
A Necessary and Sufficient Instability Condition
for Inviscid Shear Flow

By N. J. Balmforth and P. J. Morrison

We derive a condition that is necessary and sufficient for the instability of
inviscid, two-dimensional, plane-parallel, shear flow with equilibrium velocity
profiles that are monotonic, real analytic, functions of the cross-stream
coordinate. The analysis, which is based upon the Nyquist method, includes
a means for delineating the possible kinds of bifurcations that involve the
presence of the continuous spectrum, including those that occur at nonzero
wave number. Several examples are given.

1. Introduction

The linear stability of inviscid, incompressible, two-dimensional, plane-paral-
lel, shear flow was considered more than a century ago by Rayleigh, Kelvin,
and others. A principal result on the subject is Rayleigh’s celebrated

w xinflection point theorem 1 , which states that the equilibrium velocity profile
must contain an inflection point for a flow to be unstable; that is, if the

Ž .velocity profile is given by U y , where y is the cross-stream coordinate,
Ž .then there must be a point, ys y , for which U0 y s0. Much later, inI I

w x1950, Fjørtoft 2 generalized the theorem by showing that, moreover, if
Ž . Ž .there is one inflection point, then U - y rU9 y -0 is required for instabil-I I
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Ž w x .ity see 3 for further extensions . Both Rayleigh’s theorem and Fjørtoft’s
subsequent generalization are necessary conditions for instability, but they
are not sufficient. Even though an equilibrium profile may contain a
vorticity minimum, it is not necessarily unstable. The point of this article is
to derive a condition that is necessary and sufficient for instability for a large
class of equilibrium velocity profiles.

1.1. O¨er̈ iew

The procedure we use to derive the instability condition is inspired by
techniques developed for the Vlasov equation. For that problem one can
find a condition that is necessary and sufficient for instability by using the
Nyquist method, a method that leads to what is known as the Penrose

w xcriterion 4 in plasma physics. The Penrose criterion follows fairly straight-
forwardly for the linear Vlasov problem because the discrete eigenvalues
satisfy an explicit dispersion relation. However, in the context of the Euler
equation that governs shearing fluid, the relevant eigenvalue problem leads
to Rayleigh’s equation. This equation cannot be manipulated into an explicit
dispersion relationship, and a sufficient condition for the instability of
velocity profiles of a general form has not previously been given. We note,

w x w xthough, that 5 and 6 present a sufficient condition for long wave instabil-
w xity, and in 5 a necessary and sufficient condition for the instability of

Žprofiles that have single inflection points where bifurcations only occur
.through zero wave number was obtained.

Here we derive a condition that is necessary and sufficient for instability
Ž .for a class of velocity profiles U y , where y is the cross-stream coordinate.

wSpecifically, we consider profiles that are monotonic functions when yg y1,
x1 , which we call the ‘‘flow domain’’ and which are real analytic. This latter

Ž . w xlimitation means that U y has a convergent Taylor series on y1,1 and
thus possesses an analytic continuation into the complex y-plane. Hence,

Ž .there exists a neighborhood an open set of the complex plane that contains
w x Ž . Ž .the interval y1,1 in which U y is analytic and in which U9 y /0. We

assume that this neighborhood is as large as needed in subsequent calcula-
tions. Both the monotonicity and analyticity limitations can be generalized,
but we will not attempt this here.

1.2. Summary of result

In the remainder of this section we summarize our main result, which
amounts to a prescription for obtaining the condition that is necessary and

Ž .sufficient for instability. Given the solution c y, c to the Fredholm integralr

equation

1 GG y , y9 y GG y , yŽ . Ž .cc y , c s GG y , y q U0 y9 c y9, c dy9, 1Ž . Ž . Ž . Ž . Ž .Hr c rU y9 ycŽ .y1 r
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Ž . Ž . Ž .where c sU y and GG y, y9 is a Green function given in Equation 8 thatr c

contains the streamwise wave number k and embodies the boundary condi-
tions, we construct the ‘‘Nyquist function’’

1 U0 y c y , c U0 y c y , cŽ . Ž . Ž . Ž .r c c re c s 1y PP dy y ip , 2Ž . Ž .Hr U y yc U9 yŽ . Ž .y1 r c

Ž .where PP denotes the Cauchy principal value. Then we plot e c on ther
Ž . Ž . Ž .e , e -plane for c running from U y1 to U 1 , or, equivalently, for yr i r c

w x Ž .along the interval y1,1 . The profile U y is exponentially unstable for that
Ž .value of k used in Equation 1 if and only if the resulting path loops around

the origin, e se s0. In fact, the path can cross the e -axis only at ther i r
Ž .inflection points y of the velocity profile, where U0 y s0. This leads to theI I

Ž .following necessary and sufficient condition for instability: e c -0 withr I
Ž .c sU y , or equivalently,I I

1 U0 y c y , cŽ . Ž .I dy ) 1, 3Ž .H U y ycŽ .y1 I

for one of the y ’s.I
Ž . Ž .In Section 7, among other examples, we treat the profile U y s tanh b y

and arrive at the ‘‘Nyquist plots’’ shown in Figure 1. For this equilibrium
Ž .profile with b s2 the plots of Figure 1 a loop around the origin and

Ž . Ž .e c -0 where c s0 , provided kQ1.832. Hence for b s2 the profile isr I I
Ž .unstable over the band of wave numbers 0- kQ1.832. Figure 1 b illus-

trates the onset of instability, which occurs through ks0, as the parameter
b is changed.

To prove this result, we need various mathematical results for Rayleigh’s
equation. These are derived in Sections 2]5. Application to specific equilib-
rium velocity profiles is presented in Sections 6 and 7. Finally, in Section 8
we summarize, place our work in context, and discuss future developments.

2. Review

2.1. Formulation

For a two-dimensional, inviscid fluid contained within the channel xg
Ž . w x Ž .y`,` and yg y1,1 , an equilibrium state is given by any flow U, 0 ,

Ž .where UsU y is the equilibrium velocity profile. Infinitesimal disturbances
w xto such an equilibrium are described by the Equation 1

˜ v q U y  v s U0 y  c , 4Ž . Ž . Ž .˜ ˜t x x
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Ž . Ž .Figure 1. Nyquist plots for the single inflection point profile U y s tanh b y. a Four plots
for b s2 and ks0, 1, and 2, and the critical value for the onset of instability, ks k ,1.832c
Ž . Ž .dashed curve . b Four plots for ks0 and b s1, 1.5, and 2, and the critical value for the

Ž .onset of instability, b s b ,1.2 dashed curve .c
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˜Ž . Ž .where v x, y, t is the vorticity perturbation and c x, y, t is the associated˜
stream function, which are related by

2˜v s = c , 5Ž .˜

˜Ž .and the boundary conditions are c x,"1, t s0. Throughout this article we
˜Ž . Ž .will consider solutions of the form v s v k, y, t exp ikx and c s˜

Ž . Ž . Ž .c k, y, t exp ikx , in which case 4 becomes

 v q ikU y v s ikU0 y c , 6Ž . Ž . Ž .t

Ž .and the inverse of 5 takes the form

1
c y , t s GG y , y9 v y9, t dy9, 7Ž . Ž . Ž . Ž .H

y1

where

¡ysinh k 1y y sinh k 1q y9Ž . Ž .
if y) y9k sinh 2k~GG y , y9 s 8Ž . Ž .ysinh k 1q y sinh k 1y y9Ž . Ž .¢ if y- y9.k sinh 2k

Here and henceforth we suppress the k-dependence in the arguments of all
functions.

2.2. Laplace transform

We need some results associated with the Laplace transform approach to
Ž .the solution of 6 as an initial value problem. So we give a brief review of

w x w xthis approach here. More detailed accounts are given in 7 and 8 and with
w xconsiderably more rigor in 9 .

Recall that the Laplace transform pair is expressed as

`
yp tC y , p s e c y , t dtŽ . Ž .H

0

and

1 ptc y , t s e C y , p dp, 9Ž . Ž . Ž .H2p i C
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where C is the Bromwich contour that runs parallel to the imaginary p-axis
Ž .and to the right of all singularities of the integrand. Using the above, 6

becomes

2 v y , 0 ikU0 Ž .2y k y C y , p s , 10Ž . Ž .2ž /pq ikU pq ikU y

Ž . Ž . Ž 2 2where v y, 0 , the initial value of the vorticity, satisfies v y, 0 s  r y y
2 . Ž . Ž .k c y, 0 . The solution to 8 can be written formally as

1 v y9, 0Ž .
C y , p s HH y , y9; p dy9, 11Ž . Ž . Ž .H pq ikU y9Ž .y1

Ž .where the Green function HH y, y9; p is given by

¡yC y , p C y9, pŽ . Ž .1 2 if y1F yF y9
W C ,CŽ .1 2~HH y , y9; p s 12Ž . Ž .yC y9, p C y , pŽ . Ž .1 2 if y9F yF1,¢ W C ,CŽ .1 2

and the Wronskian is

W C ,C [ C y , p CX y , p y CX y , p C y , p . 13Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 2 1 2

Ž .Here C and C are any two solutions to 10 with the right-hand side set to1 2
Ž . Ž . Ž .zero and the boundary conditions C y1, p sC 1, p s0. Because 101 2

does not contain a term involving the first derivative with respect to y, it is
Ž w x .an elementary result see 10 , Chap. V that the Wronskian is independent

Ž .of y. Arguments pertaining to the inverse Laplace transform of 11 imply
that the dispersion relationship for discrete normal modes is given by

W C ,C s 0, 14Ž . Ž .1 2

Ž .with Re p )0.

2.3. Normal modes

An alternative approach to the Laplace transformation follows when
Ž .we search for normal modes at the outset by assuming that v y, t s
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Ž . Ž . Ž . Ž . Ž .v y exp yikct and c y, t sc y exp yikct . Inserting these expressions
Ž .into 6 yields Rayleigh’s equation,

Uyc v s Uyc c 0y k 2c s U0 c , 15Ž . Ž . Ž .Ž .

Ž .which is an equation for the eigenfunction c y that corresponds to the
eigenvalue c. In the next section we describe some properties of this
equation for both real and imaginary values of c that we need later.

3. Rayleigh’s equation

3.1. Singular points and solutions in the complex plane

Ž .We need several facts about the solutions to Rayleigh’s equation 15 . First,
Ž . Ž .the point y , for which U y sc, is a singular point of 15 . If c is real, thenc c

Ž .this point is commonly called a ‘‘critical layer.’’ Because U y is a monotonic
w xfunction for yg y1,1 , there is at most one such critical layer in the flow

Ž .domain, and this occurs when c is in the range of U y . Because of the
monotonicity and real analyticity of U for y in the flow domain, there exists

w xa neighborhood of y1,1 in the complex plane in which the only singular
Ž .point of 15 is the critical layer. We add that there exists a neighborhood

about any point of the flow domain in which the complex variables y and cc

are in one-to-one correspondence. Without loss of generality, we will take
Ž . w xU9 y )0 when yg y1,1 for definiteness.
Rayleigh’s equation has a singular point at the critical layer, but this is

not the only possible singular point. First, there may be other points in the
Ž .complex y plane for which U y sc. Secondly, although no others exist

w xwhen U is continued into a neighborhood of y1,1 , it is likely that
additional singular points occur in U when that function is further analyti-
cally continued into the complex plane. Then these singularities can show up

Žin Rayleigh’s equation though it is worth noting that because U occurs in
Ž .Rayleigh’s equation only in the coefficient U0r Uyc , all singular points in

the finite complex plane are regular for meromorphic U. This can easily be
.shown by Laurent expansion . However, here we need to consider only the

critical layer.
From the elementary theory of ordinary differential equations in the

Ž w x .complex plane see e.g., 11 , Chap. X it is known that there are two analytic
solutions for y in a neighborhood of any ordinary point. Moreover, gener-
ally, branch points occur in the solution at the locations of regular singular
points. If we fix the two parameters k and c, then the locations of the
singular points are fixed for a given equilibrium profile.
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It is straightforward to obtain two Frobenius series solutions of the
following form in a neighborhood of the critical point in the complex
y-plane:

c y , c s U y yc w y , c , 16Ž . Ž . Ž . Ž .g 1

and

c y , c s U y yc log U y yc w y , c q w y , c , 17Ž . Ž . Ž . Ž . Ž . Ž .b 2 3

where w , w , and w are analytic for y in this neighborhood and for c in1 2 3

the finite complex c-plane.
The Frobenius solutions can be used to construct neutral eigenmodes

Ž .with c real . We will go about this construction shortly. However, Rayleigh’s
equation may also have complex eigenmode solutions, for which c is
complex, and we consider these first.

3.2. Complex eigenmodes

When c is complex, there is no singular point in Rayleigh’s equation for
w x Ž . Ž .yg y1,1 , and then we may eliminate v between 15 and 7 to obtain an

Ž .integral equation for the stream function eigenfunction of the complex
eigenmodes:

1 U0 y9 c y9, cŽ . Ž .
c y , c s GG y , y9 dy9. 18Ž . Ž . Ž .H U y9 ycŽ .y1

This has the form of a Fredholm equation, and if there is a solution for
Ž w x.csc , that solution is known to be unique e.g., 12 . Moreover, theD

conjugate cscU is also a solution. These complex conjugates comprise aD

pair of discrete eigenvalues, of which there can be only a finite number. In
fact, at the end of this article, we essentially give an upper bound on their
number.

Ž .The complex pairs that satisfy 18 are equivalent to the homogeneous
Ž . Usolutions of 10 . Alternatively, the values csc and csc are the zeros ofD D

Ž .the Wronskian 14 of the Laplace transform theory.
According to the Rayleigh]Fjørtoft theorem, instabilities occur only if the

Žvelocity profile contains a minimum in vorticity since we assume U9)0, the
.vorticity is everywhere negatï e . Thus, because Im c)0 signifies instability,

the theorem implies that the complex, discrete eigenmodes can exist only if
the vorticity has a minimum.

3.3. Neutral discrete eigenmodes

The solution of Rayleigh’s problem for the neutral eigenmodes is not so
clear-cut. In fact, if c is real, then there can be no nontrivial, regular
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solutions for the stream function, with only a single exceptional type of
Ž . Ž .mode. This follows from two facts. First, if c-U y1 sU or c)U 1 sU ,1 2

then Rayleigh’s equation with the assumed boundary conditions has only a
trivial solution. Thus neutral solutions must have critical layers. Second, if c

w xlies within the flow domain U ,U , then it can be shown that c cannot1 2 g
Ž w x.satisfy the boundary conditions e.g., 13 . Therefore, all neutral eigenmodes

Ž . Ž .must contain the ‘‘bad’’ solution c y, c , in which case c y, c must have anb

undefined derivative. This failure to construct real analytic neutral eigen-
functions is connected to the presence of a continuous spectrum that occurs

w Ž . Ž .x w xfor wave speeds that lie inside the flow domain: cg U y1 ,U 1 7 .
The exceptional class of modes are those for which the critical layer lines

up with an inflection point of the equilibrium flow profile. In this case,
Ž .U0 y s0, and the singular point is removed from Rayleigh’s equation.c

Ž .Then, the Frobenius solution c y, c is an analytic function. The excep-b
Ž . Ž . Ž .tional modes also satisfy equation 18 , but now csU y sU y , where yc I I

is the location of an inflection point. We call these eigensolutions ‘‘inflec-
tion-point modes.’’ They are discrete eigenmodes embedded in the continu-
ous spectrum.

One important feature of the inflection-point modes is that they must be
Ž .the limits of the complex pairs, as Im c ª0. In fact, they are the basis of

the Tollmien]Lin perturbation theory, which builds the nearby complex
solutions from the inflection-point mode. This perturbation is normally
expanded with an underlying assumption that the limit exists. Though this is

Ž .largely a technicality, the assumption is strictly only valid when U y is an
w x Žanalytic function on y1,1 this is one of the results that comes directly out

.of the complex analysis described here .

3.4. Singular eigensolutions

Therefore, neutral eigenmodes cannot be real analytic at the critical layer if
Ž .U0 y /0. Consequently, because the derivative of the stream function isc

not defined for these modes, we can impose continuity only on such
Ž .solutions to Rayleigh’s equation. Thus, c y, c may have an arbitrary jump

at ys y in its first derivative. Any family of such solutions can be taken as ac

set of singular eigenfunctions of the continuous spectrum. However, there is
one family that is especially useful, and now we construct these special
singular eigenmodes.

The singular eigenfunctions are generalized function solutions of
Ž w x w x.Rayleigh’s equation see 14 and 15 :

U0 c
v y , c s PP q l c d U y yc , 19Ž . Ž . Ž . Ž .Uyc

Ž .where PP indicates the Cauchy principal value, d Uyc is Dirac’s delta



N. J. Balmforth and P. J. Morrison318

function, and l is yet to be determined. With the interpretation of the
Ž .singularity in 19 by the Cauchy principal value, we may define the jump in

Ž .the derivative of c by lrU9 y . This quantity is currently arbitrary and inc

particular can be taken to be any function of c. Our special singular
eigenmodes arise from a judicious choice for l.

Ž .If we integrate 19 across the channel, we obtain

1 1 U0 y c y , c lŽ . Ž .
J c [ v y , c dy s PP dy q , 20XŽ . Ž . Ž .H H UU y ycŽ . cy1 y1

or

1 1 U0 y c y , cl Ž . Ž .s v y , c dy y PP dy 21X Ž . Ž .H HU U y ycŽ .c y1 y1

1 U0 y c y , cŽ . Ž .
\ J c y PP dy , 22Ž . Ž .H U y ycŽ .y1

X Ž . Ž .where U sU9 y and J c is a parameter that is, generally, a function ofc c

the eigenvalue. In fact, because v is a generalized function, the amplitude
of the eigenmode can be fixed only when multiplying by a suitable test

Ž .function and integrating. In Equation 21 , the test function is simply unity,
and so J can be regarded as the eigenfunction amplitude. Moreover,
because this is a linear problem, we may choose the dependence of J as we
wish. Then this amounts to the selection of l.

Ž . Ž . Ž .Using 7 , 19 , and 22 , we find that

1 U0 y9 c y9, cl Ž . Ž .
c y , c s GG y , y q PP GG y , y9 dy9 23XŽ . Ž . Ž . Ž .HcU U y9 ycŽ .c y1

1 GG y , y9 y GG y , yŽ . Ž .cs J c GG y , y q U0 y9 c y9, c dy9.Ž . Ž . Ž . Ž .Hc U y9 ycŽ .y1

24Ž .

Ž . Ž .Although at first sight 23 is a singular integral equation, 24 is a regular
Ž w x.Fredholm equation of the second kind e.g., 12 that is straightforward to

solve.
Ž .Provided that the Fredholm equation has no homogeneous solution, 24

Ž .has a unique particular solution. If 24 has a homogeneous solution,
particular solutions are, generally, unbounded. The important point is that a
family of well-behaved singular eigenmodes is needed to represent the
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continuous spectrum. If there are no homogeneous solutions, any choice for
Ž .J c suffices for this purpose. But if there are homogeneous solutions, a

Ž .more specialized choice must be made. One possible selection is J c s
Ž . Ž .DD c , where DD c is the Fredholm determinant. With this selection, the

inhomogeneous term automatically vanishes if there is a homogeneous
solution. This ensures that the solution to the Fredholm problem is always
bounded. Hence, even if there are homogeneous solutions, we can always

w Ž .find a set of sensible singular eigenmodes. Note that DD y is determinedc
Ž . Ž . Ž .by the kernel in 24 , that is, GG y, y9 and U y , and is independent of the

Ž . Ž . xsolution, c y, c , and so there is freedom for this selection for J c .
Ž .We have not found any homogeneous solution to 24 for Rayleigh’s

Ž .problem with the profiles we have considered. So J c s1 is a convenient
Ž . Ž .choice in any practical application. Then, from 19 and 22 , we compute

the singular eigenfunction and the jump in the stream function’s derivative.
Finally, note that the amplitude of the solution at the critical layer
Ž . Ž . Ž .c y , c cannot vanish, because the Frobenius solution 17 satisfies c y , cc b c

/0. This is an important property of the singular eigenfunctions that are
used later.

4. The dispersion relation

In this section we construct an expression for the dispersion relation. The
form of the dispersion relation is designed to facilitate the subsequent
Nyquist analysis and is one that is useful for relating discrete eigenmodes to
continuum eigenmodes.

4.1. Discontinuity and the dispersion relation

We begin by considering an arbitrary point y# that is not coincident with
the critical layer, i.e., y# is any ordinary point of the differential equation.

w xFor convenience we choose y#g y1,1 , and we assume that c is fixed in
the upper half c-plane.

Ž . Ž .Now we construct two solutions, C y, c and C y, c , that are defined- )

w x Ž .for yg y1,1 on the complex c-plane. The first, C y, c , is defined by-

series expansion about the left boundary point ysy1 and satisfies the
Ž .boundary condition C y1, c s0. This is a one-parameter family of solu--

tions, whose parameter can be taken as a multiplicative constant, i.e., we can
Ž . Ž . Ž .write C y, c sC F y, c , where F y, c is a parameter-independent- - - -

Ž . X Ž .solution of Rayleigh’s equation that satisfies F y1, c s0 and F y1, c- -

s1. Similarly, a second one-parameter family of solutions is constructed by
series expansion about the point ys1. We denote this second solution by

Ž . Ž . Ž . X Ž .C y, c sC F y, c , where by construction F 1, c s0 and F 1, c s1.) ) ) ) )
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w x Ž . Ž .We emphasize that at fixed yg y1,1 , both F y, c and F y, c are- )

Ž .analytic in c for all c/U y .
The next step in our construction is to choose the constants C and C- )

Ž .so that C and C are continuous at the point y#, i.e., we set C y#, c s- ) -

Ž .C y#, c . This requirement leaves a remaining constant that is an overall)

scaling factor. The two solutions can be represented as follows:

C y , c, y# s C c, y# F y#, c F y , c ,Ž . Ž . Ž . Ž .- ) -

and

C y , c, y# s C c, y# F y#, c F y , c , 25Ž . Ž . Ž . Ž . Ž .) - )

Ž .where the sole remaining constant is C c, y# , in which we have included
Ž .dependence upon c and y#. Clearly, we are free to choose C c, y#

Ž .arbitrarily. We give a prescription for defining C c, y# shortly.
Ž . Ž .No matter which nonzero value is chosen for C c, y# , the derivatives of

the functions C and C will not match at the point y# for general values- )

of c. However, in the event that they do match, the value of c is an
eigenvalue, and the functions C and C define an eigenfunction. In fact,- )

when this is the case, C and C are analytic continuations of each other.- )

This follows because y# is an ordinary point and both C and C are- )

solutions of the Cauchy problem for Rayleigh’s equation with identical
specification of their values and derivatives at y#. Moreover, when the
derivatives of the solutions match, the point y# is immaterial and the
dependence upon y# drops out of the incipient eigenfunction.

In light of the above, the jump in the derivatives of C and C at y# is- )

Ž .equivalent to a dispersion relation: its disappearance determines csc k .
ŽRecall that the k dependence has been suppressed in the previous expres-

. Ž .sions. Note that if C c, y# is chosen to be an analytic function of c in the
Ž . Ž .upper half plane, then C y#, c and C y#, c are also analytic functions- )

Ž .of c in the upper half plane, which follows from the assumption U y# /c.
Hence, the dispersion relation is an analytic function for c in the upper half
plane. Also, note that the dispersion relation does not depend on the point
y#, because matching the derivatives at any point gives an eigenfunction.

4.2. Relationship between e and W

Now we obtain a convenient expression for the dispersion relation.
Generally, for y within the flow domain, we write the stream function in

the form

C y , c, y# [ H yy y# C y , c, y# q H y#y y C y , c, y# , 26Ž . Ž . Ž . Ž . Ž . Ž .) -
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Žand H is the Heaviside function. Then, the vorticity, by which we mean v y,
. Y 2c, y# sC y k C, has a representation

v y , c, y# s V y , c, y# q e c, y# d yy y# , 27Ž . Ž . Ž . Ž . Ž .˜

Ž .where e c, y# measures the jump in the derivatives,˜

e c, y# [ CX y#, c, y# y CX y#, c, y# , 28Ž . Ž . Ž . Ž .˜ ) -

and

¡U0 y C y , c, y#Ž . Ž .- if y) y#
U y ycŽ .~V y , c, y# s 29Ž . Ž .

U0 y C y , c, y#Ž . Ž .) if y- y#.¢ U y ycŽ .

Ž . Ž .By inserting 25 into 28 , we see that

X Xe c, y# s C c, y# F y#, c F y#, c yF y#, c F y#, cŽ . Ž . Ž . Ž . Ž . Ž .˜ ) - - )

\ C c, y# W c , 30Ž . Ž . Ž .

where W, the Wronskian for Rayleigh’s equation, is independent of y#.
Ž .Note that this quantity can be identified with the Wronskian of 13 by

substituting psy ikc into the latter.
Ž .Next we normalize the solution by integrating 27 over the flow domain

˜ Ž .and setting the result equal to the c-dependent parameter, J c, y# :

q1 ˜v y , c, y# dy s J c, y# , 31Ž . Ž . Ž .H
y1

which yields

y# U0 y C y , c, y#Ž . Ž .-J̃ c, y# s e c, y# q dyŽ . Ž .˜ H U y ycŽ .y1

1 U0 y C y , c, y#Ž . Ž .-q dy. 32Ž .H U y ycŽ .y#
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Then by using Rayleigh’s equation, we find that

y#
X X 2J̃ s yC y1, c, y# q C 1, c, y# y k C y , c, y# dyŽ . Ž . Ž .H- ) -

y1

12y k C y , c, y# dy. 33Ž . Ž .H )
y#

Ž . Ž . Ž .Finally, by inserting 25 into 33 , we may express C c, y# in terms of
˜ Ž . Ž .J c, y# or vice versa :

y#
2˜C c, y# s yJ c, y# k F y#, c F y , c dyŽ . Ž . Ž . Ž .H ) -

y1

12q k F y#, c F y , c dyŽ . Ž .H - )
y#

y1

qF y#, c yF y#, c . 34Ž . Ž . Ž .) -

Because F and F are analytic in c in the upper half plane for fixed y,- )

Ž .the quantity in the denominator of the right-hand side of 34 is also
Ž .analytic. Thus, if we were to select C c, y# to be analytic in the upper half

˜ Ž .c-plane, then J c, y# would also be analytic. However, the converse is not
˜ Ž .quite true. If J c, y# is selected to be analytic in the upper half plane, then

Ž .C c, y# is also analytic except, perhaps, for poles at the zeros of the
denominator. We will interpret these zeros shortly.

4.3. Rayleigh Green function and singular eigenfunctions

The next piece of the puzzle is to relate the dispersion relation to the
singular eigenfunctions.

Ž .We may rewrite 27 in the form

U0 C2C0 y k C y s ed yy y# . 35Ž . Ž .˜Uyc

Thus, C is related to the Green function for Rayleigh’s equation. This
w Ž .xequation is a bit subtle, because e according to 32 is in fact a property of˜

the solution, and so the equation is self-referential. However, if y#/ y andc

e /0, then Cre satisfies the normal equation for the Green function.˜ ˜
Ž .We may turn Equation 35 into one of integral form by using the Green

function of the Laplacian:

1 U0 y C y9, c, y#Ž . Ž .
C y , c, y# s GG y , y# e c, y# q GG y , y9 dy9.Ž . Ž . Ž . Ž .˜ H U y9 ycŽ .y1

36Ž .



Inviscid Shear Flow 323

Ž .Moreover, by using the relationship 32 , this can be written as

1˜C y , c, y# s J c, y# GG y , y# q C y9, c, y# KK y , y9, y#, c dy9,Ž . Ž . Ž . Ž . Ž .H
y1

37Ž .

where

GG y , y9 y GG y , y#Ž . Ž .
KK y , y9, y#, c [ U0 y9 . 38Ž . Ž . Ž .U y9 ycŽ .

Hence the Green function can be constructed by solving another Fredholm
integral equation.

In fact, the two Fredholm problems are closely related. If we take the
Ž .limit cªc q i0'U y q i0 with y#s y , then we recover the Fredholmr c c

Ž . Ž . Žequation for the singular eigenfunctions from 37 ] 38 , where C y, c qr
˜. Ž . Ž . Ž .i0, y sc y, c and J c, y 'J c .c r c

Ž .Similarly, we may recover the singular eigenfunction 19 from the Green
Ž . Ž .function Equation 27 in the same limit. We let cªc q i0'U y q i0 inr c

Ž .32 , giving

1 U0 y C y , c q i0, yŽ . Ž .r c˜e c q i0, y s J c q i0, y y dy. 39Ž . Ž . Ž .˜ Hr c r c U y yc y i0Ž .y1 r

Ž .However, since C y, c, y# is analytic in the upper half plane, there exists a
Ž w x.generalized form of the Plemelj relation e.g., 16 , which leads to

e c q i0, yŽ .˜ r c

1 U0 y c y , c U0 y c y , cŽ . Ž . Ž . Ž .r c c rs J c y PP dy y ip 40Ž . Ž .Hr U y yc U9 yŽ . Ž .y1 r c

\ e c , y q ie c , y , 41Ž . Ž . Ž .˜ ˜r r c i r c

Ž .by using the association of the Fredholm equations to replace C y, c q i0, yr c
Ž .with c y, c . The Plemelj relation also implies thatr

U0 c y , cŽ .rv y , c q i0, y s PP q e c , y d yy y . 42Ž . Ž . Ž . Ž .˜r c r r c cUycr
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Ž . Ž . Ž . Ž .Finally, we identify v y, c q i0, y with v y, c , e c , y with e c , and˜r c r r c r
Ž . Ž . Xe c , y with l c rU . With these associations understood, we drop ther̃ r c c

tildes in the next section and the extra argument in y .c

Note that we could take a completely different approach to the problem
˜ Ž .beginning from the Green function. First we select J c, y# as a function

that is suitably analytic in c. Then, it can be shown that the solution of the
Ž .integral equation 37 has the various analyticity properties we have found

Ž . Žfor C y, c, y# by using Fredholm theory the kernel is an analytic function
.of the parameter c in the upper half plane . From there, we build the

Ž .quantity e c, y# , which we know has zeros if c is an eigenvalue. Moreover,˜
Ž . Ž .Equation 34 determines a function C c, y# by which we may relate the

solution of the integral problem to the solutions F and F used previ-- )

ously.
The only fly in the ointment is the possibility of a homogeneous solution

to the Fredholm problem for some value of c, in which case the particular
solution we seek is unbounded. From Fredholm theory we know that the
solution C is not analytic at this value of c, and, in fact, has a pole.

However, this nonanalyticity is evidently an artifact of solving the Fred-
holm problem because the solutions F and F are analytic in c. More-- )

Ž .over, because they are related to the solution C of 37 simply by the factor
Ž . Ž . Ž .C c, y# , as in Equation 25 , it is clear that the nonanalyticity in C y, c, y#

˜Ž . Ž .is equivalent to a pole in C c, y# . But because we may choose J c, y# as
Ž .analytic, the pole must arise from a zero in the denominator of 34 . This is

Ž .the advertised interpretation of the poles in C c, y# . They correspond to
Ž .the presence of a homogeneous solution of the Fredholm problem 37 .

At this stage, two remarks are in order. We have already noted that there
are no homogeneous solutions for c in the flow domain in the context of the

Ž .singular eigenfunction equation. Hence, C c, y# must be real and contain
no poles for these values of c. Secondly, because this nonanalyticity in
Ž . Ž .C y, c, y# is purely an artifact of solving the Fredholm problem 37 , we

˜ Ž .can take a slightly different tack and make a judicious choice for J c, y#
˜ Ž .that avoids the problem. Again, this is just a choice like Js DD c, y# , where

Ž . Ž .DD c, y# is the Fredholm determinant of the kernel in 37 . Once we make
this choice, we may derive a solution of the integral equation that is analytic
in c in the upper half plane and use it to build the dispersion relationship

Ž .through e c, y# . However, we will explicitly follow the route outlined˜
earlier in this section rather than this avenue based on the Green function.

5. Nyquist method

Ž . Ž .In the previous section we discussed the functions e c and W c , and their
relationship. If there exists a discrete value of the phase velocity csc ,D
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Figure 2. The contours CC, CC 9, and H in the c-plane. The closed contour CC runs the entire
circuit from 1ª2ª ??? ª8ª1, and the portion from 3ª1 is lifted infinitesimally above the
real axis. The contour CC9 is CC, and the piece along the flow domain, 5ª7, is removed. The

Ž .contour H dashed is Howard’s semicircle, within which the unstable eigenvalues must lie.

Ž .such that W c s0, then we have an exponentially growing eigenmode withD
Ž . Ž .growth rate Im kc . By construction we know that W c is analytic for c inD

the upper half plane and that it also has a branch cut along the real axis
Ž . Ž .between U [U y1 and U [U q1 . This branch cut arises from that of1 2

the natural logarithm of the Frobenius solution and the matching procedure
Ž Ž . .see 75 of the Appendix . Because of these properties we begin with W in
the following analysis, but in the end we express the final result in terms of
e , a quantity that is by design reminiscent of the dispersion relation of
Vlasov theory.

The Nyquist method relies on the argument principle of complex analysis.
In the present context this principle implies that the integral

W9 c1 Ž .
dc 43Ž .H2p i W cŽ .CC

counts the number of zeros of W in the region enclosed by a closed contour
CC in the c-plane. We choose CC to run along the c -axis, with c fixed to anr i

arbitrarily small positive value, and then the contour is closed by a large
semicircular portion as shown in Figure 2. As the radius of the semicircle

Ž .goes to infinity, 43 gives the number of exponentially growing eigenvalues.
Ž .Equivalently, 43 is the number of times the path determined by the
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Ž . Ž .function W c encircles the origin of the W ,W plane as c completes ar i

circuit of CC.
Ž .It is efficacious to decompose the integral 43 into the following two

pieces:

U q i0W9 c W9 c W9 c1 1 1Ž . Ž . Ž .2dc s dc q dc. 44Ž .H H H2p i 2p i 2p iW c W c W cŽ . Ž . Ž .CC U q i0 CC 91

The first integral is all important, whereas the second is relatively minor. To
w xunderstand this, recall Howard’s semicircle theorem 8 , which states that

Ž .the zeros of W must lie within a disk of radius U qU r2, centered at the1 2
Ž . Ž .point U yU r2 as illustrated in Figure 2 . Hence, if CC encloses the2 1

semicircle, it contains all of the unstable eigenvalues. In fact, wherever W is
analytic, we may deform the contour CC 9. Because W is analytic in the upper

Žhalf plane, we may deform CC 9 into any contour there that connects W U q1
. Ž .i0 to W U q i0 . The important point is that because CC 9 is deformable to2

any other contour lying outside Howard’s semicircle, the path defined by
Ž .W c as c varies along CC 9 cannot lead to a new enclosure of the origin

because this would mean a zero of W outside the semicircle. In other words,
the count of unstable eigenvalues must be independent of the integration
around CC 9. The only importance of the integral over CC 9 is to complete a

Ž .closed path in the W ,W plane without encircling the origin. In ther i

Appendix we demonstrate this explicitly by extending the contour CC 9 to
infinity and then by analyzing the image of its various pieces in the W-plane.
The upshot is that we may ignore the CC 9 part of the contour. The change in
the argument of W along the flow domain is equal to the number of times

Ž .the function W c encircles the origin, which is equal to the number of
unstable eigenvalues.

Ž . Ž . Ž .In Section 4 we showed that e and W are related by e c sC c W c . But
as c traverses the flow domain,

U q i0 U q i0 U q i0e 9 W9 C92 2 2dc s dc q dc. 45Ž .H H He W CU q i0 U q i0 U q i01 1 1

Upon introducing

< < i argwe xe s e e

and

< < i argwW xW s W e , 46Ž .
Ž .45 becomes

U q i0 U q i02 2< < < <ln e q i arg e s ln W qln Cq i arg W . 47Ž .Ž . Ž .U q i0 U q i01 1
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Ž .Now, as remarked at the end of Section 4, C c is real and finite along this
w xpart of the contour. Hence, equating imaginary parts gives D arg e s

w xDarg W .
Therefore, the number of unstable eigenvalues is determined by the

change in the argument of the following quantity:

1 U0 y c y , cŽ . Ž .U0 y c y , cŽ . Ž . c ce c q i0 s 1y PP dy y ip 48Ž . Ž .Hr U y yU y U9 yŽ . Ž . Ž .y1 c c

s e c q ie c , 49Ž . Ž . Ž .r r i r

Ž . Ž Ž . .where c sU y and we have explicitly made the choice J c s1 , which isr c
Ž .the ‘‘Nyquist function’’ of Equation 2 . As c varies from U to U , orr 1 2

Ž . Ž .equivalently, y from y1 to 1, e c executes a closed path in the e , e -c r r i
Ž . Ž .plane. This path begins and ends at 1,0 because c "1, c s0. In between,

the path circulates around, and the following considerations help us deter-
mine whether or not the origin is encircled.

The path can cross the e -axis only at the points for which e s0 orr i
Ž . Ž . Ž .c y , c U0 y s0. However, as noted at the end of Section 3, c y , cc r c c r

cannot vanish. Hence the crossing points are just the inflection points of the
Ž . Ž .velocity profile. We denote these by y , with U0 y s0 and csc sU y .I I I I

Ž . Ž .Thus, the path emerges from the point 1,0 on the e , e -plane, circulatesr i

around crossing the e -axis as many times as there are inflection points, andr
Ž .then terminates at 1,0 . If the origin is encircled, we have an exponentially

growing instability. Hence, by calculating the singular eigenfunctions from
Ž . Ž .the Fredholm problem 24 and then constructing e c q i0 , we can deter-r

mine if there is an unstable eigenvalue.
In fact, the path can only enclose the origin if there is at least one

crossing point to the left of the origin. Such a crossing point is guaranteed if

1 U0 y c y , cŽ . Ž .I dy ) 1 50Ž .H U y yU yŽ . Ž .y1 I

for at least one of the inflection points.
Ž .Inequality 50 is actually a sufficient condition for instability. We see this

as follows. If there are an odd number of crossings to the left of the origin,
Ž .then 50 certainly guarantees an enclosure of the origin. But if there are an

even number, then one can envision paths that cross to the left of the origin
Ž .but do not enclose it. In this case, 50 may still hold, but the locus fails to

encircle the origin. However, the condition still predicts instability because
we may yet vary k and the path must change continuously as we change k.
From the Fredholm problem, one can observe that c ;1rk for large k.
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This means that c ª0 as kª`. Thus for large enough k, the path of e
Ž .shrinks about the point 1,0 . Because varying k also cannot destroy crossing

points, there must be a range of values of k for which two of the crossing
Žpoints must straddle the origin and the path encircles it. An example

.exhibiting this feature is given in Section 7.3.
Ž .Thus 50 guarantees an enclosure of the origin for some value of k and

for any number of crossings to the left of the origin. In other words, we
deduce the following necessary and sufficient condition for instability:

Rayleigh’s equation possesses an unstable eigenmode if and only if there exists a
Ž .wa¨e number k and at least one inflection point y , such that Equation 50I

holds.

Note that by ‘‘crossing point’’ we mean strictly only those inflection points
for which U -/0. This implies that intersection of the path with the axis
leads to a traversal of the axis from one half plane to the other. Inflection
points for which U -s0 can lead to the path that touches but does not cross
the axis, and these intersections will not signify a nearby enclosure of the

Ž .origin. However, an arbitrarily small deformation of U y in this situation
can lead to the locus that encircles the origin. Thus, profiles with U -s0

Ž .correspond to marginally stable states see Section 7 .
Ž .Unfortunately, the sufficient condition implied by 50 has a more compli-

Žcated dependence on k than in the related Vlasov problem the k-depen-
.dence in the Vlasov problem is contained purely in a multiplicative factor .

Ž .The dependence here comes from the dependence of c y, c on k, which isI
2 2 w Ž .xnot obvious. Nevertheless, if k ) k [yMin U0r Uyc for all of them I

w xinflection points y , then we can apply a result of Howard 17 whichI

indicates that there can be no instability. Hence for k) k , the crossingm

point must lie to the right of the origin, so we can at least bound the range
of interesting wave numbers from above.

Ž .Finally, the condition 50 refers only to exponentially growing eigen-
modes and, therefore, does not encompass all the possibilities for instability.
It fails to account for a possible algebraic instability of the continuous
spectrum. However, in the present context, we can safely ignore such a
possibility because we know that the continuum is stable for a monotonic

w x Ž .velocity profile 9 . Therefore, algebraic instability is ruled out. Hence 50 is
the encompassing condition for instability. This may not be true if the profile

Ž w x.is nonmonotonic see 18 .

6. Special cases

In the previous section we described our necessary and sufficient condition
for instability. Here we illustrate our criterion for two special examples:
general profiles with ks0 and an asymptotic result.
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6.1. General ks0 eigenmodes

For an arbitrary profile with ks0, Rayleigh’s equation simplifies, and the
eigenmodes can be found by directly integrating. It is straightforward to
construct the Wronskian

1 dy
W c s U yc cyU . 51Ž . Ž . Ž . Ž .H2 1 2

y1 UycŽ .

We could analyze this dispersion relationship independently of the machin-
ery developed in the previous sections. However, we consider the ks0
problem by way of illustration, and so we apply the general methodology.

Ž .The Fredholm problem or the procedure of Section 4 for the stream
functions of the singular eigenfunctions has in this case the analytical
solution

c y , cŽ .
1 y 1¡y U yc cyU U UycŽ . Ž . Ž . dy2 1 c for y- yH c21U yUŽ . y12 1 U y ycŽ .~s

1 11U yc cyU U UycŽ . Ž . Ž . dy2 1 c for y) y .H c21U yUŽ .¢ yc 1 U y ycŽ .

52Ž .

Consequently, the Nyquist function can be written in the form

1U yc c yUŽ . Ž . dyX2 r r 1e c q i0 s y U 53Ž . Ž .Hr c 2U yU2 1 y1 U y yc y i0Ž . r

or

U yc c yUŽ . Ž .2 r r 1e c sŽ .r r U yU2 1

1 U0 y dy1 1 Ž .X= U q q PPX X Hc 2U yc U c yU UŽ . Ž . y1 U y yc U9 y2 r 2 r 1 1 Ž . Ž .r

54Ž .

and

U yc c yU U0 yŽ . Ž . Ž .2 r r 1 ce c s yp , 55Ž . Ž .i r 3U yU U9 yŽ . Ž .2 1 c

X Ž . X Ž .where U sU9 y1 and U sU9 1 .1 2
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Ž . X Ž .Note that, for the ks0 problem, C c syU r U yU for c in the flowc 2 1
Ž .domain. Thus C c is indeed real and finite, as we remarked earlier.

In the Nyquist construction, the important piece of the contour CC leaves
Ž . Ž .the point 1,0 , executes some path that depends on the details of U y , and

Ž .finally returns to 1,0 , that is, the path is closed, as we remarked earlier.
Ž . w xThe Nyquist function of 53 is related to that obtained in 5 , where this

special case of ks0 was considered more specifically. Note, however, that
w x Ž .the Nyquist function of 5 differs from 53 by a factor in front of the

Ž .integral that leads to e c vanishing at csU and U . If this were not so, our1 2

Nyquist plots would not be closed loops, and one would be forced to
consider the neglected piece of the contour C9 in detail.

6.2. An asymptotic result

Our second example is only an approximate result. It concerns velocity
Ž . 2 Ž .profiles of the form U y s yq« UU yr« , where « <1. This kind of

velocity profile represents a linear background profile with a superposed,
sharply varying ‘‘defect.’’ To leading order in « , the corresponding stream
function is given by

c y , c s GG y , y q O « , 56Ž . Ž . Ž . Ž .c

and the Nyquist function has the simple form

` UU0 h dhtanh k Ž .
e c s 1y q O « , 57Ž . Ž . Ž .H2k hycy`

or

` UU0 h dhtanh k Ž .
e c s 1y PP q O « , 58Ž . Ž . Ž .Hr r 2k hycry`

and

tanh k
e c s y UU0 y q O « . 59Ž . Ž . Ž . Ž .i r c2k

w x w xThis asymptotic result is given in 19 , following 20 . It is closely related to
the corresponding Vlasov solution.

Ž . w xNote that in the two examples, U y need not be analytic on y1,1 . In
fact, the existence of two derivatives is sufficient.
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7. Numerical solutions for sample profiles

Now we construct some Nyquist plots numerically for a trio of sample
profiles that illustrate different features of the inviscid stability problem.

7.1. Single inflection point

The profile

U y s tanh b y 60Ž . Ž .

is an example of an equilibrium that has a single inflection point. Nyquist
Ž .plots for various values of k and b s2 are drawn in Figure 1 a . For wave

numbers k- k with k ,1.832, there is evidently an unstable eigenvaluec c

because the Nyquist plots enclose the origin over this range of k. Plots for
Ž .ks0 and different values of b are shown in Figure 1 b .

Ž .In Figure 1 a , the Nyquist plot passes through the origin without encir-
cling it for the critical value ks k . This wave number is the demarcationc

between stability and instability, that is, it is the stability boundary k sc
Ž . Ž .k b . This stability boundary is displayed in Figure 3 a . As b decreases,c

the critical wave number decreases until it vanishes at a special value of
b s b ,1.2. For the profile with this critical parameter value, the ks0m

Nyquist plot passes through the origin, and none encircle it. In other words,
such a profile is a marginally stable state.

This feature of the profile is an example of a general result. Instability
Žalways sets in first at ks0 for profiles with a single inflection point e.g.,

w x.8 . Hence the instability condition is given by e -0, and e given byr r
Ž . w xEquation 54 . This is equivalent to the result of 5 .

In some applications, however, one may be interested in flows that are
Žperiodic in x such as in annular or spherical geometry, or in numerical

.simulations . In these cases, there is a minimum wave number, and ks0 is
neither accessible nor relevant. Hence the ks0 theory is not applicable
even for a single inflection point. In this circumstance one must deal with
the general Nyquist function and sufficient stability condition described in
Section 5.

7.2. Multiple inflection points

The profile

1
U y s y q sin g y 61Ž . Ž .2g
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Ž .Figure 3. Stability boundaries for the three equilibrium profiles of Section 7. Figures a and
Ž . Ž .b depict the nucleation of instability through ks0, and c depicts the nucleation of
instability through k/0. The stability boundary of the second and third unstable modes is also

Ž .shown in b .

is an example in which there are multiple inflection points. In this case, the
number of inflection points varies with g . For g s5, 7.5, and 10, there are 3,
5, and 7 inflection points, respectively. As g increases, the new inflection
points appear in pairs through the boundaries ys"1. The Nyquist plots at

Ž . Ž .the three parameter values and ks1 are shown in Figure 4 a ] c . There
are multiple encirclings of the origin for these plots that signify multiple
instabilities. For example, when ks1 and g s10, there are three loops

w Ž .xaround the origin see Figure 4 c . As g increases and inflection points
appear at the boundaries, the Nyquist curve acquires more loops that appear

Ž .out of the asymptote 1,0 .
At g s10, there are, therefore, three unstable eigenvalues when ks1,

wwhich is the most this profile can support four of the inflection points lead
Ž .xto crossing of the e -axis, but these lie to the right of the asymptote 1,0 .r

Ž .Note that the antisymmetry of the profile means that the path of e c q i0r

is symmetrical under reflection about the e -axis.r
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Ž . Ž .Figure 4. Nyquist plots for the multiple inflection point profile, U y s yq sin g y r2g , with
Ž . Ž .ks1. a The case g s5 has one encircling of the origin and thus one unstable eigenvalue. b

When g s7.5, two more loops have appeared, and the curve almost encircles the origin twice
Ž .more, that is, it is close to the threshold of the instability of two further modes. c When
Ž .g s10, there are three encirclings of the origin and three unstable eigenvalues. d The

Ž .monotonic dependence of the crossing values to the left of the asymptote 1,0 as a function
of k.

Ž .If we vary k and calculate e c , where c with Is1,2,3 denotes ther I I

three inflection points that lead to crossings to the left of the asymptote
Ž . Ž .1,0 , then we obtain the picture shown in Figure 4 d . This shows that the
Ž .e c increase monotonically with k. This suggests that if we were to vary g ,r I

then all three unstable eigenvalues would appear first at ks0, which is
Ž .indeed true as can be seen from Figure 3 b . Thus, again the marginal state

for this profile is given by the ks0 theory.

7.3. Finite wa¨e number instabilities

The third profile

U y s y q5 y3 q f tanh 4 yy1r2 62Ž . Ž . Ž .
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Figure 5. Vorticity and vorticity gradient profiles corresponding to the velocity profile
Ž . 3 Ž .U y s yq5y q f tanh 4 yy1r2 with equilibrium parameter values f s1.3, f s1.65, and

f s2. Two inflection points emerge at f s f f1.59.c

contains one or three inflection points, depending on the value of the
parameter f. More specifically, as we increase f through about 1.59, we

Ž .create two inflection points near the point ys0.6 see Figure 5 . The critical
profile, for which the two inflection points emerge, contains a point where
U0 sU -s0. This leads to a Nyquist plot that contains a nontransversal
intersection of the path with the e -axis, that is, the plot touches the axis butr

does not cross it. For larger values of f , this degenerate point splits into the
two inflection points, and the plot crosses the e -axis twice. Nyquist plotsr

Ž .beyond this bifurcation are shown in Figure 6 b .
This kind of a change to the profile leads to a situation in which there can

be two crossings of the e -axis to the left of the origin, but in neighborhoodr

of ks0 there are no unstable eigenvalues. Yet, as we remarked in Section
5, increasing k leads to a deformation of the path, such that the origin is

Ž Ž . Ž ..eventually encircled for some range of k see Figure 6 a and b . In Figure
7, we show the variation of e with k for the two newly created inflectionr

points at f s1.62. The range of unstable wave numbers is 0.12Q kQ1.31.
Again, the variation of e with k is monotonic.r
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Ž . Ž . 3 Ž .Figure 6. a Nyquist plots for the profile U y s yq5y q f tanh 4 yy1r2 for ks0, 0.75,
Ž .and 1.5 and f s1.62. b Magnification that indicates the onset of instability through k/0.
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Ž .Figure 7. Plots of e c against k at f s1.62, where c , Is1,2, are the two inflection pointsr I I
Ž .that lead to crossings of the Nyquist plot in Figure 6 to the left of the asymptote 1,0 .

The onset of the unstable band arises at the value of f for which the two
inflection points emerge, that is, this profile is the marginally stable state.
Moreover, the critical value of k is that required to make the nontransversal
intersection of the path with the e -axis occur at the origin. Thus, ther

emergence of the two inflection points as we increase f leads to an
Ž .instability with an onset at a finite wave number, as shown in Figure 3 c .

Thus, in this case, instability is bounded away from ks0, in contrast to the
Žprevious examples. This particular example is somewhat analogous to the

w x .bump-on-tail instability in the Vlasov problem 4 .
Ž .In both Figures 4 d and 7, e appears to be monotonically increasingr

function of k. If this feature were generally true, then the deformation of
the Nyquist plots as we vary k would certainly be simpler to understand.

Ž .Indeed, this would imply that e c -0 evaluated at ks0 is sufficient forr I
Žinstability, independently of the number of inflection points at least for
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.monotonic, analytic profiles . However, we have found no argument implying
such a property of e and doubt one exists.r

8. Closing remarks

In this article we have presented a necessary and sufficient condition for the
instability of monotonic shear flows. Several examples of equilibrium veloc-
ity profiles were treated in Sections 6 and 7, demonstrating that the condi-
tion is of practical utility for finding instability and for understanding the
kinds of bifurcations that can occur.

One may question how the method we have presented, which entails
solving a Fredholm integral equation, compares with directly calculating the
solutions numerically. Without the Nyquist method, one could solve
Rayleigh’s equation to locate unstable modes with a given k for c in the
complex plane. This amounts to solving a boundary value problem with
singular points. With this procedure one would repeatedly solve Rayleigh’s

Ž .equation at different values of complex c and employ some kind of
two-dimensional searching technique to find the eigenvalues. Although not
especially difficult, this approach is computationally intensive and in our
opinion is neither elegant nor insightful. As a computational exercise,
calculating the Nyquist function takes substantially less effort than solving
the boundary-value problem in this fashion. The Nyquist recipe is simpler
because numerically it only requires a matrix inversion and only values of c

Ž .on the real axis are involved. Moreover, the sufficient condition of 50
requires one computation per inflection point for each value of k and no
search in the complex plane.

In addition to these computational advantages, the Nyquist method
provides insight into inviscid instability. It allows one to determine the
number of unstable eigenmodes of a profile, as indicated, for example, by
the multiple encircling of the origin of the Nyquist plots of Figure 4. Also, it
leads us to understand the various kinds of bifurcations to instability of a
family of shear flow profiles. Put another way, Nyquist theory tells us how we
can construct profiles with certain kinds of instabilities. For example, with
the Nyquist imagery, we know how to build profiles that suffer the onset of
instability at a finite wave number, as in Section 7.3. Without this machinery,
it would be much more difficult even formulating the problem of how to

Ž .fashion the needed U y .
The bifurcations considered here are those in which unstable eigenvalues

appear out of a continuous spectrum. It is important to distinguish this kind
of bifurcation from those that occur in systems that have only discrete

Ž .spectra because any stable profile is arbitrarily close in L norm to anp
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Ž w x .unstable one this is the essence of Gill’s result 20 for Couette flow , a
feature intimately linked with the presence of the continuous spectrum.
Then, it appears that categorizing bifurcations to instability is problematic.

Ž .However, the Nyquist plots in the e , e -plane provide a measure of howr i

close a given equilibrium is from being deformed to one at the onset of
Ž .instability. This onset may be through ks0 see Figures 1 and 4 or at a

Ž .finite wave number see Figure 6 . Indeed, it can occur via more degenerate
kinds of bifurcations, and these may be visualized straightforwardly by
Nyquist theory. In fact, it is only the unclear dependence on k that prevents
us from immediately classifying every instability of a profile with a given

Ž w x.number of inflection points see 19 .
An example of the kind of insight provided by the Nyquist method is

given by the following general result. For given k, to encircle the origin, the
path must cross the e -axis twice, that is, to create a new instability, we needr

two new inflection points. Thus, if there are N inflection points in the profile
Ž Ž . .and so there are Nq1 crossings of the e -axis altogether , there can be atr

Ž .most Nq1 r2 unstable eigenmodes with that value of k. This result, which
w x w xbuilds on a theorem of Howard 17 , was stated without proof in 21 .

Bifurcations in finite-dimensional Hamiltonian systems are regulated by
Krein’s theorem, which states that a necessary condition for the bifurcation
to instability is that colliding eigenvalues possess energy signatures of
opposite sign. It is also known for Hamiltonian systems that the constancy of
energy can be used to obtain a sufficient but not necessary condition for
stability. The results of this article lend insight to and can be interpreted in
the Hamiltonian context. The sufficient condition for stability based on
energy is equivalent to the conditions of Rayleigh and Fjørtoft, and a version

Ž .of Krein’s theorem and a notion of signature for bifurcations involving the
w xcontinuous spectra can be related to the Nyquist function 15 .

We conclude with some remarks about the assumptions we made on the
forms of the profile. The analytic structure of the Nyquist function heavily

w xrelies on the analytic form of the profile in the vicinity of y1,1 . However,
Ž . Ž .irrespective of the form of U y , nevertheless, we may construct e c . Inr

w xfact, the zeros of this function for c g y1,1 still point to the existence ofr
Ž .regular neutral eigenmodes, even when U y is not analytic. What is no

longer clear is how to continue e off the real axis, or equivalently, whether
there are discrete complex modes at nearby parameter values. Nevertheless,
there are various hints in this work that suggest that the theory works even if
Ž .U y has only two derivatives.

Ž .Finally, nonmonotonicity of U y brings in the new complications of
multiple critical layers for a given wave speed and unusual properties of the

Ž .stream function for critical layers lying at the shearless points where U9 y
s0. For these reasons the theory does not immediately carry over. We are
currently working on these and other extensions.
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Appendix

In this appendix we show that the change in the argument of the Wronskian
is determined entirely by the piece of the contour CC that is along the flow

Ž .domain 5ª7 of Figure 2 . It will be shown that the remainder of the
contour does not encircle the origin.

The big semicircle: 1ª 2ª 3.
iu Ž .On the big semicircle cs Re with u g 0,p . We consider the limit

< < Ž w x.Rs c ª` by invoking the principle of permanence see e.g., 22 , which in
the present context simply states that the limit cª` of the solution to
Rayleigh’s equation at fixed y is equal to the solution of the cª` limit of
Rayleigh’s equation. The latter limit is c 0y k 2c s0, which has the follow-

` Ž . w Žing solution with the appropriate boundary conditions: F y [sinh k yq-

.x Ž . ` Ž .1 rk. The principle of permanence implies that F y, cª` sF y , and- -

Ž . Ž . Ž . Ž .thus using W c syF 1, c we obtain lim W c sysinh 2k rk-0.- R ª`

Therefore, the piece of the contour 1ª2ª3 maps into the W-plane as a
Ž Ž .single point on the negative real axis this is the asymptote 1,0 on the

.e-plane .
` Ž .As a check, consider the limit kª0. Observe that lim F 1, c s2.k ª 0 -

ŽThis is clearly correct because Rayleigh’s equation becomes c 0 s0 and the
assumed boundary conditions imply c s1q y, which, when evaluated at

. Ž . Ž . wŽ .Ž .x Ž .ys1, gives 2. Defining F c [W c r U yc cyU gives F c, 0 ;2 1
y2 iu 2 w x2 e rR , which is consistent with the ks0 result of 5 .
The principle of permanence can be demonstrated explicitly by using the

Ž . ` Ž .solution to Rayleigh’s equation written as c y, c sÝ c y, c , wherens0 n

y U0 y9Ž .2c y , c s yy y9 k q c y9, c dy9. 63Ž . Ž . Ž . Ž .Hnq1 nU y9 ycŽ .y1

Using Cauchy’s inequality, it is not difficult to prove that this series con-
verges uniformly for all y/ y . If we choose c so that the boundaryc 0

Ž . Ž .conditions of 2 are satisfied, evaluate 63 at ys1, and slip the cª` limit
` Ž .through the integral sign, then we obtain F y .-

As an aside, note that each c is analytic in c. Thus, because of uniformn
Ž . Ž .convergence, c 1, c is analytic for c/U 1 . This is true even for profiles
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Ž .U y that are not analytically continuable into the complex plane. It is only
Ž .necessary for the integral in 63 to exist to get analyticity in c. This puts a

relatively mild restriction on U. For example, if c is not in the flow domain,
Ž . w xthen yU0 y g L y1,1 is sufficient.1

The exterior legs: 3ª4 and 8ª1.

We show following that if c is not in the flow domain, which is the case on
Ž . Ž .the legs 3ª4 and 8ª1, neither F y, c nor F y, c can vanish. Evaluat-- )

ing F at yy1, we see that the same is true for W. We also include a proof-

that W is a monotonic function of c on 3ª4 and 8ª1. Thus, these pieces
of the contour map into curves that cannot cross into the right-hand portion
of the W-plane.

To prove these statements, we use a formula introduced by Green in the
Ž w x w x.first half of the nineteenth century see e.g., 10 or 22 . For Rayleigh’s

equation, Green’s formula is

y 2yU9c U9c 2 2c c 9y s c 9y q k c dy9 ) 0, 64Ž .Hž / ž /Uyc Uycy y0 0

which is valid for any solution c . This formula can be derived from
Rayleigh’s equation by multiplying by c , manipulating, and integrating. It is
important to remember that c is assumed to be real and outside the domain
of integration.

Upon taking y sy1, c sF , and applying the boundary condition0 -

Ž . Ž .F y1, c s0, 64 implies that-

U9 y F y , cŽ . Ž .-F y , c F9 y , c y ) 0, 65Ž . Ž . Ž .- - U y ycŽ .

Ž x w xfor all yg y1,1 and cf U ,U . This inequality means that neither fac-1 2

tor can vanish for y in the interior of the flow domain. We know that
Ž . X Ž .F y1, c s0 and that F y1, c s1, and therefore in a neighborhood of- -

Ž . Ž .ysy1, by continuity of the solution, F y, c )0. Thus F y, c )0 for all- -

Ž x Ž . w xyg y1,1 , and inequality 65 implies that the -factor must also be
Žpositive. Note that neither factor can be singular by the existence theorem

.applied to Rayleigh’s equation. We mention, for later use, that a similar
Ž .argument shows that F y, c )0.)

Ž . Ž . Ž .Evaluating F at ys1 yields W c syF 1, c -0 for all cg y`,U ,- - 1
Ž .which is our desired result for the leg 3ª4. Similarly, W c -0 for all

Ž .cg U ,` , our desired result for the leg 8ª1.2

Now we further demonstrate that W is monotonic, although this is not
strictly needed for the proof. To this end we differentiate Rayleigh’s equa-
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tion with respect to c, yielding

U0 y U0 yc 0 cŽ . Ž .2y k q s c , 66Ž .2ž / c  cU y ycŽ . U y ycŽ .

which by the method of variation of parameters, has the following solution:

yc y , c c y9, c U0 y9Ž . Ž . Ž .sH 2 c W12y1 U y9 ycŽ .

= c y9, c c y , c yc y9, c c y , c dy9. 67Ž . Ž . Ž . Ž . Ž .1 2 2 1

Here c and c are any two independent solutions of Rayleigh’s equation,1 1

and

X XW c [ c y , c c y , c yc y , c c y , c . 68Ž . Ž . Ž . Ž . Ž . Ž .12 1 2 2 1

Ž . Ž .Observe that 67 satisfies c y1, c r cs0, which is consistent with
Ž . Ž . Ž .c y1, c s0, and thus we may assume that c y, c sF y, c . Letting-

Ž . Ž . Ž . Ž .c y, c sF y, c and c y, c sF y, c gives1 - 2 )

X XW c [ F y , c F y , c yF y , c F y , cŽ . Ž . Ž . Ž . Ž .12 - ) ) -

s yF y1, c s F 1, c , 69Ž . Ž . Ž .) -

Ž .and expression 67 implies that

1 F 1, cŽ . U0 y9Ž .- s y F y9, c F y9, c dy9. 70Ž . Ž . Ž .H - )2 c y1 U y9 ycŽ .

Ž .Integrating 70 by parts gives

1 2 F 1, cŽ . y2U9 U9- s F y9 F y9 qŽ . Ž .H - )3 2½ c y1 U y9 yc U y9 ycŽ . Ž .

X X= F y9 F y9 qF y9 F y9 dy9, 71Ž . Ž . Ž . Ž . Ž .- ) - ) 5
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Ž .which upon insertion of 69 into its second term can be manipulated into

 F 1, cŽ .- s K c q m c F 1, c , 72Ž . Ž . Ž . Ž .- c

where

1 U yUU9 y9Ž . 2 1m c [ dy9 s 73Ž . Ž .H 2 U yc U ycŽ . Ž .y1 1 2U y9 ycŽ .

and

1 2U9 y9 F y9 U9 y9 F y9Ž . Ž . Ž . Ž .X) -K c [ F y9 y dy9. 74Ž . Ž . Ž .H -4½ 5U y9 ycŽ .y1 U y9 ycŽ .

Ž . Ž . w x Ž .Clearly, for cf U ,U , m c )0. The -factor of 74 is precisely the1 2
w x Ž . Ž .-factor of 65 , which we showed is positive. Because U9 y )0 and

Ž . w . Ž .F y )0, for yg y1,1 , we see that K c )0. Thus, we have established)

Ž . Ž . Ž .monotonicity:  F 1, c, k r c)0 or  W c, k r c-0 for cf U ,U .- 1 2

The boundary regions: 4ª 5 and 7ª8.

Now we consider the pieces of the contour that skirt the boundaries of the
flow domain. These are the pieces 4ª5 and 7ª8 of Figure 2. We use the

Ž . Ž . Ž .expressions c and c of 16 and 17 to construct F y, c according tog b -

the procedure described in Section 4. Upon enforcing the boundary condi-
tions as described in that section, it is not difficult to show that the
Wronskian has the following form:

W c s yF 1, cŽ . Ž .-

s x c U yc q x c U ycŽ . Ž . Ž . Ž .1 1 2 2

q U yc U yc x c ln U ycŽ . Ž . Ž . Ž .2 1 3 1

q x c ln U yc , 75Ž . Ž . Ž .4 2

where the functions x for is1y4 are analytic functions of c. The piecei

4ª5 can be pulled down into a little semicircle on which csU qd eiu,1
Ž .where d )0 and u g yp , 0 , which is still consistent with c being in the

Ž . Ž .Ž .upper half plane. Obviously, lim W c s x U U yU . Because thisd ª 0 2 1 2 1
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piece of the contour must connect to the piece that terminates at 4, as 3ª4,
it follows that the piece of the contour 4ª5 maps into a point on the
negative real axis of the W-plane. Similarly, on 7ª8, where csU qd eiu,2

Ž . Ž . Ž .Ž .d )0, and u g yp , 0 , we obtain lim W c s x U U yU , and thed ª 0 1 2 1 2

piece of the contour 7ª8 maps into a point on the negative real axis of the
W-plane.

So in conclusion, because we have proven that the real part of W is
negative for cg CC 9, the only part of the contour that can give rise to a
change in the argument of W is the piece from 5ª7.
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