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Abstract

We describe a method for computing Casimir invariants that is applicable to both finite and infinite-dimensional Poisson
brackets. We apply the method to various finite and infinite-dimensional examples, including a Poisson bracket embodying
both finite and infinite-dimensional structure. q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 03.20.q i; 03.40.-t; 02.40.qm; 51.10.qy
PACS: Poisson systems; Casimir functions; Non-canonical brackets; Frobenius theorem; Pfaffian systems

1. Introduction

Non-canonical Hamiltonian, or Poisson, systems have been studied extensively by mathematical physicists,
w xand with good reason. They arise in fields as diverse as dynamical systems theory 1,2 , fluid dynamics and

w x w x Ž w x .plasma physics 3,4 , and condensed matter physics 5 . For more references see 6,7 .
One of the key features of Hamiltonian systems is the existence of a Poisson bracket. This object finds many

w x w xapplications, including computing perturbative solutions 8 , determining stability of steady states 9 , and
w xstudying integrable systems 2,10,11 .

The ubiquity of the Poisson bracket has led to study of it in its own right. In particular, a good deal of work
w x Žhas gone into exploring its geometric theory 12,13 also see references on the related subject of symplectic

w x.geometry 14 . In this letter, we consider only one facet of this rich geometry, that related to Casimir invariants.
These are functions whose Poisson bracket with any other function vanishes. Their existence for any

w xfinite-dimensional degenerate Poisson bracket follows from the Frobenius theorem of differential geometry 15 .
The Casimir invariants of a given Poisson bracket are important because they are conserved quantities in any

w xHamiltonian system that uses that bracket. As such, they play a vital part in reducing the order 16 , or even
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w xintegrating some systems 17 . In addition, they are central to both the Energy-Casimir method of determining
w x w xstability 9 , and the Semenov–Tian–Shansky scheme of constructing integrable systems 11 . In all these

applications, the actual computation of Casimir invariants is essential.
We present a method for computing Casimir invariants. This method amounts to integrating the null

Ž .covectors of the second rank tensor the cosymplectic form defined by the Poisson bracket. This is a natural
w xstrategy: many of the Casimir invariants in 7 were calculated in this fashion, a fact not noted there. This

w xmethod has been presented explicitly, for infinite-dimensional brackets in 18 and finite-dimensional brackets
w xin 19 . Here, we show that these papers both treat special cases of a single method by presenting the method in

Ž .a geometrical framework that includes both cases Section 2 . This presentation has a partly pedagogical
function: we present a transparent example of differential geometry applied to Hamiltonian dynamics. But also,
it offers a clear framework for arriving at a novel result: the form of Casimir invariants for Poisson brackets
with a nested Lie–Poisson structure, involving both finite and infinite-dimensional brackets. The method is used

Ž .to compute these Casimir invariants and those of several other Poisson brackets in Sections 3 and 4.

2. Casimir invariants and Pfaffian systems

The Poisson bracket is a mathematical structure common to all Hamiltonian systems. If z a denotes a
coordinate of a point in a phase space M, the equations of motion generated by a Hamiltonian H:M™R are

a � a 4 � 4 `Ž . `Ž . `Ž .z s z , H where P,P :C M =C M ™C M .˙
The bracket that appears in the equation of motion is a Poisson bracket if it is antisymmetric, bilinear, and it

� 4 � 4 � 4satisfies two more conditions. These are the Leibnitz rule, f , gh sg f ,h q f , g h and the Jacobi identity,

� 4 � 4 � 4f , g ,h q g , h , f q h , f , g s0. 1� 4 � 4 � 4 Ž .
The most familiar example of a bracket satisfying these properties is given by the so-called canonical

bracket:
n E f E g E g E f

� 4f , g s y . 2Ž .Ý i iE p E pE q E qi iis1

But there are the other, non-canonical brackets that obey the above conditions; some are given in the examples.
However, such non-canonical brackets, even when they are degenerate, can be locally represented in the form
Ž . Ž . Ž w x.2 where n is equal to half the rank of the bracket , as shown by the Darboux theorem see also 12 . In this
sense, they are true generalizations of the more familiar canonical brackets.

By virtue of the above properties, a Poisson bracket defines a second rank tensor called the cosymplectic
form, J:T ) M™TM, in the following way:

² : � 4d f z ,J z d g z [ f , g z 3Ž . Ž . Ž . Ž . Ž .
where the angular brackets denote the pairing between the cotangent and tangent spaces at the point zgM. In a

a Ž .given set of coordinates z , for a finite-dimensional system, Eq. 3 has the form

E f E g
ab � 4J [ f , g . 4Ž .

a bE z E z
Ž .We use the summation convention. The vector field given by Jd g is called the Hamiltonian vector field
generated by g.

Casimir invariants are functions that have a zero Poisson bracket with any other function. In other words,
� 4given a Poisson bracket, if, for every g, a function C satisfies g,C s0, then C is a Casimir invariant.

This definition is the starting point of any method to compute Casimir invariants. In terms of the tensor J, it
² :becomes d g,JdC s0. Since g is arbitrary, solving this equation amounts to finding the functions C from the

condition that the vector field JdC vanishes. In the case of a finite-dimensional system, this computation
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requires solving a set of coupled partial differential equations for the function C: J i jE CrE z j s0. However, a
more efficient method for computing Casimir invariants follows from an alternate geometric interpretation of
� 4 ² : ² :g,C s0. Making use of the antisymmetry of the Poisson bracket, we rewrite d g,JdC s0 as dC,Jd g s0.
Since this equation must hold for arbitrary g, we can interpret it as saying that the differential one-form given
by dC is annulled by every vector field in the image of J.

Geometrically, this means that the vector field Jd g must lie everywhere tangent to the level set of the
Ž .function C. In this case, any integral curve of this or any other Hamiltonian vector field must lie within a

single level set of C, which is a way of saying that C is a constant of motion.
These considerations help us to compute Casimir invariants in the following way. The information needed to

construct the level sets of Casimir invariants is contained in the differential one-forms that are annuled by the
² :vectors tangent to these sets. Obviously, if we explicitly knew a Casimir invariant C, dC,Jd g s0 tells us that

dC is such a one-form. However, we do not need to know the Casimir invariants to find differential one-forms
² : ² :that are annulled by these vectors. In fact, from d g,JdC s dC,Jd g s0, it is clear that any element in the

kernel of J will do. And so, we can get the information we need to determine all of the Casimir invariants by
finding all the linearly independent null covectors of J.

Ž i. Ž .The null covectors of J, call them g suppose there are n , are differential one-forms. They are not
necessarily exact: that is, it is not necessarily true that there exists an F such that g Ž i.sd F.

But once we have the g Ž i., we can find the Casimir invariants from the condition that the g Ž i. vanish when
paired with any vector tangent to a level set of a Casimir invariant: g Ž i.s0 where i varies from 1 to n. A
system of equations, like this one, given by setting a collection of one-forms to zero, is called a Pfaffian system.
The level sets of the functions on which the restrictions of these one-forms vanish are called the integral
manifolds of the system.

Ž .Finding the integral manifolds is conceptually but not always computationally simple. If we were able to
linearly combine the g Ž i. into n independent exact differentials, we would obtain a system of equations
equivalent to g Ž i.s0. This system would have the form d F Ž j.s0 where j varies from 1 to n. The solution to
this system of equations is obviously given by F Ž j.sconstant. In other words, the integral manifolds are just
the level sets of the F Ž j.. By the chain rule, we can then write the general solution of g Ž i.s0 in terms of an

Ž Ž1. Žn..arbitrary function ksk F , PPP ,F .
It is not always possible to transform a Pfaffian system in this way. The conditions for when it is possible are

w xgiven by the Frobenius theorem. In 15 it was shown that the possibility of doing this with the set of null
Ž . w xcovectors of a finite-dimensional J follows from Eq. 1 . Later, in 18 , an argument was given that extends this

proof to continuum systems. However, there are some infinite-dimensional spaces in which the Frobenius
Ž w x.theorem does not hold see 20 , so this should be seen as a formal argument.

Examples of applying the above process are given in the next two sections. In the finite-dimensional case, the
greatest complication is finding integrating factors to make the resulting equations exact differential equations
Ž .see Section 3 . The infinite-dimensional case is typically more complicated. Finding components of the null
covectors requires solving partial differential equations, and it is not always obvious how to integrate the
Pfaffian system.

3. Casimir invariants of finite-dimensional brackets

For our first example, we will find the Casimir invariant of a familiar Hamiltonian system: the free rigid
body. The components of J are given by: J i j se i j z k where i, js1 . . . 3, and e denotes the Levi-Civita symbol,k

Ž . Ž .as usual. In fact, this bracket is the Lie–Poisson bracket associated to the Lie algebra so 3 see Section 4 . Note
Ž .that rank J s2 everywhere except at the origin. The null covector of J is immediately found to be

gsz1d z1 qz 2d z 2 qz 3d z 3. And the Pfaffian system gs0 is immediately solved for the well-known Casimir
Ž 1.2 Ž 2 .2 Ž 3.2invariant Cs z q z q z sconstant.
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w xAs a second example, we consider the brackets of arbitrary dimension d introduced by Plank 2 for
Ž w x .Lotka–Volterra equations see also 21 for an application of such brackets to more general systems . In this

Ž .case, the components of J are given by not summed :

J i j sc z iz j , i , js1 . . . d 5Ž .Ž i j.

w xwhere c gR and c syc for all i, j. It can be shown 2 that the skew-symmetry of the c is enough toŽ i j. Ž i j. Ž ji. i j
Ž .ensure that J in 5 indeed defines a cosymplectic form. It is simple to prove that every null covector of the

Ž .matrix J in 5 is of the form:

d z i

gsa , a gR . 6Ž .i iiz

Ž .Every Pfaffian equation gs0, with g given by expression 6 , can be integrated to give one Casimir
invariant:

Csa log z i sconstant . 7Ž .i

Ž .Therefore, all Casimir invariants of 5 can be easily found in this way.
An example that involves solving a less trivial Pfaffian system is the Lie–Poisson bracket associated with the

Ž . Ž .Lie algebra su 3 see Section 4 . This arises in the study of finite-mode analogs of two-dimensional
w x Ž . Ž . w xhydrodynamics 22 . With respect to i times the Gell-Mann basis of su 3 23 , the components of J are given

by

° 3 2 7 6 5 4 ¶0 2 z y2 z z yz z yz 0
3 1 6 7 4 5y2 z 0 2 z z z yz yz 0

2 1 5 4 7 62 z y2 z 0 z yz yz z 0
7 6 5 3 8 2 1 5' 'yz yz yz 0 z q 3 z z z y 3 z

. 8Ž .6 7 4 3 8 1 2 4' 'z yz z yz y 3 z 0 yz z 3 z
5 4 7 2 1 3 8 7' 'yz z z yz z 0 yz q 3 z y 3 z

4 5 6 1 2 3 8 6' 'z z yz yz yz z y 3 z 0 3 z¢ ß5 4 7 6' ' ' '0 0 0 3 z y 3 z 3 z y 3 z 0

Ž .The null vectors and resulting Pfaffian system of this J were found using Mathematica to be

2 2Ž1. y1 1 2 4 1 5 1 3 7 4 6 7 5 7 1 7 8 1' 'g sD 2 3 z z z y z z qz z z qz z z qz z q 3 z z z d zŽ . Ž .ž /
2 22 4 1 2 5 2 3 7 5 6 7 4 7 2 7 8 2' 'q2 3 z z yz z z qz z z qz z z yz z q 3 z z z d zŽ . Ž .ž /

2 2 2 2 32 3 4 1 3 5 3 7 4 7 5 7 6 7 7'q 3 2 z z z y2 z z z q2 z z q z z q z z y z z y zŽ . Ž . Ž . Ž . Ž .ž
2 23 7 8 3 2 4 1 4 5 3 4 7 1 6 7 2 7 4' 'q2 3 z z z d z q2 3 z z yz z z q2 z z z qz z z yz z d zŽ . Ž .. ž /

2 22 4 5 1 5 3 5 7 2 6 7 1 7 5'q2 3 z z z yz z q2 z z z qz z z qz z d zŽ . Ž .ž /
2 2 22 4 6 1 5 6 1 4 7 2 5 7 6 1 7 2 7 3 7'q2 3 z z z yz z z qz z z qz z z d z q 2 z z q2 z z q2 z zŽ . Ž . Ž . Ž .ž

2 2 2 34 7 5 7 6 7 7 2 4 1 5 3 7 8 8'y z z y z z y z z y z q2 3 z z yz z qz z z d z s0 , 9Ž . Ž . Ž . Ž . Ž . Ž ./



( )T.W. Yudichak et al.rPhysics Letters A 260 1999 475–483 479

and
3 2 2 2 2 2 2Ž2. y1 1 1 2 1 3 1 4 1 5 1 6 1 7 4 6 8'g sD 2 z q2 z z q2 z z yz z yz z yz z yz z y2 3 z z zŽ . Ž . Ž . Ž . Ž . Ž . Ž .ž

2 2 3 2 2 25 7 8 1 8 1 1 2 2 2 3 2 4 2 5'y2 3 z z z y6 z z d z q 2 z z q2 z q2 z z yz z yz zŽ . Ž . Ž . Ž . Ž . Ž ./ ž
2 2 2 2 22 6 2 7 5 6 8 4 7 8 2 8 2 1 3 2 3' 'yz z yz z y2 3 z z z q2 3 z z z y6 z z d z q 2 z z q2 z zŽ . Ž . Ž . Ž . Ž ./ ž

3 2 2 2 2 2 23 3 4 3 5 3 6 3 7 4 8 5 8' 'q2 z yz z yz z yz z yz z y 3 z z y 3 z zŽ . Ž . Ž . Ž . Ž . Ž . Ž .
2 2 2 2 2 2 36 8 7 8 3 8 3 1 4 2 4 3 4 4' 'q 3 z z q 3 z z y6 z z d z q 2 z z q2 z z q2 z z y zŽ . Ž . Ž . Ž . Ž . Ž . Ž ./ ž

2 2 24 5 4 6 4 7 3 4 8 1 6 8 2 7 8 4' ' 'yz z yz z yz z y2 3 z z z y2 3 z z z q2 3 z z z d zŽ . Ž . Ž . /
2 2 2 2 3 2 21 5 2 5 3 5 4 5 5 5 6 5 7 3 5 8'q 2 z z q2 z z q2 z z y z z y z yz z yz z y2 3 z z zŽ . Ž . Ž . Ž . Ž . Ž . Ž .ž

2 2 2 22 6 8 1 7 8 5 1 6 2 6 3 6 4 6' 'y2 3 z z z y2 3 z z z d z q 2 z z q2 z z q2 z z y z zŽ . Ž . Ž . Ž .. ž
2 3 25 6 6 6 7 1 4 8 2 5 8 3 6 8 6' ' 'y z z y z yz z y2 3 z z z y2 3 z z z q2 3 z z z d zŽ . Ž . Ž . /

2 2 2 2 2 2 31 7 2 7 3 7 4 7 5 7 6 7 7q 2 z z q2 z z q2 z z y z z y z z y z z y zŽ Ž . Ž . Ž . Ž . Ž . Ž . Ž .
8 2 4 1 5 3 7 7'q2 3 z z z yz z qz z d z s0 , 10Ž . Ž .

where
2 2 2 2 2 2 31 7 2 7 3 7 4 7 5 7 6 7 7Ds2 z z q2 z z q2 z z y z z y z z y z z y zŽ . Ž . Ž . Ž . Ž . Ž . Ž .

2 4 8 1 5 8 3 7 8'q2 3 z z z yz z z qz z z . 11Ž . Ž .
Ž . Ž .Neither Eq. 9 nor 10 can be integrated by itself. So to obtain two independent Casimir invariants C and C ,1 2

we must find exact linear combinations of the equations. For example,

z8g Ž1.qz7g Ž2.sz1d z1 qz 2d z 2 qz 3d z 3 qz 4d z 4 qz 5d z 5 qz6d z 6 qz7d z7 qz 8d z 8 s0 . 12Ž .
This equation is exact, and has the solution

2 2 2 2 2 2 2 21 2 3 4 5 6 7 8C s z q z q z q z q z q z q z q z . 13Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1

Another independent solution can be found by taking the linear combination

Ž1. Ž2. 4 6 5 7 1 8 1 5 6 4 7 2 8 2' 'ag qbg s y18 z z y18 z z y12 3 z z d z q y18 z z q18 z z y12 3 z z d zŽ . Ž .
2 2 2 24 5 6 7 3 8 3'q y9 z y9 z q9 z q9 z y12 3 z z d zŽ . Ž . Ž . Ž .ž /

3 4 1 6 2 7 4 8 4'q y18 z z y18 z z q18 z z q6 3 z z d zŽ .
3 5 2 6 1 7 5 8 5'q y18 z z y18 z z y18 z z q6 3 z z d zŽ .
1 4 2 5 3 6 6 8 6'q y18 z z y18 z z q18 z z q6 3 z z d zŽ .

2 4 1 5 3 7 7 8 7'q 18 z z y18 z z q18 z z q6 3 z z d zŽ .
2 2 2 2 21 2 3 4 5' ' ' ' 'q y6 3 z y6 3 z y6 3 z q3 3 z q3 3 zŽ . Ž . Ž . Ž . Ž .ž

2 2 26 7 8 8' ' 'q3 3 z q3 3 z q6 3 z d z s0 , 14Ž . Ž . Ž . Ž ./
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where

2 2 2 2 2 2 2 21 2 3 4 5 6 7 8'asy3 3 y2 z y2 z y2 z q z q z q z q z q2 z , 15Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .

2 4 1 5 3 7 7 8'bs6 3 z z y3 z z q3 z z q 3 z z . 16Ž .

Ž .Integrating Eq. 14 yields the solution

2 2 21 4 6 1 5 7 1 8 2 4 7 2 5 6 2 8 3 4' 'C sy18 z z z y18 z z z y6 3 z z q18 z z z y18 z z z y6 3 z z y9 z zŽ . Ž . Ž .2

2 2 2 2 2 23 5 3 6 3 7 3 8 4 8 5 8' ' 'y9 z z q9 z z q9 z z y6 3 z z q3 3 z z q3 3 z zŽ . Ž . Ž . Ž . Ž . Ž .
2 2 36 8 7 8 8' ' 'q3 3 z z q3 3 z z q2 3 z . 17Ž . Ž . Ž . Ž .

Ž .We should note here that for Lie–Poisson brackets based on semi-simple Lie algebras as in this example , a
w xformula exists for the Casimir invariants. It follows immediately from results in 24 that if the basis elements of

Ž i. Ž Ž i. Ž j.. ithe algebra are given as matrices X in any representation of the Lie algebra, then CsTr X PPP X z
j Ž i Ž i..PPP z is a Casimir invariant here, z is the coordinate dual to the basis vector X . Using the Gell-Mann

Ž . Ž .matrices in this formula yields Casimir invariants proportional to 13 and 17 .
As complicated as this last example might seem, the method used is certainly more economical than solving

the system of coupled PDEs mentioned in Section 3, which is the only systematic alternative known for the
computation of Casimir invariants. And while for a small number of PDEs, solutions can often be guessed, this

w xbecomes difficult for large systems. The reader is referred to 19 for additional examples.

4. Casimir invariants of infinite-dimensional brackets

For infinite-dimensional examples, we first consider Poisson brackets that occur in the Hamiltonian
w xformulation of the Vlasov–Poisson system and the 2D Euler equation 4,25 . Then, we consider a modification

of our first example that might arise in other types of kinetic theories, such as that which describes a spin gas.
All of the examples for this section arise in systems that can be described by a single field variable f. This

field is taken to be a function on an n-dimensional space D, with coordinates z i, and of time. In these examples,
the space D is endowed with a Poisson bracket.

The brackets in these examples have the following general form:

dF d G
nw x� 4F ,G f s f , d z . 18Ž .H

d f d fD

In this expression, The variables F,G represent functionals of the field f , and dFrd f denotes the functional
Ž .derivative of F with respect to f. The square brackets in the integrand denote the finite-dimensional Poisson

bracket defined on the space D. This will be referred to as the inner bracket. This bracket is an infinite-dimen-
w x Žsional generalization of the Lie–Poisson bracket, first considered by Lie 26 . The bracket is sometimes also

w x .known as the Kostant–Kirillov bracket 27 .
Furthermore, the brackets we consider can be rewritten in the form

dF d G
n� 4F ,G sy f , d z . 19Ž .H

d f d fD

Ž .This is not true for all brackets of the form 18 . Whether it holds or not depends on the nature of the inner
bracket, as will be seen below.
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Ž . w xNow, from Eq. 19 , we can read off the cosymplectic operator as Jsy f ,P . So the condition for finding
the components g of the null covector G[gd f of J is simply

w xf ,g s0. 20Ž .
To solve this completely for g we need to know the details of the inner bracket. These will be provided for two
cases below.

Ž . Ž . ŽIf the inner bracket in 18 is canonical, that is, takes the form 2 , an integration by parts assuming that the
. Ž .field vanishes on the boundary of D shows that the bracket obeys Eq. 19 . Hence, in this case, we can use Eq.

Ž .20 to determine its Casimir invariants.
Ž . Ž .By antisymmetry of the bracket, gs f solves Eq. 20 . Hence gsk f is also a solution, for an arbitrary

Ž . Žfunction k. Since the variation k f d f is an exact variation the formal analogue in infinite dimensions of an
. Ž .exact differential , the Pfaffian system, k f d fs0, is easily integrated. This yields the expression for the

Casimir invariant CC:

w x nCC f s K f d z , 21Ž . Ž .H
D

Ž . Ž . Žwhere K f is the primitive with respect to f of k f . Note: we use the caligraphic font to distinguish Casimir
.invariants of infinite-dimensional brackets from those of finte dimensional brackets.
Ž .As another, slightly more complicated example, we consider a bracket of the form 18 with an inner bracket

of Lie–Poisson type. We suggest that brackets of this form are applicable to the Hamiltonian formulations of
nontraditional kinetic theories in analogy to their use in the Vlasov–Poisson system mentioned above. Notice
that the inner bracket for the Vlasov–Poisson system is that appropriate to the phase space of a point particle. If,

Ž .however, we wished to describe a ‘gas’ composed of freely spinning fixed rigid bodies instead of point
Ž .particles, we expect that the inner bracket for this kinetic theory would be the so 3 bracket mentioned in

Section 3. Another, more exotic, possibility would be a kinetic theory that describes a gas of Kida vortices. The
Ž . Ž w x.dynamics of a Kida vortex takes place on the Lie algebra so 2,1 see 17 , and is governed by the

corresponding Lie–Poisson bracket.

E f E g
jk iw xf , g z sc z , 22Ž . Ž .i j kE z E z

where c jk are the structure constants of the Lie co-algebra.i
Ž . Ž .Integration by parts assuming f is constant on the boundary shows that the bracket 18 with inner bracket

Ž . Ž . i kof form 22 satisfies Eq. 19 if and only if the structure constants obey the condition c s0 for all k. Thisi
Žhappens to be satisfied by the structure constants of any semi-simple Lie algebra. Incidentally, any Hamiltonian

flow generated by a Lie–Poisson bracket satisfying this condition obeys the naive Liouville’s theorem in
w x .non-canonical coordinates 7 .

Ž .Now, to calculate the Casimir invariants for these examples, we again must solve Eq. 20 for g . As in the
above example, one solution is given by gs f. However, the inner bracket in this example can be degenerate,
and thus have Casimir invariants of its own. Suppose there are m such independent functions and denote them

Ž i. Ž . Ž Ž1. Žm. .by C . Then a solution of 20 is gsk C , . . . ,C , f , where k is an arbitrary function. From this we see
that

Gsk C Ž1. , . . . ,C Žm. , f d f 23Ž .Ž .
is a null covector of J. Not only that, it is an exact variation, making Gs0 easy to integrate. Indeed, we find as
a Casimir invariant

w x Ž1. Žm. nCC f s K C , . . . ,C , f d z 24Ž .Ž .H
D

Ž . Ž .where k f sE K f rE f.
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Applying this result to the proposed spin gas bracket, we use the result from Section 3, and obtain the
Casimir invariant

2 2 21 2 3 3w xCC f s K z q z q z , f d z . 25Ž . Ž . Ž . Ž .H ž /
D

Ž .We could also envision a kinetic theory describing particles evolving on the Lie algebra su 3 . Its Casimir
invariant would be:

w x 8CC f s K C ,C , f d z , 26Ž . Ž .H 1 2
D

Ž . Ž . Ž .where C ,C are given respectively by Eqs. 13, 17 . In both 25 and 26 , K is an arbitrary function.1 2

Note the distinct origins of the two types of functional dependence K in these invariants. Its dependence on f
arises from the structure of the infinite-dimensional bracket alone, and so is common to any kinetic theory to

Ž .which bracket 18 is applicable: it might be called the ‘macroscopic’ part of the Casimir invariant. On the other
hand, the dependence of K on the C Ž i. arises from the structure of the finite-dimensional inner bracket, and so
reflects the nature of the ‘microscopic’ theory.

5. Conclusion

We have presented a method for computing Casimir invariants applicable to both finite and infinite-dimen-
sional Poisson brackets. We believe that presenting this method geometrically has two benefits: it enhances
pictorial intuition of the behavior of finite-dimensional Hamiltonian systems, and it gives insight into how
infinite-dimensional Hamiltonian systems can be treated analogously to finite-dimensional ones.

We have also computed some new examples of Casimir invariants. Most interesting, perhaps, are those that
are the results of Poisson structures at finite and infinite-dimensional levels simultaneously. In these, we have
pointed out what parts of the invariants correspond to which Poisson structure.
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