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Given,
The Dictum: Nature is Hamiltonian,

is there a ‘platonic ideal’ for dissipation?



Overview

1. Rayleigh Dissipation Function

2. Cahn-Hilliard Equation

3. Caldiera-Leggett Model

4. Metriplectic Dynamics

• incomplete (Brockett, Vallis et al. (1989))

• complete (PJM, Kaufman, Grmela (1985))



Rayleigh Dissipation Function

Introduced for study of vibrations, stable linear oscillations, in

1873 (see e.g. Rayleigh, Theory of Sound, Chap. IV §81)

Linear friction law for n-bodies, Fi = −bi(ri)vi, with ri ∈ R3.

Rayleigh was interested in linear vibrations, F =
∑
i bi ||vi||2/2.

Coordinates ri → qν etc. ⇒

d

dt

(
∂L
∂q̇ν

)
−
(
∂L
∂qν

)
+

(
∂F
∂q̇ν

)
= 0

Ad hoc, phenomenological, yet is generalizable, geometrizable

(e.g. Bloch et al.,...)



Cahn-Hilliard Equation

Models phase separation, nonlinear diffusive dissipation, in binary
fluid with ‘concentrations’ n, n = 1 one kind n = −1 the other

∂n

∂t
= ∇2δF

δn
= ∇2

(
n3 − n−∇2n

)

Lyapunov Functional

F [n] =
∫
d3x

[
1

4

(
n2 − 1

)2
+

1

2
|∇n|2

]
dF

dt
=
∫
d3x

δF

δn

∂n

∂t
=
∫
d3x

δF

δn
∇2δF

δn
= −

∫
d3x

∣∣∣∣∇δFδn
∣∣∣∣2 ≤ 0

For example in 1D

lim
t→∞

n(x, t) = tanh(x/
√

2)

Ad hoc, phenomenological, yet generalizable and very important
(Otto, Ricci Flows, Poincarè conjecture on S3, ...)



Whence Dissipation?

• Low degree-of-freedom system coupled to ‘high’ degree-of-

freedom system? Energy transfer or entropy production.

• Combined system Hamiltonian?



Caldiera-Leggett Model

Quantum dissipation (1981) by coupling to ‘bath’

L =
1

2

(
Q̇2 −

(
Ω2 −∆Ω2

)
Q2

)
−Q

N∑
i=1

fiqi +
N∑
i=1

1

2

(
q̇2 − ω2

i q
2
i

)
with N >> 1 and ∆Ω2 :=

∑N
i=1 f

2
i /ω

2
i .

Coupling:

Q̈+
(
Ω2 −∆Ω2

)
Q = −

N∑
i=1

fiqi

Solve qi-equation via Green’s function:

Q̈+
(
Ω2 −∆Ω2

)
Q = −

∫ t
−∞

dτ G(t− τ)Q(τ)

G =
N∑
i=1

f2
i

ω2
i

sin(ωit)

Continuum Limit:

G(t) =
2

π

∫ ∞
0
dωN (ω) sin(ωt) −→ γQ̇− damping!



Hamiltonian Continuum Caldiera-Leggett Model

Hamiltonian:

HCCL[q, p;Q,P ] =
Ω

2
P2 +

1

2

(
Ω +

∫
R+

dx
f(x)2

2x

)
Q2

+
∫
R+

dxQq(x)f(x) +
[
x

2

(
p(x)2 + q(x)2

)]
,

Poisson bracket:

{A,B} =
∂A

∂Q

∂B

∂P
−
∂B

∂Q

∂A

∂P
+
∫
R+

dx

(
δA

δq

δB

δp
−
δA

δp

δB

δq

)

Generates system with a continuous spectrum (cf. singularity vs.

infinite system size - radiation (Bloch e.g.))



Vlasov-Poisson System

Phase space density (1 + 1 + 1 field theory):

f(x, v, t) ≥ 0

Conservation of phase space density:

∂f

∂t
+ v

∂f

∂x
+

e

m

∂φ[x, t; f ]

∂x

∂f

∂v
= 0

Poisson’s equation:

φxx = 4π
[
e
∫
R
f(x, v, t) dv − ρB

]

Energy:

H =
m

2

∫
Π

∫
R
v2f dxdv +

1

8π

∫
Π

(φx)2 dx



Noncanonical Hamiltonian Structure

Hamiltonian structure of media in Eulerian variables

Kinematic Commonality:

energy, momentum, Casimir conservation; dynamics is
measure preserving rearrangement; continuous spectra;
. . .−→ Krein’s theorem

Noncanonical Poisson Bracket (K-K,L-P):

{F,G} =
∫
Z
ζ

[
δF

δζ
,
δG

δζ

]
dqdp =

∫
Z

δF

δζ
J
δG

δζ
dqdp

Cosymplectic Operator:

J · = −
(
∂ζ

∂q

∂ ·
∂p
−
∂ ·
∂q

∂ζ

∂p

)
Equation of Motion:

∂ζ

∂t
= {ζ,H} = J

δH

δζ
= −[ζ, E].

Organizing principle. Do one do all!



Linear Vlasov-Poisson System

Expand about Stable Homogeneous Equilibrium:

f = f0(v) + δf(x, v, t)

Linearized EOM:

∂δf

∂t
+ v

∂δf

∂x
+

e

m

∂δφ[x, t; δf ]

∂x

∂f0

∂v
= 0

δφxx = 4πe
∫
R
δf(x, v, t) dv

Linearized Energy (Kruskal-Oberman):

HL = −
m

2

∫
Π

∫
R

v (δf)2

f ′0
dvdx+

1

8π

∫
Π

(δφx)2 dx



Linear Hamiltonian Structure

• Because noncanonical must expand f-dependent Poisson bracket

as well as Hamiltonian. ⇒

Linear Poisson Bracket:

{F,G}L =
∫
f0

[
δF

δδf
,
δG

δδf

]
dx dv ,

where δf is the new dynamical variable and the Hamiltonian is the

Kruskal-Oberman energy, HL. The LVP system has the following

Hamiltonian form:

∂δf

∂t
= {δf,HL}L ,

with variables noncanonical and HL not diagonal.



Linear Solution

Assume

δf =
∑
k

fk(v, t)eikx , δφ =
∑
k

φk(t)eikx

Linearized EOM:

∂fk
∂t

+ ikvfk + ikφk
e

m

∂f0

∂v
= 0 , k2φk = −4πe

∫
R
fk(v, t) dv

Three methods:

1. Laplace Transforms (Landau and others 1946)

2. Normal Modes (Van Kampen, Case,... 1955)

3. Coordinate Change ⇐⇒ Integral Transform (PJM, Pfirsch,
Shadwick, Balmforth 1992)



Canonization & Diagonalization

Fourier Linear Poisson Bracket:

{F,G}L =
∞∑
k=1

ik

m

∫
R
f ′0

(
δF

δfk

δG

δf−k
−
δG

δfk

δF

δf−k

)
dv

Linear Hamiltonian:

HL = −
m

2

∑
k

∫
R

v

f ′0
|fk|2 dv +

1

8π

∑
k

k2|φk|2

=
∑
k,k′

∫
R

∫
R
fk(v)Ok,k′(v|v

′) fk′(v
′) dvdv′

Canonization:

qk(v, t) = fk(v, t) , pk(v, t) =
m

ikf ′0
f−k(v, t) =⇒

{F,G}L =
∞∑
k=1

∫
R

(
δF

δqk

δG

δpk
−
δG

δqk

δF

δpk

)
dv



Dynamical Accessibility

Definition A phase space function k is dynamically accessible

from a phase space function h, if g is an area-preserving rear-

rangement of h ; i.e., in coordinates k(x, v) = h(X(x, v), V (x, v)),

where [X,V ] = 1. A perturbation δh is linearly dynamically accessible

from h if δh = [G, h], where G is the infinitesimal generator of

the canonical transformation (x, v)↔ (X,V ).

Remark Dynamically accessible perturbations come about by

perturbing the particle orbits under the action of some Hamilto-

nian; hence, dynamically accessible. For VP δf = Gxf ′0 .

Lemma Continuous rearrangements preserve the ‘topology’ of

level sets.



Integral Transform

Definintion:

f(v) = G[g](v) := εR(v) g(v) + εI(v)H[g](v) ,

where

εI(v) = −π
ω2
p

k2

∂f0(v)

∂v
, εR(v) = 1 +H[εI](v) ,

and the Hilbert transform

H[g](v) :=
1

π
−
∫

g(u)

u− v
du ,

with −
∫

denoting Cauchy principal value of
∫
R.



Transform Properties

Theorem (G1) G : Lp(R) → Lp(R), 1 < p < ∞, is a bounded

linear operator; i.e.

‖G[g]‖p ≤ Bp ‖g‖p ,

where Bp depends only on p.

Theorem (G2) If f ′0 ∈ L
q(R), stable, Hölder decay, then G[g]

has a bounded inverse,

G−1 : Lp(R)→ Lp(R) ,

for 1/p+ 1/q < 1, given by

g(u) = G−1[f ](u)

:=
εR(u)

|ε(u)|2
f(u)−

εI(u)

|ε(u)|2
H[f ](u) .

where |ε|2 := ε2
R + ε2

I .



Diagonalization

Mixed Variable Generating Functional:

F[q, P ′] =
∞∑
k=1

∫
R
qk(v)G[P ′k](v) dv

Canonical Coordinate changes (q, p)←→ (Q′, P ′):

pk(v) =
δF[q, P ′]

δqk(v)
= G[Pk](v) , Q′k(u) =

δF[q, P ′]

δPk(u)
= G†[qk](u)

New Hamiltonian:

HL = 1
2

∞∑
k=1

∫
R
duσk(u)ωk(u)

[
Q2
k(u) + P2

k (u)
]

where σk = −sgn(uf ′0) and ωk(u) = |ku|

(Q′, P ′)←→ (Q,P ) is trivial.

Note, σ = 1 for Landau problem.



Landau Damping

Landau damping is the Riemann-Lebesgue lemma

lim
t→∞

ρk(t) = lim
t→∞

∫
dv f̂k(v)eikvt = 0

Charge density ρk(t) decays if f̂k ∈ L1(R). If f̂k meromorphic (Cω

in strip containing R) then exponential decay.



Fig. 3. (Linear Landau damping with Maxwell equilibrium) Contour plots (left)
and cross-sectional plots (right), x = 2π, for δf at t = 0, t = 25, t = 50, t = 75
(descending order). 30

DG code developed with I. Gamba, et al. (2010)



Equivalent Normal Forms (with G. Hagstrom)

T (Vlasov − Poisson) −→ HV P =
1

2

∫
duu

(
P2 +Q2

)

S(Caldiera− Leggett) −→ HCL =
1

2

∫
dx x

(
P2 +Q2

)

Therefore

S(Caldiera− Leggett) = T (Vlasov − Poisson)

⇒

(Caldiera− Leggett) = S−1 ◦ T (Vlasov − Poisson)



Krein-Moser (Sturrock)

Theorem (KMS) Let H define a stable linear finite-dimensional

Hamiltonian system. Then H is structurally stable if all the eigen-

frequencies are nondegenerate. If there are any degeneracies, H

is structurally stable if the assosciated eigenmodes have energy

of the same sign. Otherwise H is structurally unstable.

Definition The signature of the point u ∈ R is −sgn(uf ′0(u)).

(Generalization of with G. Hagstrom)



Hamiltonian Spectrum

Hamiltonian Operator:

fkt = −ikvfk +
if ′0
k

∫
R
dv̄ fk(v̄, t) =: −Tkfk ,

Complete System:

fkt = −Tkfk and f−kt = −T−kf−k , k ∈ R+

Lemma If λ is an eigenvalue of the Vlasov equation linearized

about the equilibrium f ′0(v), then so are −λ and λ∗ . Thus if

λ = γ + iω, then eigenvalues occur in the pairs, ±γ and ±iω,

for purely real and imaginary cases, respectively, or quartets,

λ = ±γ ± iω, for complex eigenvalues.



Spectral Stability

Definition The dynamics of a Hamiltonian system linearized
around some equilibrium solution, with the phase space of solu-
tions in some Banach space B, is spectrally stable if the spectrum
σ(T ) of the time evolution operator T is purely imaginary.

Theorem If for some k ∈ R+ and u = ω/k in the upper half
plane the plasma dispersion relation

ε(k, u) := 1− k−2
∫
R
dv

f ′0
u− v

= 0 ,

then the system with equilibrium f0 is spectrally unstable. Oth-
erwise it is spectrally stable.

Theorem (Penrose) If there exists a point u such that

f ′0(u) = 0 and −
∫
dv
f ′0(v)

u− v
< 0 ,

with f ′0 traversing zero at u , then the system is spectrally un-
stable. Otherwise it is spectrally stable.



Spectral Theorem

Set k = 1 and consider T : f 7→ ivf− if ′0
∫
f in the space W1,1(R).

W1,1(R) is Sobolev space containing closure of functions ‖f‖1,1 =
‖f‖1 + ‖f ′‖1 =

∫
R dv(|f |+ |f ′|). Contains all functions in L1(R)

with weak derivatives in L1(R). T is densely defined, closed, etc.

Definition Resolvent of T is R(T, λ) = (T −λI)−1 and λ ∈ σ(T ).
(i) λ in point spectrum, σp(T ), if R(T, λ) not injective. (ii) λ

in residual spectrum, σr(T ), if R(T, λ) exists but not densely
defined. (iii) λ in continuous spectrum, σc(T ), if R(T, λ) exists,
densely defined but not bounded.

Theorem Let λ = iu. (i) σp(T ) consists of all points iu ∈ C,
where ε = 1 − k−2 ∫

Rdv f
′
0/(u− v) = 0. (ii) σc(T ) consists of all

λ = iu with u ∈ R \ (−iσp(T ) ∩ R). (iii) σr(T ) contains all the
points λ = iu in the complement of σp(T ) that satisfy f ′0(u) = 0.

cf. e.g. P. Degond (1986). Similar but different.



Structural Stability

Definition Consider an equilibrium solution of a Hamiltonian
system and the corresponding time evolution operator T for the
linearized dynamics. Let the phase space for the linearized dy-
namics be some Banach space B . Suppose that T is spectrally
stable. Consider perturbations δT of T and define a norm on the
space of such perturbations. Then we say that the equilibrium
is structurally stable under this norm if there is some δ > 0 such
that for every ‖δT‖ < δ the operator T + δT is spectrally stable.
Otherwise the system is structurally unstable.

Definition Consider the formulation of the linearized Vlasov-
Poisson equation in the Banach space W1,1(R) with a spectrally
stable homogeneous equilibrium function f0. Let Tf0+δf0

be the
time evolution operator corresponding to the linearized dynamics
around the distribution function f0 + δf0. If there exists some ε

depending only on f0 such that Tf0+δf0
is spectrally stable when-

ever ‖Tf0
− Tf0+δf0

‖ < ε, then the equilibrium f0 is structurally
stable under perturbations of f0.



All f0 are Structurally Unstable in W1,1

True in space where Hilbert transform unbounded, e.g. W1,1.

Small perturbation ⇒ big jump in Penrose plot.

Theorem A stable equilibrium distribution is structurally unsta-

ble under perturbations of f ′0 in the Banach spaces W1,1 and

L1 ∩ C0.

Easy to make ‘bumps’ in f0 that are small in norm. What to do?



Krein-Like Theorem for VP

Theorem Let f0 be a stable equilibrium distribution function

for the Vlasov equation. Then f0 is structurally stable under

dynamically accessible perturbations in W1,1, if there is only one

solution of f ′0(v) = 0. If there are multiple solutions, f0 is struc-

turally unstable and the unstable modes come from the roots of

f ′0 that satisfy f ′′0(v) < 0.

Remark A change in the signature of the continuous spectrum

is a necessary and sufficient condition for structural instability.

The bifurcations do not occur at all points where the signature

changes, however. Only those that represent valleys of the dis-

tribution can give birth to unstable modes.



Incomplete Metriplectic Flow

Calculate stationary states using Eulerian Hamiltonian structure

(noncanonical Poisson bracket) with Dirac brackets.



Example 2D Euler

Noncanonical Poisson Brackets :

{F,G} =
∫
dxdy ζ

[
δF

δζ
,
δG

δζ

]
ζ = vorticity, ψ = 4−1ζ =streamfunction

[f, g] = J(f, g) = fxgy − fygx =
∂(f, g)

∂(x, y)

Hamiltonian:

H[ζ] =
1

2

∫
dx v2 =

1

2

∫
dx |∇ψ|2

Equation of Motion:

ζt = {ζ,H}

PJM (1981) and P. Olver (1982)



Hamiltonian Commonality

Dynamics is Rearrangement:

ζ(x, y, t) = ζ0(x0(x, y, t), y0(x, y, t))

⇒ level set topology conservation and Casimir invariants

Casimir Invariants:

{C,F} = 0 ∀F ⇒ C[ζ] =
∫
dx C(ζ)

Variational Principle for Equilibria and Stability:

F[ζ] = H + C =
1

2

∫
dx |∇ψ|2 +

∫
dx C(ζ)

. . . , Gardner, Kruskal and Oberman, Arnold, (1960s). . .

Changing Frames:

FΩ = F + ΩL

L = angular momentum, Ω = rotation rate



Simulated Annealing

Good Idea:

Vallis, Carnevale, and Young, Shepherd (1989)

Use bracket dynamics to do extremization ⇒ Relaxing Rearrangement

dF
dt

= {F , H}+ ((F , H)) = ((F ,F)) ≥ 0

where

((F,G)) =
∫
d3x

δF

δχ
J 2δG

δχ

Lyapunov function, F, yields asymptotic stability to rearranged

equilibrium.

• Maximizing energy at fixed Casimir: Works fine sometimes,

but limited to circular vortex states ....



Simulated Annealing with Generalized
(Noncanonical) Dirac Brackets

Dirac Bracket:

{F,G}D = {F,G}+
{F,C1}{C2, G}
{C1, C2}

−
{F,C2}{C1, G}
{C1, C2}

Preserves any two incipient constraints C1 and C2.

New Idea:

Do simulated Annealing with Generalized Dirac Bracket

((F,G))D =
∫
dxdx′ {F, ζ(x)}D G(x,x′) {ζ(x′), G}D

Preserves any Casimirs of {F,G} and Dirac constraints C1,2

For successful implementation with contour dynamics see PJM
(with Flierl) Phys. Plasmas 12 058102 (2005).



Four Types of Dynamics

Hamiltonian :
∂F

∂t
= {F,F} (1)

Hamiltonian Dirac :
∂F

∂t
= {F,F}D (2)

Simulated Annealing :
∂F

∂t
= σ{F,F}+ α((F,F)) (3)

Dirac Simulated Annealing :
∂F

∂t
= σ{F,F}D + α((F,F))D (4)

F an arbitrary observable, F generates time advancement. Equa-

tions (1) and (2) are ideal and conserve energy. In (3) and

(4) parameters σ and α weight ideal and dissipative dynamics:

σ ∈ {0,1} and α ∈ {−1,1}. F, can have form

F = H +
∑
i

Ci + λiPi ,

Cs Casimirs and P s dynamical invariants.



DSA is Dressed Advection

∂ζ

∂t
= −[Ψ, ζ] ,

Ψ = ψ +Aici and Ai = −
∫
dx cj[ψ, ζ]∫
dx ζ[ci, cj]

.

with constraints

Cj =
∫
dx cj ζ .

“Advection” of ζ by Ψ, with Ai just right to force constraints.

Easy to adapt existing vortex dynamics codes!!



Examples

Constraints:

C1 =
1

2

∫
dx ζ(x)(x2 + y2) = 2× angular momentum

C2 =
1

2

∫
dxxy ζ(x)

Initial Condition:

ζ0 = e−(r/r0)6
where r0 = 1 + .4 cos(2θ)

Seven Movies: relaxation to rotating ellipses, relaxation to 3-fold

symmetric states, Kelvin sponge, Dirac constrained sponge.



Complete Metriplectic Flow

A dynamical model of thermodynamics that ‘captures’:.

• First Law: conservation of energy

• Second Law: entropy production



Metriplectic Manifold

Two foliations:

• Poisson Manifold

• SubRiemannian Manifold

(
Z, [, ], (, )

)
use z = (z1, z2, . . . , zN) for coord patch.

Metriplectic Vector Field:

VMP = [F , ·] + (F , ·) =
∂F

∂zi
J ij

∂

∂zj
+
∂F
∂zi

gij
∂

∂zj

What are degeneracies? What is ‘generator’ F?



Entropy, Degeneracies, and 1st and 2nd Laws

• Casimirs of [, ] are ‘candidate’ entropies. Election of partic-
ular S ∈ {Casimirs} ⇒ thermal equilibrium (relaxed) state.

• Generator: F = H + S

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = [H,F] + (H,F) = 0 + (H,H) + (H,S) = 0

Foliate Z by level sets of H with are subRiemannian, i.e.
(H, f) = 0 ∀ f ∈ C∞(M).

• 2nd Law: entropy production

Ṡ = [S,F] + (S,F) = (S, S) ≥ 0

Lyapunov relaxation to the equilbrium state: ∇F = 0.



Examples

• Finite dimensional theories, rigid body, etc.

• Kinetic theories: Boltzmann equation, Lenard-Balescu equa-

tion, ...

• Fluid flows: various nonideal fluids, MHD, etc.



‘In Progress’

• Derivation from large system: n-body, n >> 1, BBGKY hi-

erarchy, Landau damping mechanism.

• Structure theorems: Kähler generalization, etc.

• Statistical mechanics on Poisson manifold with symplectic

leaves in bath contact (with Bouchet, Thalabard, Zaboron-

ski). Liouville’s theorem.


