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Review Dirac’s theory and some subsequent work.

Ellucidate a basic ‘flaw’ in the theory.

† with Jeffrey Heninger.



Maxwell’s Equations

∂B

∂t
= −c∇× E

∂E

∂t
= c∇×B− 4πJe

∇ ·B = 0 ∇ · E = 4πρe

E(x, t), B(x, t), ρe(x, t), Je(x, t)



Coupling to Vlasov Matter

∂fs

∂t
= −v · ∇fs −

es

ms

(
E +

v

c
×B

)
·
∂fs

∂v

ρe(x, t) =
∑
s
es

∫
fs(x,v, t) d

3v , Je(x, t) =
∑
s
es

∫
v fs(x,v, t) d

3v

fs(x,v, t) is a phase space density for particles of species s with charge and mass, es,ms.

An inclusive matter field theory that includes point particles and fluids as exact reductions.



Dirac’s Electrodynamics

∂B

∂t
= −c∇× E− 4πJm

∂E

∂t
= c∇×B− 4πJe

∇ ·B = 4πρm ∇ · E = 4πρe

E(x, t), B(x, t), ρe(x, t), Je(x, t), ρm(x, t), Jm(x, t)



Coupling to Monopole Vlasov Matter

∂fs

∂t
= −v · ∇fs −

(
es

ms

(
E +

v

c
×B

)
+

gs

ms

(
B−

v

c
× E

))
·
∂fs

∂v

ρe(x, t) =
∑
s
es

∫
fs(x,v, t) d

3v , Je(x, t) =
∑
s
es

∫
v fs(x,v, t) d

3v

ρm(x, t) =
∑
s
gs

∫
fs(x,v, t) d

3v , Jm(x, t) =
∑
s
gs

∫
v fs(x,v, t) d

3v

Now fs(x,v, t) is a phase space density for particles of species s with electric charge,

magnetic charge, and mass, es, gs,ms, respectively. A species needn’t carry either charge.



Some Hamiltonian Landmarks

Dirac (1931):

“... if we wish to put the equations of motion [of electromagnetism] in the Hamil-
tonian form, however, we have to introduce the electromagnetic potentials ...”

Born and Infeld (1934):

Obtained gauge-free Hamiltonian form for electromagnetism without introducing
potentials for light in terms of ‘noncanonical’ Poisson bracket. Theory symmetric
in terms of E and B.

pjm (1981):

When coupling to Vlasov matter, the constraints ∇ · E = 4πρe and ∇ · B = 0 are
not symmetric in the Hamiltonian theory and play different roles. Was seen via a
grueling direct calculation of the Jacobi identity (pjm9 1982, pjm165 2013).



Noncanonical Hamiltonian Definition

A phase space P (manifold, function space, etc.) with binary bracket operation on functions
(functionals) F,G : P → R in e.g. C∞(P) s.t. { · , · } : C∞(P)×C∞(P)→ C∞(P), that satisfies

• Bilinear: {F + λG,H} = {F,H}+ λ{G,H} , ∀F,G,H and λ ∈ R

• Antisymmetric: {F,G} = −{G,F} , ∀F,G

• Jacobi: {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} ≡ 0 , ∀F,G,H

• Leibniz: {FG,H} = F{G,H}+ {F,H}G , ∀F,G,H.

Above is a Lie algebra realization on functions. Take FG to be pointwise multiplication.

Equations of Motion: ∂Ψ
∂t = {Ψ,H} for Ψ an observable and H a Hamiltonian.

Example: flows on Poisson manifolds, e.g. Weinstein 1983 ....



Maxwell-Vlasov Structure†

Hamiltonian:

H =
∑
s

ms

2

∫
|v|2fs d3x d3v +

1

8π

∫
(|E|2 + |B|2) d3x ,

Bracket:

{F,G} =
∑
s

∫ (
1

ms
fs
(
∇Ffs · ∂vGfs −∇Gfs · ∂vFfs

)
+

es

m2
sc
fsB ·

(
∂vFfs × ∂vGfs

)
+

4πes
ms

fs
(
GE · ∂vFfs − FE · ∂vGfs

) )
d3x d3v + 4πc

∫
(FE · ∇ ×GB −GE · ∇ × FB) d3x ,

where ∂v := ∂/∂v, Ffs means functional derivative of F with respect to fs etc.

Equations of Motion:

∂fs

∂t
= {fs,H} ,

∂E

∂t
= {E,H} ,

∂B

∂t
= {B,H} .

† pjm5,9 1980,1982; Marsden and Weinstein 1982; Bialynicki-Birula et al. 1984



Maxwell-Vlasov Structure (cont)

Casimirs invariants:

Cfs [fs] =
∫
Cs(fs) d3xd3v

CE[E, fs] =
∫
hE(x)

(
∇ · E− 4π

∑
s
es

∫
fs d

3v

)
d3x ,

CB[B] =
∫
hB(x)∇ ·B d3x ,

where Cs, hE and hB are arbitrary functions of their arguments. These satisfy the degeneracy

conditions

{F,C} = 0 ∀F .

Lie’s distinguished functions.



Jacobi Identity

The grueling direct calculation (pjm9 1982, pjm165 2013)

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} =∑
s

∫
fs∇ ·B

(
∂vFfs × ∂vGfs

)
· ∂vHfs d

3x d3v 6≡ 0 .

Remedy: Lie algebra realization on functionals of closed, but not necessarily exact, 2-forms.

Asymmetry of constraints ∇ ·B = 0 & ∇ · E = 4πρe: 1st needed for Jacobi, 2nd not!

Attempts to remove this “taint”: Was successful for MHD pjm7 1982. Closest for VM

using Dirac constaint theory in Chandre et al. 2012, 2013 pjm150, pjm158.

Surely Dirac’s theory should handle monopoles? Bull by the horns!



Monopole-Maxwell-Vlasov Structure†

Bracket:

{F,G} =
∑
s

∫ (
1

ms
fs
(
∇Ffs · ∂vGfs −∇Gfs · ∂vFfs

)
+

es

m2
sc
fsB ·

(
∂vFfs × ∂vGfs

)
−

gs

m2
sc
fsE ·

(
∂vFfs × ∂vGfs

)
+

4πes
ms

fs
(
GE · ∂vFfs − FE · ∂vGfs

)
+

4πgs
ms

fs
(
GB · ∂vFfs − FB · ∂vGfs

) )
d3x d3v

+ 4πc
∫

(FE · ∇ ×GB −GE · ∇ × FB) d3x .

Yields correct equations with same Hamiltonian.

† pjm165 2013



Monopole Jacobi Identity

Jacobi:

{F, {G,H}}+ cyc =
∑
s

1

m2
s

∫
∂vHfs ·

(
∂vFfs × ∂vGfs

)
× fs (es∇ ·B− gs∇ · E) d3x d3v .

For Jacobi, above mush vanish for arbitrary F , G, H, and fs ⇒

es∇ ·B ≡ gs∇ · E , ∀s .



Monopole Jacobi Identity (cont)

Cases:

• All species have the same es/gs. Duality transformation

E′ = E cos ξ + B sin ξ , B′ = −E sin ξ + B cos ξ ,

e′s = es cos ξ + gs sin ξ , g′s = −es sin ξ + gs cos ξ ,

with ξ = arctan(gs/es), makes g′s = 0 ∀s.

“The only meaningful question is whether all particles have the same ratio of mag-
netic to electric charge” — J. D. Jackson.

If so, by our calculation, Jacobi is satisfied, but the theory is equivalent to Maxwell’s.

• Not all species have the same es/gs. Then the Jacobi identity requires ∇ ·E = ∇ ·B = 0,
which implies there is no matter!

Conclusion:
Dirac’s monopole theory with Vlasov matter is either trivial or not a Hamiltonian field theory.



Other Matter Models

Q: Could the problem be in the matter model?

A: No, because MV includes point particles and fluids.

Consider the reduction:

fs =
∑
s
δ
(
x−Xs(t)

)
δ
(
v −Vs(t)

)
A simple chain rule calculation implies point particle Poisson bracket.

Special case of one electron and one monopole.

Hamiltonian:

H =
me

2
|Ve|2 +

mm

2
|Vm|2 +

1

8π

∫ (
|E|2 + |B|2

)
d3x ,



Other Matter Models (cont)

Bracket:

{F,G} =
1

me

(
∂F

∂Xe
·
∂G

∂Ve
−
∂G

∂Xe
·
∂F

∂Ve

)
+

1

mm

(
∂F

∂Xm
·
∂G

∂Vm
−

∂G

∂Xm
·
∂F

∂Vm

)
+

e

m2
ec

B(Xe) ·
(
∂F

∂Ve
×
∂G

∂Ve

)
−

g

m2
ec

E(Xm) ·
(
∂F

∂Vm
×

∂G

∂Vm

)

+
4πe

me

δG
δE

∣∣∣∣∣
Xe

·
∂F

∂Ve
−
δF

δE

∣∣∣∣∣
Xe

·
∂G

∂Ve

+
4πg

mm

δG
δB

∣∣∣∣∣
Xm

·
∂F

∂Vm
−
δF

δB

∣∣∣∣∣
Xm

·
∂G

∂Vm

 ,

+ 4πc
∫ (

δF

δE
· ∇ ×

δG

δB
−
δG

δE
· ∇ ×

δF

δB

)
d3x



Other Matter Models (cont2)

This Hamiltonian and Poisson bracket give the expected equations of motion:

∂Xe

∂t
= Ve

∂Ve

∂t
=

e

me
E(Xe) +

e

mec
Ve ×B(Xe) ,

∂Xm

∂t
= Vm

∂Vm

∂t
=

g

mm
B(Xm)−

g

mmc
Vm × E(Xm) ,

∂E

∂t
= c∇×B− 4πeVe δ(x−Xe) ,

∂B

∂t
= −c∇× E− 4πgVm δ(x−Xm) .



Other Matter Models (cont3)

Jacobi:

{{F,G}, H} + cyc =
12πeg

c
δ(Xe −Xm)

×

 1

m3
e

∂F

∂Ve

(
∂G

∂Ve
×
∂H

∂Ve

)
−

1

m3
m

∂F

∂Vm
·
(
∂G

∂Vm
×

∂H

∂Vm

).
Jacobi identity is not satisfied globally; ∃ a singularity when positions coincide.

Classically, there is no reason why this coincidence can’t happen. A stationary monopole
produces a completely radial B-field. An electron moving directly towards the monopole
experiences a force eVe ×B/c = 0.

∴ the electron passes through the monopole without experiencing any force at all!

Conclusion:

Interaction of an electron and a magnetic monopole is not Hamiltonian



Conclusions

• Maxwell’s equations are special. The constraints ∇·B = 0 and ∇·E = 4πρe play different

roles in Hamiltonian theory, which is violated if they are forced to look alike.

• Various geometrical, topological, operator algebras, etc. Dirac (1931,1948) quantization

assumptions, Dirac string, defects, wave function conditions, etc. to dress up or bypass

this basic flaw. (For GUTs, etc. too.)

• Various experimental attempts for finding monopoles have lead to zilch.

• Opinion: Scrap it! Maxwell’s equations are special and maybe it is not a good idea to

build new theories based on changing them.


