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Poisson Brackets and Bracket Dissipation

Hamiltonian:

• Noncanonical Poisson Brackets (pjm 1980s) ←− I.

Dissipation:

• Degenerate Antisymmetric Bracket (Kaufman and pjm, 1982)

• Double Brackets (Vallis, Carnevale, Bloch, ... 1989) ←− II.

• Metriplectic Dynamics (pjm 1984,1986) ←− III.

• Other 1984, Kaufman (no degeneracy), Grmela (no symmetry)



I. Clebsch Lie-Poisson Integrator



Noncanonical Hamiltonian Structure - Poisson
Bracket Dynamics

Sophus Lie (1890) −→ PJM (1980) −→ Poisson Manifolds etc.

Noncanonical Coordinates:

ża = {zj, H} = Jab(z)
∂H

∂zb

Noncanonical Poisson Bracket:

{A,B} =
∂A

∂za
Jab(z)

∂B

∂zb
, { , } : C∞(Z)×C∞(Z)→C∞(Z)

Poisson Bracket Properties:
antisymmetry −→ {A,B} = −{B,A}
Jacobi identity −→ {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0
Leibniz −→ {AC,B} = A{C,B}+ {C,B}A

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs
(Lie’s distinguished functions!)



Poisson (phase space) Manifold Z Cartoon

Degeneracy in J ⇒ Casimirs:

{A,C} = 0 ∀ A : Z → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

inamorata



Poisson Integration

Symplectic integrators: time step with canonical transformation.

Poisson integrators: time step such that (i) symplectic on leaf

and (ii) remains on leaf exactly!

* GEMPIC for the Vlasov equation: Kraus et al., J. Plasma

Physics 83, 905830401 (51pp) (2017).

* B. Jayawardana, P. J. Morrison, and T. Ohsawa, Clebsch Can-

onization of Lie–Poisson Systems, J. Geometric Mechanics 14,

635–658 (2022).



Lie-Poisson Brackets

Lie-Poisson brackets are special kind of noncanonical Poisson

bracket that are associated with any Lie algebra, say g.

Natural phase space g∗. For f, g ∈ C∞(g∗), µ ∈ g∗, and df ∈ g,

Lie-Poisson bracket has the form

{f, g}LP = 〈µ, [df,dg]g〉
=

∂f

∂µi
ckij µk

∂g

∂µj
, i, j, k = 1,2, . . . ,dim g = n

Pairing < , >: g∗×g→ R, µi coordinates for g∗, and c
ij
k structure

constants of g.



Lie-Poisson Brackets and Clebsch Canonization

“unreduction” pjm (1980), Clebsch 1859, geometry new!

Given Lie-Poisson system: f, g : g∗ → R, coords µ

Construct canonical system: f̄ , ḡ : T ∗Rn → R, coords z = (q, p)

Canonical Poisson Bracket: {f̄ , ḡ}c = ∂f̄
∂qi

∂ḡ
∂pi
− ∂ḡ
∂qi

∂f̄
∂pi

Poisson Map: µi = ckijq
jpk

Momentum Map: {f̄ , ḡ}c = {f, g}LP , H̄(z) = H(µ)

∃ Dual Pair – a second momentum map and invariants ⇒

Using symplectic Runge-Kutta on T ∗Rn ⇒ Poisson on g∗!



Example: Kida Vortex (nonseparable)

2D Euler Fluid, elliptical vortex patch, exact, Lie-Poisson with
so(2,1), Casimir C = µ2

1 + µ2
2 − µ2

3. (Meacham et al. 1997)
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The map (6) yields (lowering the indices for q for simplicity),

M+(q, p) = (q2p3 + q3p2, �q3p1 � q1p3, �q1p2 + q2p1). (24)

Following the proof (in Appendix B) of Theorem 3.2, we can show that there exists
an open set U that is dense in T ⇤g on which M+ and J are submersions. We also
saw above that dim h = 3 = dim g. Hence we have a dual pair as described in
Theorem 3.2.

We then have the Hamiltonian

H(q, p) := h(M+(q, p))

= �✏(q3p1 + q1p3) � !(q1p2 � q2p1) �
⇡

8
ln

⇣⇡
8

+ q1p2 � q2p1

⌘
.

The canonized system (12) is therefore

q̇1 = !q2 � ✏q3 +
⇡

8

q2

q1p2 � q2p1 + ⇡/8
, ṗ1 = !p2 + ✏p3 +

⇡

8

p2

q1p2 � q2p1 + ⇡/8
,

q̇2 = �!q1 �
⇡

8

q1

q1p2 � q2p1 + ⇡/8
, ṗ2 = �!p1 �

⇡

8

p1

q1p2 � q2p1 + ⇡/8
,

q̇3 = �✏q1, ṗ3 = ✏p1.
(25)

Figure 1 shows numerical results with parameters ✏ = 1/2 and ! = �1 with initial
condition determined by µ1(0) = 1, f1(µ(0)) = �1/4 and h(µ(0)) = 1; this is a case
from [42, Fig. 2]. It shows the time evolution of the solution to (23) computed by
the collective integrator as well as the trajectory of the solution in so(2, 1)⇤ plotted
with the level sets of the Hamiltonian h and the Casimir f1; see (22) and (19).
We used the 4th order Gauss–Legendre method to solve the canonized system (25)
with the initial condition (q(0), p(0)) obtained by solving M+(q(0), p(0)) = µ(0); we
additionally imposed q(0) = (1, 0, 0) and p1(0) = 0 to obtain the unique solution.
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(a) Time evolution (b) Lie–Poisson dynamics and in-

variants

Figure 1. (a) Time evolution of µ computed using the canonized system (25).
The solutions are shown for the time interval 0  t  100 with time step
�t = 0.1. (b) The red curve is the Lie–Poisson dynamics of the Kida vortex in
g⇤ = so(2, 1)⇤ ⇠= R3 computed using the canonized system (25) and mapped by
M+ in (24). The green and orange surfaces are the level sets of the Hamiltonian
h and the Casimir f1 from (22) and (19), respectively.

For comparison, we also solved the Lie–Poisson equation (23) directly using the
4th order explicit Runge–Kutta method. Figure 2 compares the time evolutions of



Example: Kida Vortex (cont)
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the relative errors in the Hamiltonian h and the Casimir f1 along these numerical
solutions. The explicit Runge–Kutta solution exhibits a drift that seems to be
detrimental in the long run. Notice also that it exhibits a more significant drift
in the Casimir. On the other hand, the solution of the collective integrator does
not exhibit drifts in either the Hamiltonian or the Casimir; note that the latter is
preserved exactly in theory.

Lie-Poisson (Runge-Kutta)

Canonized (Gauss-Legendre)
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(a) Hamiltonian h from (22)
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(b) Casimir f1 from (19)

Figure 2. Time evolutions of relative errors in Hamiltonian h and Casimir f1

from the Kida system. The dashed blue curve is the 4th order explicit Runge–
Kutta method directly applied to Lie–Poisson equation (23) whereas the solid
red curve is the 4th order Gauss–Legendre method applied to the canonized
system (25). The solutions are shown for the time interval 0  t  1000 with
time step �t = 0.1. Note that, in (b), the red line is made thicker to make it
visible; the actual variation is so small that it is barely visible if plotted with
the same thickness as the blue line or as in (a).

Figure 3 shows how well the collective integrator preserves the components of
the momentum map J. This is because the Gauss–Legendre methods preserve these
invariants exactly in theory. However, being an implicit method, it introduces an
error in each step when solving nonlinear equations—the likely culprit of the small
errors observed in the figures.
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Figure 3. Time evolutions of absolute or relative errors in components of mo-
mentum map J from (16) and (20) computed by the 4th order Gauss–Legendre
method applied to the canonized Kida system (25). The solutions are shown
for the time interval 0  t  1000 with time step �t = 0.1.



II. Simulated Annealinng



Simulated Annealing

Use various bracket dynamics to effect extremization.

Many relaxation methods exist: gradient descent, etc.

Simulated annealing: an artificial dynamics that solves a varia-

tional principle with constraints for equilibria states.



Double Bracket Simulated Annealing

Good Idea:

Vallis, Carnevale, and Young, Shepherd (1989)

dF
dt

= {F , H}+ ((F , H)) = ((F ,F)) ≥ 0

where

((F,G)) =
∫
d3x

δF

δχ
J 2δG

δχ

Lyapunov function, F, yields asymptotic stability to rearranged

equilibrium.

• Maximizing energy at fixed Casimir: Works fine sometimes,

but limited to circular vortex states ....



Simulated Annealing (SA) with Generalized
(Noncanonical) Dirac Brackets

Dirac Bracket:

{F,G}D = {F,G}+
{F,C1}{C2, G}
{C1, C2}

− {F,C2}{C1, G}
{C1, C2}

Preserves any two incipient constraints C1 and C2.

New Idea:

Do simulated Annealing with Generalized Dirac Bracket

((F,G))D =
∫
dx

∫
dx′ {F, ζ(x)}D G(x,x′) {ζ(x′), G}D

Preserves any Casimirs of {F,G} and Dirac constraints C1,2

For successful implementation with contour dynamics see PJM
(with Flierl) Phys. Plasmas 12 058102 (2005).



Double Bracket SA for Reduced MHD

M. Furukawa, T. Watanabe, pjm, and K. Ichiguchi, Calculation
of Large-Aspect-Ratio Tokamak and Toroidally-Averaged Stel-
larator Equilibria of High-Beta Reduced Magnetohydrodynamics
via Simulated Annealing, Phys. Plasmas 25, 082506 (2018).

High-beta reduced MHD (Strauss, 1977) given by

∂U

∂t
= [U,ϕ] + [ψ, J]− ε∂J

∂ζ
+ [P, h]

∂ψ

∂t
= [ψ,ϕ]− ε∂ϕ

∂ζ
∂P

∂t
= [P, ϕ]

Extremization

F = H +
∑

i

Ci + λiPi ,→ equilibria, maybe with flow

Cs Casimirs and P s dynamical invariants.



Sample Double Bracket SA equilibria
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Double Bracket SA for Stability

M. Furukawa and pjm, Stability analysis via simulated annealing

and accelerated relaxation, Phys. Plasmas 29, 102504 (2022).

Since SA searches for an energy extremum, it can also be used for

stability analysis when initiated from a state where a perturbation

is added to an equilibrium. Three steps:

1) Choose any equilibrium of unknown stability.

2) Perturb the equilibrium with dynamically accessible (leaf) per-

turbation.

3) Perform double bracket SA.

If it finds the equilibrium, then is is an energy extremum and

must be stable.



Sample Double Bracket SA unstable equilibria

(a) Radial profile of =U�2,1. (b) Radial profile of ='�2,1.

(c) Radial profile of < �2,1. (d) Radial profile of < J�2,1.

FIG. 11: Radial profiles of the (m, n) = (�2, 1) components are plotted at several times

during the SA evolution. The perturbation amplitudes decreased in time.

FIG. 12: Poloidal rotation velocity v✓ profile.

20



(a) Radial profile of <U�2,1. (b) Radial profile of =U�2,1.

(c) Radial profile of <'�2,1. (d) Radial profile of ='�2,1.

(e) Radial profile of < �2,1. (f) Radial profile of = �2,1.

(g) Radial profile of < J�2,1. (h) Radial profile of = J�2,1.

FIG. 16: Radial profiles of the (m, n) = (�2, 1) components are plotted at several times

during the SA evolution. The perturbation amplitudes grew in time.
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III. Metriplectic Relaxation



Metriplectic Dynamics – Entropy, Degeneracies,
and 1st and 2nd Laws

• Casimirs of PB { , } are ‘candidate’ entropies. Election of
particular S ∈ {Casimirs} ⇒ thermal equilibrium (relaxed)
state.

• Generator: F = H + S

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = {H,F}+ (H,F) = 0 + (H,H) + (H,S) = 0

Foliate Z by level sets of H, with (H, f) = 0 ∀ f ∈ C∞(M).

• 2nd Law: entropy production

Ṡ = {S,F}+ (S,F) = (S, S) ≥ 0

Lyapunov relaxation to the equilibrium state: ∇F = 0.



Metriplectic Simulated Annealing

Extremizes an entropy (Casimir) at fixed energy (Hamiltonian)

C. Bressen Ph.D. Thesis TUM, Garching 2023

Two cases: 2D Euler and Grad Shafranov MHD equilibria.
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(a) Color plot. (b) Scatter plot.

Figure 6.7: Relaxed state for the test case euler-ilgr. The same as in Figure 6.2, but for the
collision-like operator.

The relaxed state is presented in Figure 6.9: from both the color plot (a) and scatter
plot (b) we see that the initial condition has relaxed to a solution in accordance with the
variational principle.

For this test case, the results strongly suggest that the relaxation to the state of con-
strained minimum entropy, which corresponds to the solution of the variational principle,
appears to be a feature of the collision-like operator, rather than being caused by numerical
dissipation, as we observed for the diffusion-like operator.
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(a) Color plot. (b) Scatter plot.

Figure 6.29: Relaxed state for the gs-imgc test case. The same as in Figure 6.23, but for the
collision-like operator and the case of the Czarny domain discussed in Section A.4.2. With respect to Figure
6.27(b) for the diffusion-like operator, we see from (b) that the agreement between the relaxed state and the
prediction of the variational principle is better.



Summary

I. Family of Poisson Integrators

II. Simulated Annealing for Stability

III. Metriplectic Simulated Annealing


