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“Hamiltonian systems .... are the basis of physics.” M. Gutzwiller



Coarse Outline

Hamilton in middle age

William Rowan Hamilton (August 4, 1805 - September 2, 1865)

I. Today: Finite-dimensional systems. Particles etc. ODEs

II. Tomorrow: Infinite-dimensional systems. Hamiltonian field
theories. PDEs



Why Hamiltonian?

e Beauty, Teleology, ...: Still a good reason!
e 20th Century framework for physics: Fluids, Plasmas, etc. too.
e Symmetries and Conservation Laws: energy-momentum . ...
e Generality: do one problem = do all.
e Approximation: perturbation theory, averaging, ... 1 function.
e Stability: built-in principle, Lagrange-Dirichlet, éW, . ...

e Beacon: 4 co-dim KAM theorem? Krein with Cont. Spec.?

e Numerical Methods: structure preserving algorithms:
symplectic, conservative, Poisson integrators, ...e.g. GEMPIC.

e Statistical Mechanics: energy, measure . ..e.g. absolute equil.



Today

e Natural Hamiltonian systems

e “Unnatural” Hamiltonian systems

e Noncanonical Hamiltonian systems



Action Principle

Hero of Alexandria (60 AD) — Fermat (1600's) —

Hamilton's Principle (1800's)

The Procedure:
e Configuration Space/Manifold Q: ¢'(t),i=1,2,..., N + #DOF
e Lagrangian (Kinetic Potential): L=T-V <+ L:TQ —R

e Action Functional:

Sl = [ La.d)dt. dalto) = da(ts) =0

Extremal path = Lagrange’s equations




Variation Over Paths

S[qpath] = number

First Variation (Fréchet derivative):

d
0S[q; 6q) = DS - 6q = d—S[q + € dq] =0 V oq(t) =
€

e=0

LLagrange’'s Equations:



Hamilton’s Equations

oL

od <+ inverse function theorem

Canonical Momentum:  p; =

Legendre Transform:  H(q,p) = p;¢* — L(4q, q)

OH
oqt’

_ oH
Op;

Di = —

Phase Space Coordinates: z=(q,p), o B=1,2,...2N

aH oy I
_ ozﬁ afy N N
=segf= e, o= N )

Je := Poisson tensor, Hamiltonian bi-vector, cosymplectic form

symplectic 2-form = (cosymplectic form)—1: chB J5 = = &4,



Natural Hamiltonian Systems



Natural Hamiltonian Systems

Natural Hamiltonian:
H(q,p) =T(q,p) +V(q)

Kinetic Energy:
1 —1
T(a,p) = 5 2 my; (D) pip;
i,]
where m;; pos. def. mass matrix (metric tensor).

Potential energy:
V(g) =V(q1,92,--.,anN)

Equations of motion:
. -1 .
qi = Zmij Dy and Pi = —43
J

for m;; constant.



Natural Hamiltonian Examples

e Mass spring systems, pendula, particle in potential well, etc.

e N-Body problem g; = (qui,qyisq2i) € Q CR3, i=1,2,...N

o é\f: Ipill® é\f: Cij
i=1 2m,; ij=1 |q; — Qj||
where depending on sign Cij it represents attracting gravitational
interaction (satellites, planets, stars, ...), repelling electrostatic

interaction (electrons), attracting electrons and ions (protons),
collection of both in plasmas.




“Unnatural” Hamiltonian Systems



“Unnatural” := — Natural Hamiltonian Systems

e Charged particle in given electromagnetic fields:

.. e .
mq = eFE(q,t) + 4 x B(q,t)

where FE, B electric and magnetic fields, respectively, e charge, m
mass, c speed of light.

Potentials:

Hamiltonian:

1 2
H(qg,p,t) = %Hp — ZA(q, t)|| + e¢(q,t)



Other Unnatural Hamiltonian Systems

e Interaction of point vortices in the plane

N
H=c Y rrjIn((@;— ;)% + (i — y;)?)
ij=1

e Chaotic advection in two dimensions

H = (x,y,t), V-v=0—=wv(x,y,t) = (0y/0y, —0y/0x),

neutrally buoyant particle or dye moves with fluid. Stream func-
tion .

e Magnetic field line flow (integral curves of B(x))

e Other: preditor-prey, etc.



Chaotic Advection

H. Swinney Lab circa 1989. Nontwist! del-Castillo-Negrete et al.

Cyclonic (eastward) jet

particle streaks




Particle in B-Field

e Equation of motion:

.. e .
mg = —q X B(q,t)

e Solution for B uniform:
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Particle in B-Field

e Equation of motion:

e .
mg =g x B(q,t)

e Solution for B uniform:




Particle in B-Field

e Equation of motion:

.. e .
mg = —q X B(q,t)

e Solution for B uniform:

y
R R ;.,n(g_-.vvv G B, ’ Helical
R/® ®LON\D | |
r ' ' mQ t
4 : 1
R & B: X & ; f"r.‘z
e

gyroradius: pg = mcv | /(eB). gyrofrequency: 24 = eB/(mc)



B-lines as Hamiltonian system

If particles are tied to field lines = natural to look at field line flow.
If interested in confinement, then if field lines escape particle will.

Use fields for confinement: Stellerator, Tokamak, etc.

Also related are particle accelerators.

Field line flow is Hamiltonian: Kruskal, Kerst, I. M. Gelfand, Mo-
rozov & Solov'ev, ... Cary and Littlejohn 1983



Tokamak Fields




B-line Hamitonian for Straight Torus

For simplicity remove metrical components and consider topolog-
ical torus with cylindrical coords (r,0,z) with z ‘toroidal’ angle
(long way aorund) 6 poloidal angle (short way around):

B = Bpz+zZxVy(r,0,z) Bp=const >> B, = 1 way

assures V- B = 0.

Integral curves of B(x):

" — B
do
parametrize by z =
dX 0 dY 0
dz oY dz o0X

W(X,Y, z) is the Hamiltonian. General system is 1.5 dof but inte-
grable if 0y /0z = 0 (becomes 1 dof) desired equilibrium state.



Surface of Section

{4}
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Symmetry breaking < k£ ¢




Early Symplectic Map

; Library Co “
P, \}’ 7 F'Z/ scgels!
:}/" ument consists © 4
s This -:l{';/;‘ Y comes e
NoM
/ :
g

t IBRARY

>LASMA PHYSICS 1 ABCRATORY
UNELASSIEIED FORRESTAL RESEARCH CAMALS

\ BRINCETION UNIVERSITY

o

PROJECT MATTERHORN

Forrestal Research Center
Princeton University
Princeton, New Jersey

SOME PROPERTIES OF ROTATIONAL TRANSFORMS

February 18, 1952 N NYO-998
PM-5-5

THIS CCPY IS ON RESERVE AND
MAY B= USED CNLY IN TH E

READILG ROOM.

Report written by:

Martin D. Kruskal

. UNCLASSIFIED



Early Symplectic Map (cont)

whence again irom t4) it follows that X :s sim:larly per:odic.
: " }

_Part 111
Inasmuch as it appears difficult to obrain formulas for the deviation
from periodicity, computations for particular cases were carried out by Miss
Ed:ith Gue=tler. In the first case {(for system 1} the transiormation irom

X w0X was laken to be
n n-+l

(1)



George Miloshevich «+ $250



Universal Symplectic Maps of Dimension Two

Standard (Twist) Map:

x/ — CE—I-y/

k
y = y— —sin(2nz)
27T

Standard Nontwist Map:

= x4 a(l —1y?)
y — bsin(2mx)

S
|

Parameters:

a Mmeasures shear, while b and k& measure ripple



Drifts: 4 E and B Not Uniform

Even for large B, particles don't follow field lines because of drifts.
Drift Types: E x B, VB, curvature, polarization.

Example VB (recall pg ~ 1/B):

Reductions base on magnetic moment u = mv|?/(2B) being an
adiabatic invariant.



Drifts: 3 EF and B Not Uniform (cont)




Drifts: 3 £ and B Not Uniform (cont)




Drifts: 3 E and B Not Uniform (cont?)
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Drifts - 3 E and B Not Uniform (cont?)

Guiding center equations for transport. Hannes Alfvén.

— Hamiltonian system in noncanonical coordinates
C Noncanonical Hamiltonian systems.

Kinetic theories on guiding centers etc.
— Drift kinetics and Gyrokinetics.



Noncanonical Hamiltonian Systems



Usual Geometry

Dynamics takes place in phase space, Z (needn't be T*Q), a
differential manifold endowed with a closed, nondegenerate 2-form
w. A patch has canonical coordinates z = (q, p).

Hamiltonian dynamics < flow on symplectic manifold: :xw = dH

Poisson tensor (J.) is bivector inverse of w, defining the Poisson
bracket

— - _ af af ag —
{f7 g} - <df7 Jc(dg)> - w(Xfan) - @JC @7 0476 - 17 27 <o 2N
Flows generated by Hamiltonian vector fields Zyg = JdH, H a O-
form, dH a 1-form. Poisson bracket = commutator of Hamiltonian

vector fields etc.

Early refs.: Jost, Mackey, Souriau, Arnold, Abraham &Marsden



Noncanonical Hamiltonian Definition

A phase space P diff. manifold with binary bracket operation
on C°°(P) functions f,g: P —» R, s.t. {-,-}: C®(P) x C®°(P) —
C>®°(P) satisfies

e Bilinear: {f+ Xg,h} ={f,h} +Xyg,h}, Vf,g,hand AeR
e Antisymmetric: {f,g9} = —{9g, f}, Vf, g
e Jacobi: {f,{g,h}} +{g,{h, f}} +{h {F,g}} =0, Vf,9,h

o Leibniz: {fg,h} = fig,h} + {f h}g, Vf,g,h.

Above is a Lie algebra realization on functions. Take fg to be
pointwise multiplication.

Eqgs. Motion: %—‘f = {W,H}, W an observable & H a Hamiltonian.

Example: flows on Poisson manifolds, e.g. Weinstein 1983 ....



Noncanonical Hamiltonian Dynamics

Sophus Lie (1890)

Noncanonical Coordinates:

BOH _ ¢ a W
azﬁ_{z 7H}7 {fag}_

Poisson Bracket Properties:

o Jo af —
=J = ()aﬁ’ a,8=1,2...M

antisymmetry — 1f,9) =9, f},

Jacobi identity — {f,{g,h}} +{g,{h, f}} +{h,{f,9}} =0

G. Darboux: detJ =0 — J — J. Canonical Coordinates
Sophus Lie: detJ = 0 —— Canonical Coordinates plus Casimirs

On In O
J = Jg= —In Oy O
0 O Op-2on




Flow on Poisson Manifold

Definition. A Poisson manifold M is differentiable manifold with
bracket {, }: C®(M) x C®°(M) — C*°(M) st C°(M) with {,}
is a Lie algebra realization, i.e., is i) bilinear, ii) antisymmetric, iii)
Jacobi, and iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields,

Because of degeneracy, 3 functions C st {f,C} = 0 for all f €
C*®°(M). Called Casimir invariants (Lie's distinguished functions.)



Poisson Manifold M Cartoon

Degeneracy in J = Casimirs:
{f,C}=0 Vf: M—=>R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Leaf vector fields, Z; = {2, f} = Jdf are tangent to leaves.



Lie-Poisson Brackets

Coordinates:
Job — c%‘ﬁzv

where (:2‘5 are the structure constants for some Lie algebra.

Examples:

e 3-dimensional Bianchi algebras for free rigid body, Kida vortex,
& other 7

e Infinite-dimensional theories - matter models: Ideal fluid flow,
MHD, shearflow, extended MHD, Vlasov-Maxwell, BBGKY, etc.



Lie-Poisson Geometry

Lie Algebra: g, a vector space with

[, ]:gxg—9,

antisymmetric, bilinear, satisfies Jacobi identity

Pairing:

(,):g-xg—R

with g* vector space dual to g

Lie-Poisson Bracket:




Example s0(3)

Lie Algebra is antisymmetric matrices, or s = (s, s»,s3), a vector
space with

of Og
[f, 9] = —ng

where x is vector cross product.

Pairing between s € s0(3)* and 0f/0s € g yields the Lie-Poisson bracket:

of Og of 89

{f7 }_S gxas_e /3’7 o~

where €y is the Levi-Civita (permutation) symbol, which denotes
the structure constants for s0(3).

0s 3 (98/7

Casimirs (nested spheres S2 foliation):

2 2 2
C=81+82+83

Examples: spin system, free rigid body with Euler's equations




All Real 3D Lie-Poisson Structures

Bianchi classification (cf. Jacobson) of real Lie algebras

c%‘7 = 6575m5a—l—(5ga5—5ga7, a,B,v=1,2,3

O
Q
n
wn

Type m Ao
A I 0 0
A 11 diag(1,0,0) 0
A VI, | —a 0
A Vg diag(—1,-1,0) 0
A VIII diag(—1,1,1) 0
A IX diag(1,1,1) 0
B 111 —Za —0%
B IV diag(1,0,0) —05
B Y 0 —05
B VIpz_1 | z(h—1)a —=(h 4 1)6%
B VII,— | diag(—1,—1,0) 4+ zha | —5hds







All Real 3D Lie-Poisson Structures (cont?)

Class A:

Type IX — Free rigid body, spin, ...

Type I1 — Heisenberg algebra

Type VIII — Kida vortex of fluid mechanics

Class B: 7




Showtime


file:///Users/philmo/Desktop/02Japan/Rattleback-in-action.ogg

All Real 3D Lie-Poisson Structures (cont3)

Orbits lie on intersection of Casimir leaves and energy surface.
Singular equilibrium is at (R=P =0,5 #0).




All Real 3D Lie-Poisson Structures (cont?)

e Type VI, _1 governs rattleback system of Moffat and Tokieda.

e Chirality comes from equilibria that live on the singular set.

e Such equilibria need not have Hamiltonian spectra.

Yoshida, Tokieda, pjm (2017)

e Rank changing is responsible for the Casimir deficit problem.

Relationship to b-symplectic and presymplectic systems.



End Part 1



