear. The shading corresponds to values of the Hamiltonian,H, at dif-
ferent points on the Casimir surface. Trajectories are constrained to fo
intersections of the constantH andC surfaces.~Because of thez2 indepen-
dence ofH, surfaces of constantH are sheets parallel toOz2.! The projec-
tion of the Casimir surface on thez1z3 plane is indicated by the dotted
curves; the intersections of various sheets of constantH with thez1z3 plane
are shown with solid curves.~a! Case:C51, e51.5, v521 includes two
types of trajectory:~i! open~hyperbola-like! and~ii ! closed trajectories that
do not circle theOz1 axis. ~b! Case:C51, e50.5, v521 exhibits closed
trajectories that circle theOz1 axis.
2319Meacham et al.
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Then

]H

]z1
58@C/41~b1!21~b2!2#1/2

]H

]b3
,

]H

]z2
5

]H

]b1
28b1

]H

]b3
,

]H

]z3
5

]H

]b2
28b2

]H

]b3
,

where,~80! becomes

ḃ1528@C/41~b1!21~b2!2#1/2
]H

]b2
,

ḃ258@C/41~b1!21~b2!2#1/2
]H

]b1
, ~91!

ḃ350.

Thus we reduce the problem to a Hamiltonian system w
one degree of freedom@which is therefore integrable—phas
trajectories are just contours ofH over the (b1,b2) plane#.
The use of the Casimir as a coordinate brought about
simplifications that follow directly from the defining prop
erty of a Casimir,@F, C#50 for arbitrary functionalsF: ~i!
one coordinate,b3—the Casimir, is a constant,~ii ! ]H/]b3

does not appear on the right-hand side. We will emplo
similar technique to reduce the ellipsoidal vortex problem
Sec. IV.

Given the normal form of the algebra asociated with
Poisson bracket, we can deduce two natural families of
nonical variables that are near to action-angle variables.
first set of variables, which is appropriate for bounded m
tion, is given by (z1,f̄,C), where

f̄5tan21~z2/z3!. ~92!

Herez1 is the coordinate along the symmetry axis, whilef̄
is the angle around the closed curve defined by the inter
tion of the planez15const with the hyperboloidC5const.
Action-angle variables would be obtained by warping the
coordinates so that the intersection is a circle.

The second set, which is appropriate for motion that
ymptotes, is given by (c,z̃ 2,C), where

c5tanh21~z1/ z̃ 3!. ~93!

Here theOz̃ 2 andOz̃ 3 axes are given by a rotation of th
Oz2 andOz3 axes through an arbitrary fixed angle arou
Oz1. NowOz̃ 2 is a coordinate direction normal to the sym
metry axis and lying in a plane that includes the symme
axis.c is a pseudo-angle denoting position along one of
two hyperbolae that result from the intersection of the pla
perpendicular toOz̃ 2 that includes the symmetry axis, an
the hyperboloidC5 const.

IV. ELLIPSOIDAL VORTEX IN CONTINUOUSLY
STRATIFIED QUASIGEOSTROPHIC FLOW

A. MPSZ review

The intrathermocline vortex model of MPSZ consider
an ellipsoidal blob of uniform potential vorticity embedde
2320 Phys. Fluids, Vol. 9, No. 8, August 1997
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in an unbounded, uniformly stratified, quasigeostrophic flo
The background flow of this model is given by a streamfun
tion of the form

c̄5 1
4v~x21y2!1 1

4e~x22y2!2tyz. ~94!

In MPSZ it was shown that an initially ellipsoidal blob o
potential vorticity will remain ellipsoidal for all future times
which is clearly a generalization of the Kida result of Se
III A.

In the MPSZ model, the motion of the ellipsoid is d
scribed by the three variables that describe the shape o
ellipsoid—the semiaxis lengths,a(t), b(t), c(t)—and three
that describe its orientation— the Euler anglesf(t), u(t),
c(t). The equations that govern these variables are give
the Appendix. These equations are rather complicated, a
which limits their utility and makes it difficult to classify al
of the modes of behavior of the vortex. It was noted
MPSZ that the equations~A1! and ~A2! possess conserve
quantities: vortex volume, particle height, and excess ene
Volume conservation can be exploited quite readily to
duce the system from sixth order to fifth order, but it
cumbersome, without the insight afforded by the Ham
tonian structure, to achieve any further reduction of order
using the other integrals of motion. The Hamiltonian m
ment approach leads to a considerably simpler formula
of the problem.

B. Moment reduction

The state ~shape and orientation! of an ellipsoid is
uniquely determined by the values of its six quadratic m
ments defined by

m15x2, m25xy, m35y2, m45yz,

m55zx, m65z2 ~95!

and

ai5E
D
qmi dx dy dz. ~96!

~Expressions for thea’s in terms of axis lengths and Eule
angles can be found in the Appendix.! For this selection of
them’s, closure is achieved; in light of the above and S
II B, the cosymplectic matrix is seen to be

J5S 0 2a1 4a2 2a5 0 0

22a1 0 2a3 a4 2a5 0

24a2 22a3 0 0 22a4 0

22a5 2a4 0 0 2a6 0

0 a5 2a4 a6 0 0

0 0 0 0 0 0

D , ~97!

which, being linear in thea’s is of Lie–Poisson form.

C. Casimirs of reduced system

We search for Casimirs as in Sec. III C, which amou
to finding null eigenvectors of the cosymplectic matrixJ.
The characteristic equation of this matrix has the form
Meacham et al.
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l2~l41Al21B!50,

wherel is an eigenvalue; since there are only two zero roo
there are only two independent Casimirs. The first Casim
seen immediately to be

C15a6, ~98!

while the second Casimir, which is found by calculating t
second null eigenvector and then integrating, is the quan

C254@2a2a4a51a1a3a62a1~a4!22a3~a5!2

2a6~a2!2#. ~99!

A discussion similar to that of Sec. III C reveals that the
invariants correspond to an effective height and volume
the ellipsoid. For the case of a uniform blob of vorticity
was shown in MPSZ thatC1 corresponds to the conservatio
of particle height in the quasigeostrophic system andC2 was
seen to be proportional to the fifth power of the ellipsoid
volume. ~In quasigeostrophic flows, fluid parcels mainta
their z coordinate, even though horizontal velocities arez
dependent. Vertical velocity is relegated to a higher orde
the quasigeostrophic approximation.29!

D. Lie algebra splitting—normal coordinates

It is well known that Lie algebras can be split into th
sum of a semi-simple part plus a part that is calledsolvable
~see, e.g., Ref. 26!. We will not go into the details of how to
effect this in the general case, but simply present the follo
ing transformation to normal coordinates:

z15
1

4 S a11a32
~a4!2

a6
2

~a5!2

a6 D ,
z25

1

2 S a22 a4a5

a6 D ,
~100!

z35
1

4 S a12a31
~a4!2

a6
2

~a5!2

a6 D ,
z45a4, z55a5, z65a6,

which has the inverse transformation

a152~z11z3!1
~z5!2

z6
,

a252z21
z5z4

z6
,

~101!

a352~z12z3!1
~z4!2

z6
,

a45z4, a55z5, a65z6.

The cosymplectic form in the normal coordinates is con
niently obtained by calculatingJ̃ i j5$zi ,zj%, e.g.,

J̃125$z1,z2%5z3,

whence
Phys. Fluids, Vol. 9, No. 8, August 1997
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J̃5S 0 z3 2z2 0 0 0

2z3 0 2z1 0 0 0

z2 z1 0 0 0 0

0 0 0 0 2z6 0

0 0 0 z6 0 0

0 0 0 0 0 0

D ~102!

The transformationJ→ J̃ has evidently split the algebra int
two blocks, i.e., into the direct sum of two 333 algebras.
The algebra of the upper diagonal block is identical to
semi-simple algebra of Sec. III, while that of the lower dia
onal block issolvable. An algebra is solvable if its sequenc
of derived algebras, i.e., the algebras of products, eventu
reduces to$0%. In this case

L85$$z4,z5%,$z4,z6%,$z5,z6%%5$2z6,0,0%,
~103!

L 95$0%.

The Casimir for the upper algebra is clearly the same as
of Sec. III,

CU54@~z1!22~z2!22~z3!2#, ~104!

while that of the lower algebra is

CL5z6.

To see that~104! is equivalent to~99! we substitute the trans
formation for thea’s into ~104!, and obtain

CU5
1

a6
„2a2a4a51a1a3a62a1~a4!22a3~a5!2

2~a2!2a6…. ~105!

The normal coordinates have a relatively simple form wh
expressed in terms of spatial integrals:

CLz
15

1

4 H E z2E ~x21y2!2S E yzD 22S E zxD 2J ,
CLz

25
1

2 H E z2E xy2E yzE zxJ ,
CLz

35
1

4 H E z2E ~x22y2!1S E yzD 22S E zxD 2J .
E. Moment Hamiltonian

In a manner analogous to Sec. III E, we turn to the ta
of writing the excess energy, the Hamiltonian, in terms of
moments. Since MPSZ have shown that an initially ellips
dal vortex remains ellipsoidal in the background flow
~94!, the reduction is exact; the Hamiltonian can be writt
exactly in terms of the moments, which uniquely determ
the shape and orientation of the ellipsoid.

As in Sec. III E, the excess energy is again the Ham
tonian and is given by

H52E
D
qS c̄1

1

2
c D dx dy dz5:H1H8, ~106!
2321Meacham et al.
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but now c̄ is the contribution of the background flow, a
given by~94!, c is due to the uniform ellipsoidal vortex, an
q5 (]2/]x2 1 ]2/]y2 1 ]2/]z2)c is unity inside the ellipsoid
and zero outside. The integral involving the background fl
is readily seen to be

H52 1
4~v1e!a12 1

4~v2e!a31ta4. ~107!

From Chandrasekhar30 or Ref. 5,

H85
2p

15
~abc!2E

0

`

ds K~s!,

K~s!5@~a21s!~b21s!~c21s!#21/2, ~108!

where a, b, and c are the principal axes lengths and t
quantityabc is proportional to the volume and is fixed.

To write this in terms of moments, we will use tw
Cartesian coordinate systems:Oxyz, which is fixed with re-
spect to the underlyingf -plane andOx̃ ỹ z̃, which moves
with the principal axes of the ellipsoid. In both cases,
origin coincides with the center of the ellipsoid. The tran
formation between the fixed and co-rotating reference fram
is given by the following expression in term of the Eule
angles:

x̃5MTx ~109!

where

MT5S cosc sin c 0

2sin c cosc 0

0 0 1
D S cosu 0 2sin u

0 1 0

sin u 0 cosu
D

3S cosf sin f 0

2sin f cosf 0

0 0 1
D ~110!

Equation ~109! will be used to relate moments in the c
rotating frame to those in the nonrotating frame for eval
tion of the Hamiltonian.

First define a matrix of moments

Ai j5E
D
qxixj5S a1 a2 a5

a2 a3 a4

a5 a4 a6
D

Now,

Ai j5M ipM jqÃpq ,

where

Ãpq5E
D
qx̃px̃q5S Va2 0 0

0 Vb2 0

0 0 Vc2
D ,

whereV54pabc/15 is proportional to the volume of th
ellipsoid and will be normalized to unity. The eigenvalues
A andÃ will be the same so we may identify the coef
cients in the respective characteristic equations
2322 Phys. Fluids, Vol. 9, No. 8, August 1997
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A: l32@a11a31a6#l21@a3a61a6a11a1a3

2$~a2!21~a4!21~a5!2%#l2@2a2a4a51a1a3a6

2a1~a4!22a3~a5!22a6~a2!2#50,
~111!

Ã: l32V@a21b21c2#l21V2@b2c21c2a2

1a2b2#l2V3@a2b2c2#50.

This allows us to evaluate the coefficients of the vario
powers ofs in the expression~108! for K(s)

In terms of the moments, the vortex Hamiltonian is

H85
1

2
~CLCU!1/2E

0

`

ds K̃~s!, ~112!

where

K̃~s!225s31@a11a31a6#s21@a3a61a6a11a1a3

2$~a2!21~a4!21~a5!2%#s1@2a2a4a5

1a1a3a62a1~a4!22a3~a5!22a6~a2!2#.

In terms of the normal coordinates of Sec. IV D the Ham
tonian takes the form

H52vFz11 1

4 S ~z4!21~z5!2

z6 D G
2eFz32 1

4 S ~z4!22~z5!2

z6 D G1tz4

1
1

2
~CLCU!1/2E

0

`

ds K̂~s! ~113!

where

K̂~s!5@s31p2s
21p1s1p0#

21/2

and

p25@4z1z61~z4!21~z5!21~z6!2#/z6,

p15
2

z6
@z1$2~z6!21~z4!21~z5!2%1z3$~z4!22~z5!2%

22z2z4z5#14@~z1!22~z2!22~z3!2#,

p054z6@~z1!22~z2!22~z3!2#.

F. Moment equations of motion

As in Sec. III, the equations of motion are given by

ȧi5$ai ,H%5Ji j
]H

]aj
.

As noted above, we use the chain rule to evaluate the e
tions of motion, which means we need to calcula
]H8/]aj . First note that

]H8

]@~a!2#
5H281~b21c2!H181b2c2H08 , ~114!

where
Meacham et al.
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Hj852
1

4
~CLCU!1/2E

0

`

sjK3~s! ds

and]H8/]b2 and]H8/]c2 are given by expressions simila
to ~114! with $a2,b2,c2% cyclically permuted. Thus

]H8

]ai
5H28

]

]ai
~a21b21c2!1H18

3
]

]ai
~b2c21c2a21a2b2!1H08

]

]ai
~a2b2c2!.

The partial derivatives occurring on the right-hand side c
be evaluated fairly simply from~111!. The resulting equa-
tions of motion are

ȧ152~w2e!a212ta522$@a2a62a4a5#H181a2H28%,

ȧ25 1
2~v1e!a12 1

2~v2e!a31ta41$@a6~a12a3!

1@~a4!22~a5!2##H181~a12a3!H28%,

ȧ35~v1e!a212$@a2a62a4a5#H181a2H28%,
~115!

ȧ45 1
2~v1e!a51$@a3a52a4a2#H181a5H28%,

ȧ552 1
2~v2e!a41ta62$@a1a42a5a2#H181a4H28%,

ȧ650.

These equations can be verified by using the expression
ḟ, ċ, u̇, (ȧ2), (ḃ2), (ċ2) obtained by Meachamet al.5 ~see
the Appendix! to independently computeȧi as a ‘‘function’’
of e, v, t, H18 , andH28 .

In terms of the normal coordinates, we can take adv
tage of the constancy of the Casimirs and obtain the follo
ing fourth-order system:

ż25eFCU

4
1~z2!21~z3!2G1/2

1z3H v1S 2CL1
@~z4!21~z5!2#

CL
DH1812H28J

1FCU

4
1~z2!21~z3!2G1/2 @~z4!22~z5!2#

CL
H18 ,

ż352z2H v1S 2CL1
@~z4!21~z5!2#

CL
DH1812H28J

12FCU

4
1~z2!21~z3!2G1/2 z4z5CL

H18 ,
~116!

ż45H 12 ~e1v!1H2812FCU

4
1~z2!21~z3!2G1/2J z5

22~z2z41z3z5!H18 ,

ż55H 12 ~e2v!2H2822FCU

4
1~z2!21~z3!2G1/2J z4

12~z2z52z3z4!H181tCL .

This form has several appealing features. It is a simple se
equations to integrate numerically and, unlike~118! below, it
does not contain any artificial singularities. The fou
Phys. Fluids, Vol. 9, No. 8, August 1997
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dimensional space, (z2,z3,z4,z5), decomposes relatively
naturally into a product of two two-dimensional space
(z2,z3) and (z4,z5). The latter two are associated with th
upper and lower algebras, respectively, in the decomposi
of the algebra associated with the Poisson bracket. W
there is no vertical shear,t50, the space (z2,z3) is an invari-
ant subset of the full phase space in that if bothz4 andz5 are
initially zero ~one axis of the ellipsoid is initially vertical!,
they remain zero. The structure of the (z2,z3) phase space is
then similar to the phase space of the Kida problem,
proven explicitly in the next section.

G. Canonical coordinates

One of thea coordinates,a65CL , is already a Casimir.
We can reduce the dimension of the active dynamical v
ables to four if we change to a new set of variables in wh
the second Casimir,CU , is also used as a variable. Furth
simplification ensues if we use variables deduced from
normal coordinates. We therefore use the variablesR, a,
S, b, CU , CL defined by

z15 1
2R, z25 1

2~R
22CU!1/2 sin 2a,

z35 1
2~R

22CU!1/2 cos 2a,
~117!

z45~2CLS!1/2 sin b, z55~2CLS!1/2 cosb,

z65CL .

In the new variables, the Hamiltonian takes the form

H52
v

2
$R1S%2

e

2
$W cos 2a1S cos 2b%

1t~2CLS!1/2 sin b1
1

2
~CLCU!1/2

3E
0

`

$s31@2R12S1CL#s21@2R~CL1S!

22WScos 2~a2b!1CU#s1CLCU%21/2,

whereW5(R22CU)
1/2. Note that for an ellipsoid enclosing

uniform vorticity, R2.CU . The equations of motion in the
new variables are

dR

dt
5

]H

]a
,

da

dt
52

]H

]R
,

dS

dt
5

]H

]b
,

db

dt
52

]H

]S
, ~118!

dCU

dt
50,

dCL

dt
50.

The new variables constitute a set of canonical coordina
for the system, with a form similar to action-angle variable
Two of these,a andb, are effectively angles. When there
no vertical shear in the background flow~t50!, the system
depends ona and b modulo p. When vertical shear is
present, the system depends onb modulo 2p.

When one axis of the ellipsoid is vertical,S50 ~* zx
and * yz vanish!. If there is no vertical shear, thenS will
2323Meacham et al.
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remain zero and one of the axes will remain vertical. T
system then reduces to a simple two-dimensional form

dR

dt
5

]H

]a
,

da

dt
52

]H

]R

and

H52
v

2
R2

e

2
~R22CU!1/2 cos 2a

1
1

2
~CLCU!1/2E

0

`

$s31@2R1CL#s2

1@2RCL1CU#s1CLCU%21/2.

If we write

V~R!5
1

2
~CLCU!1/2E

0

`

~s21CLs!$s31@2R1CL#s2

1@2RCL1CU#s1CLCU%23/2,

then

H52
v

2
R2

e

2
~R22CU!1/2 cos 2a2ER

V~R8! dR8

and

dR

dt
5e~R22CU!1/2 sin 2a,

~119!
da

dt
5S v

2
1V~R! D1

e

2

R

~R22CU!1/2
cos 2a.

HereV(R) is the rate at which the ellipsoid rotates arou
the vertical axis when no background flow is present, and
the presence of horizontal shear and strain the system
haves like the Kida ellipse with the rotation rate of the 2
ellipse,l/(11l)2, replaced byV.

To see this explicitly, we normalize the volume of th
ellipsoid to be 4p/3 ~the dynamics are independent of th
volume! and note that when one axis of the ellipsoid is v
tical, say thec axis, then the normal coordinates,z1 , z2 ,
z3 , become

z15r~a21b2!,

z25r~a22b2!sin 2~f1c!,

z35r~a22b2!cos 2~f1c!,

wherer5p/15. Defining a horizontal aspect ratiol5b/a,

z15
r

c
~l211l!,

z25
r

c
~l212l! sin 2~f1c!,

z35
r

c
~l212l!cos 2~f1c!.

In Euler angles, whenu50 ~the c axis vertical!, f̃:5f1c
is just the total angle through which the coordinate frame
rotated about the vertical axis. Thus,
2324 Phys. Fluids, Vol. 9, No. 8, August 1997
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R5
2r

c
~l211l!, a5f̃, and CU5

8r2

c2
l,

and ~119! reduces to

dl

dt
52el sin 2a,

da

dt
5S v

2
1V D1

e

2

11l2

12l2 cos 2a,

which should be compared to~30!.

H. Chaotic motion

The system~116! is four-dimensional and, with the ex
ception of the Hamiltonian itself, we have used all of t
invariants that we may anticipate on physical grounds in
der to reduce the dimension of the system to four. This s
gests that the system is likely to be nonintegrable and
anticipate the occurrence of chaotic solutions. This is intrig
ing because the system~116! is an exact reduction of the
original quasigeostrophic problem. Solutions of it are ex
solutions of the continuum quasigeostrophic equations
motion.

We can use the form of the equations of motion given
~116! to verify nonintegrability by looking for an example o
chaotic motion in this system. We first note that whent50,
~116! admits an invariant manifold,z4 5 z5 5 0. Physically
this corresponds to one of the principal axes of the ellips
being aligned with theOz axis. In the absence of any vertica
variation in the background flow, such an axis, if initial
vertical, will remain so. Note also that, whent50, there is a
negative threshold value ofv, vc say, a function ofue/vu,
such that whenue/vu,1 and 0.v.vc , this invariant
plane, with coordinates$z2 ,z3%, contains a homoclinic tra-
jectory that begins and ends on a saddle point and enclos
neutral fixed point.31 An example is given in Fig. 3 which

FIG. 3. Contours of the Hamiltonian for the QG ellipsoidal vortex withz4

5z550, in a background flow witht50, on the$z2,z3% plane for the case
v520.1, e520.01, CL50.25, andCU512.0. ~Contours are unequally
spaced.!
Meacham et al.
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FIG. 4. Poincare´ sections for trajectories started close to the hyperbolic point in Fig. 3. Values ofv, e, CL , andCU are as in Fig. 3.~a! t51025, ~b!
t51025—expanded view near the hyperbolic point,~c! t51024, ~d! t51024—expanded view near the hyperbolic point.
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shows the contours of the Hamiltonian:H(z2 ,z3 ;z450,z5
50) over the coordinate plane$z2 ,z3% for the casev520.1,
e520.01,CL50.25, andCU512.0.

A second result that guides our thinking is the obser
tion that when the background flow is absent, an ellipsoi
vortex with one axis vertical is not unstable to small pert
bations that tilt that axis slightly away from the vertical pr
vided the axis in question is not the axis of intermedi
length. The near-vertical axis just wobbles around the ve
cal. When a background, horizontally sheared flow w
ue/vu,1 and 0.v.vc is present, we anticipate simila
wobbles when the vertical axis is tilted slightly~provided it
is the longest or shortest axis!. These wobbles produce osci
lations on the right-hand side of thedz2 /dt and dz3 /dt
equations. We wish to see if these oscillations can prod
chaotic motion.~One possibile way in which this might oc
cur is if the wobbles remain small and simply produce sp
ting and transverse intersections of the stable and unst
manifolds of the saddle point on the$z2 ,z3% plane.!

The formal Melnikov analysis of the perturbed system
difficult so instead we resort to direct numerical simulatio
Picking initial conditions close to the saddle point in Fig.
we follow the resulting trajectories for small nonzero valu
of the vertical sliear. Poincare´ sections are made by firs
Phys. Fluids, Vol. 9, No. 8, August 1997
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recording the successive points of intersection of the tra
tories with the hyperplanez550 ~z5 increasing! and then
projecting these points onto the$z2 ,z3% plane. Fig. 4~a!
shows the Poincare´ section fort51025. An expanded view
of the region around the location of the original hyperbo
point @Fig. 4~b!# shows the island structure characteristic
invariant tori delimiting chaotic regions. This remains tru
whent51024 @Figs. 4~c! and 4~d!#. Further evidence for the
chaotic nature of the solution can be seen in the power s
trum of a time series of the variablez2(t) taken along a
trajectory whent51024 ~Fig. 5!. There are several domi
nant peaks but broad-band noise is also present at a
several orders of magnitude greater than the noise assoc
with the numerical integrator. This allows us to distingui
the time series as chaotic rather than quasiperiodic.

V. CONCLUDING REMARKS

In the work we have presented above, we have b
guided by the observation1 that the two-dimensional ellipti-
cal vortex in shear is a finite-dimensional Hamiltonian sy
tem together with the observation5 that the three-
dimensional, quasigeostrophic ellipsoidal vortex
horizontal shear is Hamiltonian and the conjecture that
2325Meacham et al.
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remains true when vertical shear is added. In the tw
dimensional case, an explicit Hamiltonian form can
readily obtained from the standard Eulerian equations of m
tion, but for the three-dimensional problem the task is mu
more difficult. The equations of motion for the ellipsoid
vortex derived by MPSZ are unwieldy. In this paper we ha
shown that, by beginning from a description of the contin
ous Euler and quasigeostrophic equationsin noncanonical
Hamiltonian form, one can obtain a much simpler set
equations for the motion of the three-dimensional vortex

We have then used the equations of motion for the el
soidal vortex to show that the ellipsoidal vortex in shear c
exhibit chaotic motion. This is unusual for the following re
son. The majority of mathematical examples of chaos in fl
flow involve approximations in the form of finite truncation
Though our final system, e.g.,~114!, is of finite dimension
we have not made any truncation; our solutions areexact
solutions of the inviscid quasigeostrophic equations fo
stratified fluid. However, one must recall that our solutio
are ‘‘weak solutions’’ of the QG problem in the sense th
the vorticity field contains discontinuities.

We note, in closing, some generalizations. The techni
we have described can also be used as a method forapproxi-
mating the interaction between more than one vortex. T
idea is in the spirit of Melanderet al.2 and has been applie

FIG. 5. Power spectrum of long time series ofz2(t) from a trajectory started
near the hyperbolic point in Fig. 3:v520.1, e520.01, t51024, CL

50.25, andCU512.0. ~a! Linear–linear plot and~b! log–linear plot.
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successfully by Nganet al.23 in the study of two interacting
vortices in a shear flow.

Also, in the stratified algebra of Sec. IV B, the variab
z plays the role of a constant. Settingz51 gives the algebra
of Ngan.22,23 In the two-dimensional setting examined b
Ngan et al.,22,23 the transformation~100! is equivalent to,
first, transforming the quadratic moments based on a fi
origin to their counterparts based on the centroid of a vor
patch, and then, applying the transformation to normal co
dinates used in the Kida problem~52!. Note thatz can be
replaced by a set of functions ofz, f 1(z),...,f N(z), and one
may still obtain closure. Consider

m15x2, m25xy, m35y2,

together with

m4,i5y f i~z!, m5,i5x f i~z!, 1< i<N,

and

m6,i , j5 f i~z! f j~z!, 1< i , j<N.

Observe that

$m1,m4,i%52x f i52m5,i ,

$m4,i ,m5,j%5 f i f j5m6,i , j , etc.

Therefore, it is possible to generalize the approach descr
in this paper to different classes of moments which m
prove more appropriate in different situations. For examp
one can represent three-dimensional quasigeostrophic v
ces in which the potential vorticity is horizontally uniform
but varies withz in an arbitrary manner, by considering a s
of f i that form a basis.

ACKNOWLEDGMENTS

This paper had its genesis at the GFD Summer Prog
in Woods Hole in 1993 and much of the work herein h
been continued over succeeding summers at the GFD
gam. The authors would like to thank the Woods Ho
Oceanographic Institution and the National Science Foun
tion for making this interaction possible. S.P.M. has be
supported by NSF Contract No. OCE 94-01977, P.J.M.
the Department of Energy under Contract No. DE-FG0
80ET-53088. S.P.M. and P.J.M. would like to thank the
stitute for Fusion Studies at the University of Texas~Austin!
and the Geophysical Fluid Dynamics Institute at Flori
State University, respectively, for their hospitality and su
port of visits by S.P.M. to Austin and P.J.M. to Tallahass

APPENDIX

An ellipsoid can be described by the lengths of its thr
principal semi-axes,a(t), b(t), c(t) and three Euler angles
f(t), u(t), c(t), that specify its orientation relative to
Meacham et al.
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ea
r

fixed reference frame. For an ellipsoidal vortex in a sh
flow such as that given by~94!, the equations of motion fo
these variables are

~ ȧ2!5ea2$cosu sin 2c cos 2f

1@cos 2c2sin2 u cos2 c#sin 2f%

1ta2 sin u$sin 2c sin f

22 cosu cos2 c cosf%,
e.
a
er
he

ax
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Downloaded¬16¬Jul¬2007¬to¬129.215.49.133.¬Redistribution¬subject¬
r ~ ḃ2!52eb2$cosu sin 2c cos 2f

1@cos 2c1sin2 u sin2 c#sin 2f%

2tb2 sin u$sin 2c sin f

12 cosu sin2 c cosf%, ~A1!

~ ċ2!5c2 sin u$e sin u sin 2f12t cosu cosf%,

and
ḟ5
1

2
~V11V2!1

1

2
~V12V2!cos 2c1

1

2
v2

1

2
eH F11S c2

a22c2
1

c2

b22c2D Gcos 2f2S c2

a22c2
2

c2

b22c2D
3~cos 2c cos 2f2cosu sin 2c sin 2f!J 1

1

2

t

sin uH S c2

a22c2
1

c2

b22c2D cosu sin f

2S c2

a22c2
2

c2

b22c2D ~cosu sin f cos 2c1cos 2u sin 2c cosf!J ,
u̇5

1

2
sin u sin 2c~V22V1!2

1

2
e sin uH F11S c2

a22c2
1

c2

b22c2D Gcosu sin 2f1S c2

a22c2
2

c2

b22c2D
3~cosu sin 2f cos 2c1sin 2c cos 2f!J 1

1

2
tH F2sin2 u2cos 2uS c2

a22c2
1

c2

b22c2D Gcosf

1S c2

a22c2
2

c2

b22c2D ~cosu sin 2c sin f2cos 2u cos 2c cosf!J , ~A2!

ċ5cosuH V32
1

2
~V11V2!2

1

2
~V12V2! cos 2cJ 1

1

2
eH F11S c2

a22c2
1

c2

b22c2D Gcosu cos 2f

1S c2

a22c2
2

c2

b22c2D ~cos2 u sin 2c sin 2f2cosu cos 2c cos 2f!

1
a21b2

a22b2S cosu cos 2c cos 2f2
1

2
~11cos2 u!sin 2c sin 2f D J 2

1

2

t

sin uH S c2

a22c2
1

c2

b22c2D
3cos2 u sinf2S c2

a22c2
2

c2

b22c2D ~cos2 u cos 2c sin f1cosu cos 2u sin 2c cosf!2sin2 u sin f

2
a21b2

a22b2 S sin2 u cos 2c sin f1
1

2
sin u sin 2u sin 2c cosf D J .
TheVs are the principal rotation rates of the ellipsoid, i.
the rate at which it would rotate around a given princip
axis, in the absence of any background flow, if that axis w
vertical. These are elliptic functions of the lengths of t
semi-axes:

V15a2I 11I 2 , V25b2I 11I 2 , V35I 11I 2
~A3!

I j5
1

2
abcE

0

`

sj$~a21s!~b21s!~c21s!%23/2ds,

j51,2.

The moments can be expressed in terms of the semi-
lengths and the Euler angles as follows:
,
l
e

is

a15cos2 f@cos2 u~a2 cos2 c1b2 sin2 c!1c2 sin2 u#

1sin2 f~a2 sin2 c1b2 cos2 c!

2 1
2~a

22b2!cosu sin 2f sin 2c,

a25 1
2sin 2f@cos2 u~a2 cos2 c1b2 sin2 c!1c2 sin2 u

2~a2 sin2 c1b2 cos2 c!#1 1
2~a

22b2!

3cosu sin 2c sin 2f,

a35sin2 f@cos2 u~a2 cos2 c1b2 sin2 c!1c2 sin2 u#

1cos2 f~a2 sin2 c1b2 cos2 c!1 1
2~a

22b2!

3cosu sin 2f sin 2c, ~A4!
2327Meacham et al.
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l

a452sin u@sin f cosu~a2 cos2 c1b2 sin2 c2c2!

1 1
2~a

22b2!cosf sin 2c#,

a552sin u@cosf cosu~a2 cos2 c1b2 sin2 c2c2!

2 1
2~a

22b2!sin f sin 2c#,

a65~a2 cos2 c1b2 sin2 c!sin2 u1c2 cos2 u.
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