LIFTING - A method for constructing consistent kinetic theories with electromagnetic interaction

P. J. Morrison

Department of Physics and Institute for Fusion Studies
The University of Texas at Austin
morrison@physics.utexas.edu
http://www.ph.utexas.edu/~morrison/
CIRM, Kinetic Equations
November 13, 2014

Definition: Given a set of ordinary differential equations for 'orbits' of some kind of charged entities in given 'electromagnetic' fields \mathbf{E}, \mathbf{B}, lifting is a prescription for building a consistent Hamiltonian kinetic theory.
pjm, "A General Theory for Gauge-Free Lifting," Phys. Plasmas 20, 012104 (2013)

New:
pjm, M. Vittot, and L. de Guillebon, "Lifting Particle Coordinate Changes of Magnetic Moment Type to Vlasov-Maxwell Hamiltonian Dynamics," Phys. Plasmas 20, 032109 (2013).
J. Burby, A. Brizard, pjm, and H. Qin, "Hamiltonian Formulation of the Gyrokinetic Vlasov-Maxwell Equations," arXiv:1411.1790 [physics.plasm-ph] (2014).

Old:
D. Pfirsch and pjm, Phys. Fluids B $(1985,1991)$ on GuidingCenter Theories

Orbits

Whence the orbits?

- Perturbation theory yield guiding center, gyrocenter, oscillation center, ODEs in given E, B with small parameters.
- A priori modeling of matter with magnetization and polarization properties.

Orbit Theory Ingredients

Particle Hamiltonian/energy \Rightarrow orbits:

$$
\begin{aligned}
\mathcal{E} & =\overline{\mathcal{K}}(\mathbf{p}-e \mathbf{A} / c, w, \mathbf{E}, \mathbf{B}, \nabla \mathbf{E}, \nabla \mathbf{B}, \ldots)+e \phi \\
& =\mathcal{K}(\mathbf{v}, w ; \mathbf{E}, \mathbf{B}, \nabla \mathbf{E}, \nabla \mathbf{B}, \ldots)+e \phi(\mathbf{x})
\end{aligned}
$$

Poisson Bracket:

$$
[,]: C^{\infty}(\mathcal{Z}) \times C^{\infty}(\mathcal{Z}) \rightarrow C^{\infty}(\mathcal{Z}) \quad \text { where } z=(\mathbf{x}, \mathbf{v}, w) \in \mathcal{Z}
$$

Comments:

- Special from that gives rise to gauge invariant variational principles, e.g., Hamiltonian-Jacobi type of Pfirsch and pjm (1984, 1985, 1991), phase space action, etc.
- Any functional dependence on \mathbf{E}, \mathbf{B} allowed.
- Can be written in terms of a canonical momentum por kinetic momentum m v.
- Can have ‘internal’ degrees of freedom, e.g., spin or angular momentum via w.

I. ODEs

Orbits From Actions

Action Principle

Hero of Alexandria (75 AD) \longrightarrow Fermat (1600's) \longrightarrow
Hamilton's Principle (1800's)

The Procedure:

- Configuration Space: $\quad q^{i}(t), \quad i=1,2, \ldots, N \longleftarrow$ \#DOF
- Kinetic \& Potential: $L=T-V \longleftarrow$ Kinetic Potential
- Action Functional:

$$
S[q]=\int_{t_{0}}^{t_{1}} L(q, \dot{q}, t) d t, \quad \delta q\left(t_{0}\right)=\delta q\left(t_{1}\right)=0
$$

Extremal path \Longrightarrow Lagrange's equations

Variation Over Paths

$S\left[q_{\text {path }}\right]=$ number

Functional Derivative:

$$
\frac{\delta S[q]}{\delta q^{i}}=0
$$

$$
\Longrightarrow
$$

Lagrange's Equations:

$$
\frac{\partial L}{\partial q^{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}=0 .
$$

Hamilton's Equations

Canonical Momentum: $\quad p_{i}=\frac{\partial L}{\partial \dot{q}^{i}}$
Legendre Transform: $\quad H(q, p)=p_{i} \dot{q}^{i}-L$

$$
\dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}, \quad \dot{q}^{i}=\frac{\partial H}{\partial p_{i}}
$$

Phase Space Coordinates: $\quad z=(q, p)$

$$
\dot{z}^{i}=J_{c}^{i j} \frac{\partial H}{\partial z^{j}}=\left[z^{i}, H\right], \quad\left(J_{c}^{i j}\right)=\left(\begin{array}{cc}
0_{N} & I_{N} \\
-I_{N} & 0_{N}
\end{array}\right)
$$

symplectic 2 -form $=(\text { cosymplectic form })^{-1}: \quad \omega_{i j}^{c} J_{c}^{j k}=\delta_{i}^{k}$,

Phase-Space Action

Gives Hamilton's equations directly

$$
S[q, p]=\int_{t_{0}}^{t_{1}} d t\left(p_{i} \dot{q}^{i}-H(q, p)\right)
$$

Defined on paths γ in phase space \mathcal{P} (e.g. $T^{*} Q$) parameterized by time, t, i.e., $z_{\gamma}(t)=\left(q_{\gamma}(t), p_{\gamma}(t)\right)$. Then $S: \mathcal{P} \rightarrow \mathbb{R}$. Domain of S any smooth path $\gamma \in \mathcal{P}$.

Law of nature, set Fréchet or functional derivative, to zero. Varying S by perturbing path, $\delta z_{\gamma}(t)$, gives

$$
\delta S\left[z_{\gamma} ; \delta z_{\gamma}\right]=\int_{t_{0}}^{t_{1}} d t\left[\delta p_{i}\left(\dot{q}^{i}-\frac{\partial H}{\partial p_{i}}\right)-\delta q^{i}\left(\dot{p}_{i}+\frac{\partial H}{\partial q^{i}}\right)+\frac{d}{d t}\left(p_{i} \delta q^{i}\right)\right]
$$

Under the assumption $\delta q\left(t_{0}\right)=\delta q\left(t_{1}\right) \equiv 0$, with no restriction on δp, boundary term vanishes.

Admissible paths in \mathcal{P} have 'clothesline' boundary conditions.

Phase-Space Action Continued

$$
\delta S \equiv 0 \quad \Rightarrow \quad \dot{q}^{i}=\frac{\partial H}{\partial p_{i}} \quad \text { and } \quad \dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}, \quad i=1,2, \ldots, N,
$$

Thus, extremal paths satisfy Hamilton's equations.

Alternatives

Rewrite action S as follows:

$$
S[z]=\int_{t_{0}}^{t_{1}} d t\left(\frac{1}{2} \omega_{\alpha \beta}^{c} z^{\alpha} \dot{z}^{\beta}-H(z)\right)=: \int_{\gamma}(d \theta-H d t)
$$

where $d \theta$ is a differential one-form.

Particle motion in given electromagnetic field $\mathbf{B}=\nabla \times \mathbf{A}$ and $\mathbf{E}=-\nabla \phi-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$

$$
S[\mathbf{r}, \mathbf{p}]=\int_{t_{0}}^{t_{1}} d t\left[\mathbf{p} \cdot \dot{\mathbf{r}}-\frac{1}{2 m}\left|\mathbf{p}-\frac{e}{c} \mathbf{A}(\mathbf{r}, t)\right|^{2}-e \phi(\mathbf{r}, t)\right]
$$

The Lorentz force law arises from S. Generalize this to \rightarrow

$$
S[\mathbf{r}, \mathbf{p}]=\int_{t_{0}}^{t_{1}} d t[\mathbf{p} \cdot \dot{\mathbf{r}}-\overline{\mathcal{K}}(\mathbf{p}-e \mathbf{A} / c, w, \mathbf{E}, \mathbf{B}, \nabla \mathbf{E}, \nabla \mathbf{B}, \ldots)-e \phi]
$$

Orbit dynamics that describes matter (plasma) arises from S.

Generalized Hamiltonian Structure

Sophus Lie (1890) \longrightarrow PJM (1980)....
Noncanonical Coordinates:

$$
\dot{z}^{i}=J^{i j} \frac{\partial H}{\partial z^{j}}=\left[z^{i}, H\right], \quad[A, B]=\frac{\partial A}{\partial z^{i}} j^{i j}(z) \frac{\partial B}{\partial z^{j}}
$$

Poisson Bracket Properties:
antisymmetry $\longrightarrow \quad[A, B]=-[B, A]$,
Jacobi identity $\longrightarrow \quad[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$
G. Darboux: $\operatorname{det} J \neq 0 \Longrightarrow J \rightarrow J_{c}$ Canonical Coordinates

Sophus Lie: $\operatorname{det} J=0 \Longrightarrow$ Canonical Coordinates plus Casimirs
Matter models in Eulerian variables: $J^{i j}=c_{k}^{i j} z^{k} \leftarrow$ Lie - Poisson Brackets
Finite dimensions to infinite dimensions!

Flow on Poisson Manifold

Definition. A Poisson manifold \mathcal{P} is differentiable manifold with bracket [,]: $C^{\infty}(\mathcal{P}) \times C^{\infty}(\mathcal{P}) \rightarrow C^{\infty}(\mathcal{P})$ st $C^{\infty}(\mathcal{P})$ with [,] is a Lie algebra realization, i.e., is i) bilinear, ii) antisymmetric, iii) Jacobi, and iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields, $J d H$.

Because of degeneracy, \exists functions C st $[f, C]=0$ for all $f \in$ $C^{\infty}(\mathcal{P})$. Called Casimir invariants (Lie's distinguished functions.)

Poisson Manifold \mathcal{P} Cartoon

Degeneracy in $J \Rightarrow$ Casimirs:

$$
[f, C]=0 \quad \forall f: \mathcal{P} \rightarrow \mathbb{R}
$$

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Leaves are symplectic rearrangements in infinite dimensions.

II. PDEs

Lifting Orbits:

Hamiltonian Matter \& Field Theory

The Field Theory

Desiderata:

- Kinetic Theory/ transport equation
- Sources for Maxwell's equations

Provided by:

- Hamiltonian Functional.
- Noncanonical (field theory) Poisson bracket.

Example: Vlasov-Poisson Hamiltonian Structure

Noncanonical Poisson Bracket (pjm 1980):

$$
\{F, G\}=\int f\left[\frac{\delta F}{\delta f}, \frac{\delta G}{\delta f}\right] d x d v
$$

F and G are functionals. VP \Longleftrightarrow

$$
\frac{\partial f}{\partial t}=\{f, H\}=\left[f, \mathcal{E}=\frac{\delta H}{\delta f}\right]
$$

where $\mathcal{E}=m v^{2} / 2+e \phi$ and

$$
[f, \mathcal{E}]=\frac{1}{m}\left(\frac{\partial f}{\partial x} \frac{\partial \mathcal{E}}{\partial v}-\frac{\partial \mathcal{E}}{\partial x} \frac{\partial f}{\partial v}\right)
$$

Casimir Invariants;

$$
C[f]=\int \mathcal{C}(f) d x d v
$$

Organizes: VP, Euler, QG, Defect Dyn, Benny-Dirac,

Orbit Theory as Matter Model

Examples:

- Linear materials:
$\mathcal{K}(\mathbf{v}, w, \mathbf{E}, \mathbf{B})=h(\mathbf{v}, w, \mathbf{B})+\mathcal{P}(\mathbf{v}, w, \mathbf{B}) \cdot \mathbf{E}+\frac{1}{2} \mathbf{E} \cdot \underline{\underline{k}}(\mathbf{v}, w, \mathbf{B}) \cdot \mathbf{E}$, giving rise to $\mathbf{D}=\underline{\underline{\epsilon}} \cdot \mathbf{E}$, which is $\underline{\underline{\epsilon}}$ constant, in elementary electromagnetism.
- Lorentzian dynamics $\mathcal{K}=m|v|^{2} / 2 \rightarrow$ Maxwell-VIasov theory.
- More interesting $\mathcal{K} s$ are for guiding center or gyrokintic theories.

Sources

K-functional:

$$
K[\mathbf{E}, \mathbf{B}, f]:=\int d \mathbf{x} d \mathbf{v} d w \mathcal{K} f
$$

Polarization and Magnetization:

$$
\mathbf{P}(\mathbf{x}, t)=-\frac{\delta K}{\delta \mathbf{E}} \quad \text { and } \quad \mathbf{M}(\mathbf{x}, t)=-\frac{\delta K}{\delta \mathbf{B}}
$$

Sources:

$$
\begin{aligned}
& \rho(\mathbf{x}, t)=e \int d \mathbf{v} d w f-\nabla \cdot \frac{\delta K}{\delta \mathbf{E}} \\
& \mathbf{J}(\mathbf{x}, t)=e \int d \mathbf{v} d w \frac{\partial \mathcal{K}}{\partial \mathbf{v}} f+\frac{\partial}{\partial t} \frac{\delta K}{\delta \mathbf{E}}+c \nabla \times \frac{\delta K}{\delta \mathbf{B}}
\end{aligned}
$$

Constitutive Relations

General:

$$
\mathrm{D}[\mathbf{E}, \mathbf{B} ; f]=\mathbf{E}+4 \pi \mathbf{P}[\mathbf{E}, \mathbf{B} ; f] \quad \longleftarrow \text { operator }
$$

Inverse:

$$
\mathbf{E}=\mathbf{D}^{-1}[\mathbf{D}, \mathbf{B} ; f]=\mathbf{E}[\mathbf{D}, \mathbf{B} ; f]
$$

Similarly,

$$
\mathbf{H}=\mathbf{H}[\mathbf{B}, \mathbf{E} ; f]=\mathbf{B}-4 \pi \mathbf{M}[\mathbf{B}, \mathbf{E} ; f]
$$

Inverse:

$$
\mathbf{B}=\mathbf{B}[\mathbf{H}, \mathbf{E} ; f]=\mathbf{H}+4 \pi \mathbf{M}[\mathbf{H}, \mathbf{E} ; f]
$$

Permitivity Operator:

$$
\delta \mathbf{D}=\left(\underline{\underline{I}}-4 \pi \frac{\delta^{2} K}{\delta \mathbf{E} \delta \mathbf{E}}\right) \cdot \delta \mathbf{E}=: \underline{\underline{\varepsilon}} \cdot \delta \mathbf{E}=\frac{\delta \mathbf{D}}{\delta \mathbf{E}} \cdot=\mathbf{D}_{\mathbf{E}} \cdot \delta \mathbf{E}
$$

Hamiltonian and Bracket

Hamiltonian:

$$
\begin{aligned}
H[f, \mathbf{E}, \mathbf{B}] & =K-\int d \mathbf{x} \mathbf{E} \cdot \frac{\delta K}{\delta \mathbf{E}}+\frac{1}{8 \pi} \int d \mathbf{x}\left(|\mathbf{E}|^{2}+|\mathbf{B}|^{2}\right) \\
& =K+\int d \mathbf{x} \mathbf{E} \cdot \mathbf{P}+\frac{1}{8 \pi} \int d \mathbf{x}\left(|\mathbf{E}|^{2}+|\mathbf{B}|^{2}\right)
\end{aligned}
$$

Poisson Bracket:

$$
\begin{aligned}
& \{F, G\}=\int d \mathbf{x} d \mathbf{v} d w f\left[F_{f}+\mathbf{E}_{f}^{\dagger} \cdot F_{\mathbf{E}}, G_{f}+\mathbf{E}_{f}^{\dagger} \cdot G_{\mathbf{E}}\right] \\
& +\frac{4 \pi e}{m} \int d \mathbf{x} d \mathbf{v} d w f\left(\left(\mathbf{E}_{\mathbf{D}}^{\dagger} \cdot G_{\mathbf{E}}\right) \cdot \partial_{\mathbf{v}}\left(F_{f}+\mathbf{E}_{f}^{\dagger} \cdot F_{\mathbf{E}}\right)\right. \\
& \\
& \left.\quad-\left(\mathbf{E}_{\mathbf{D}}^{\dagger} \cdot F_{\mathbf{E}}\right) \cdot \partial_{\mathbf{v}}\left(G_{f}+\mathbf{E}_{f}^{\dagger} \cdot G_{\mathbf{E}}\right)\right) \\
& \quad+4 \pi c \int d \mathbf{x}\left(\left(\mathbf{E}_{\mathbf{D}}^{\dagger} \cdot F_{\mathbf{E}}\right) \cdot \nabla \times\left(G_{\mathbf{B}}+\mathbf{E}_{\mathbf{B}}^{\dagger} \cdot G_{\mathbf{E}}\right)\right. \\
& \left.\quad-\left(\mathbf{E}_{\mathbf{D}}^{\dagger} \cdot G_{\mathbf{E}}\right) \cdot \nabla \times\left(F_{\mathbf{B}}+\mathbf{E}_{\mathbf{B}}^{\dagger} \cdot F_{\mathbf{E}}\right)\right)
\end{aligned}
$$

Equations of Motion:

$$
f_{t}=\{f, H\}, \quad \mathbf{B}_{t}=\{\mathbf{B}, H\}, \quad \mathbf{E}_{t}=\{\mathbf{E}, H\}
$$

Significant generalization of MV bracket:
pjm $(1980,1982)$; Marsden \&Weinstein (1982)

Conclusion/ Summary

1. Described lifting in general terms for matter description
2. Origin of Orbits via Action Principle
3. Described noncanoncal Poisson brackets, finite \rightarrow infinite
4. Consistent Theory with Polarization and Magnetization formulas
