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Survey the Hamiltonian and dissipative structure of plasma mod-

els. Describe uses: model consistency, stability, and computation.

Two methods GEMPIC a Poisson integrator and simulated an-

nealing/metriplectic relaxation for MHD equilibria.
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Physical models that describe the dynamics of matter, whether they be discrete, like those for interacting par-

ticles or dust, or continuum models, like those for fluids and plasmas, possess structure. The structure may be of
Hamiltonian type (see [1, 2] for review) and/or posses dissipation and exhibit metriplectic structure [3] (see [4] for
review). The structure may give rise to conservation laws resulting fromGalilean, Poincare, or other invariance, or it
may assure the property of entropy production giving relaxation to thermal equilibrium. On a basic level, all struc-
ture ultimately arises from an underlying Hamiltonian form that may or may not be maintained in approximations
and/or reductions of various kinds.

I will survey the structure and its uses for a variety of models, with an emphasis on general magnetofluidmodels
[5, 6, 7, 8, 9, 10, 11] and Vlasov-Maxwell theory [1, 12]. In particular, I will discuss structure preserving numerical
algorithms and how structure can be used to design algorithms for specific purposes [13, 14, 15, 16]. Although
symplectic integration has beenwell studied andwidely used for finite-dimensional systems, the preservation of the
structure that occurs in continuummodels such as extended magnetohydrodynamics with generalized helicities, is
considerably more difficult to implement. Progress in developing a discrete version of the Maxwell-Vlasov system
that preserves its Hamiltonian structure, and its numerical implementation will be discussed [14].
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Overview

A Survey of

• Hamiltonian Structure of Ideal Plasma Dynamics

• Metriplectic Dynamics of Dissipative Plasma Dynamics

• Structure Preserving Computation

For long list of references see abstract.



Hamilton’s Equations

Phase Space with Canonical Coordinates: (q, p)

Hamiltonian function: H(q, p) ← the energy

Equations of Motion:

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
, i = 1,2, . . . N

Phase Space Coordinate Rewrite: z = (q, p) , α, β = 1,2, . . . 2N

żα = Jαβc
∂H

∂zβ
= {zα, H} , (Jαβc ) =

(
0N IN
−IN 0N

)
,

Jc := Poisson tensor, Hamiltonian bi-vector, cosymplectic form

symplectic 2-form = (cosymplectic form)−1: ωcαβJ
βγ
c = δ

γ
α,



Noncanonical Hamiltonian Dynamics

Sophus Lie (1890)

Noncanonical Coordinates:

żα = Jαβ
∂H

∂zβ
= {zα, H} , {f, g} =

∂f

∂zα
Jαβ(z)

∂g

∂zβ
, α, β = 1,2, . . .M

Poisson Bracket Properties:

antisymmetry −→ {f, g} = −{g, f} ,

Jacobi identity −→ {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

J → Jd =

 0N IN 0
−IN 0N 0

0 0 0M−2N

 .



Poisson Manifold M Cartoon

Degeneracy in J ⇒ Casimirs:

{f, C} = 0 ∀ f :M→ R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Leaf vector fields, Zf = {z, f} = Jdf are tangent to leaves.



Noncanonical Poisson Brackets

• All nondissipative (correct!) plasma models have them:

Ideal fluid flow, two-fluid theory, MHD, shearflow, variety of re-

duced fluid models, extended MHD, Vlasov-Maxwell, BBGKY, etc.

Yoshida + pjm exotic ones

{f, g} =
∂f

∂zα
Jαβ(z)

∂g

∂zβ
→

{F,G} =
∫
dµ

δF

δψ
J(ψ)

δG

δψ

with J and operator.

For example: ψ = (v,B, ρ, p) for MHD.



Magnetohydrodynamics (MHD)



MHD

Equations of Motion:

Force ρ
∂v

∂t
= −ρv · ∇v −∇p+

1

c
J ×B

Density
∂ρ

∂t
= −∇ · (ρv)

Entropy
∂s

∂t
= −v · ∇s

Ohm′s Law E + v ×B = ηJ ≈ 0

Magnetic Field
∂B

∂t
= −∇×E = ∇× (v ×B)

Energy:

H =
∫
D
d3x

(
1

2
ρ|v|2 + ρU(ρ, s) +

1

2
|B|2

)

Thermodynamics:

p = ρ2∂U

∂ρ
T =

∂U

∂s
or p = κργ



Noncanonical Lie-Poisson Bracket (pjm & Greene 1980):

{F,G} = −
∫
D
d3x

Mi

 δF

δMj

∂

∂xj
δG

δMi
−

δG

δMj

∂

∂xj
δF

δMi


+ ρ

 δF

δM
· ∇

δG

δρ
−
δG

δM
· ∇

δF

δρ

+ σ

 δF

δM
· ∇

δG

δσ
−
δG

δM
· ∇

δF

δσ


+ B ·

[
δF

δM
· ∇

δG

δB
−
δG

δM
· ∇

δF

δB

]

+ B ·
[
∇
(
δF

δM

)
·
δG

δB
−∇

(
δG

δM

)
·
δF

δB

]  ,
Dynamics:

∂ρ

∂t
= {ρ,H} ,

∂s

∂t
= {s,H} ,

∂v

∂t
= {v, H} , and

∂B

∂t
= {B, H} .

Densities:

M := ρv σ := ρs



Casimir Invariants

Helicities are Casimir Invariants:

{F,C}MHD = 0 ∀ functionals F.

Casimirs Invariants (helicities):

CB =
∫
d3xB ·A , CV =

∫
d3xB · v

Topological content, linking etc.



Extended MHD (XMHD)



XMHD Scaled

Ohm’s Law:

E + V ×B =
d2
e

ρ

(
∂J

∂t
+∇ ·

(
V J + JV −

di
ρ
JJ

))

+
di
ρ

(
J ×B −∇pe

)
.

Momentum:

ρ

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ J ×B

−d2
e J · ∇

(
J

ρ

)
.

Two parameters, de = c
ωpeL

measures electron inertia and di = c
ωpiL

accounts for current carried by electrons mostly ... .



Energy Conservation

Candidate Hamiltonian:

H =
∫
d3x

[
ρ
|V |2

2
+ ρU(ρ) +

|B|2

2
+ d2

e
|J |2

2ρ

]

Kimura and pjm 2014 on energy conservation

H is conserved. Pressure, p = ρ2∂U/∂ρ.

What is the Poisson bracket? Casimirs? Helicities?



XMHD Hamiltonian Structure

Yoshida, Abdelhamid, Kawazura, pjm, Lingam, Miloshevich, D’Avignon

Poisson Bracket:

{F,G}XMHD = {F,G}MHD

+ d2
e

∫
D
d3x

[
∇×V

ρ
·
(

(∇× FB?)× (∇×GB?)
)]

+ di

∫
D
d3x

B?

ρ
·
[ (
∇× F ?B

)
×
(
∇×G?B

) ]
where we introduce the ‘inertial’ magnetic field

B? = B + d2
e ∇×

(
∇×B

ρ

)
,

Hamiltonian:

H =
∫
D
d3x

[
ρ|V|2

2
+ ρU(ρ) +

B ·B?

2

]
.



XMHD Hamiltonian Structure (cont)

Casimirs;

C±XMHD =
∫
D
d3x

(
V + λ±A

?) · (∇×V + λ±B
?) ,

where

λ± =
−di ±

√
d2
i + 4d2

e

2d2
e

.

Jacobi Identity:

Directly Abdelhamid et al.; remarkable transformations Lingam et

al. which lead to normal fields.



Normal Fields

Normal Fields:

B± := B + d2
e ∇×

[
∇×B

ρ

]
+ λ±∇×V

XMHD remarkably yields:

∂B±
∂t

+ £V±B± = 0 ← Lie dragging ⇒ 2 frozen fluxes!

Hamiltonian Reconnection → Kawazura

Dragging velocities:

V± = V − λ∓∇×B/ρ

Helicities:

K± =
∫

A± ∧ dA± , B± = ∇×A± ∼ dA±



Maxwell-Vlasov



Maxwell Part

∂B

∂t
= −c∇× E

∂E

∂t
= c∇×B− 4πJe

∇ ·B = 0 ∇ · E = 4πρe



Coupling to Vlasov

∂fs

∂t
= −v · ∇fs −

es

ms

(
E +

v

c
×B

)
·
∂fs

∂v

ρe(x, t) =
∑
s
es

∫
fs(x, v, t) d

3v , Je(x, t) =
∑
s
es

∫
v fs(x,v, t) d

3v

fs(x,v, t) is a phase space density for particles of species s with

charge and mass, es,ms.

ψ =
(
E(x, t), B(x, t), fs(x,v, t)

)



Maxwell-Vlasov Hamiltonian Structure

Hamiltonian:

H =
∑
s

ms

2

∫
|v|2fs d3x d3v +

1

8π

∫
(|E|2 + |B|2) d3x ,

Bracket:

{F,G} =
∑
s

∫ (
1

ms
fs
(
∇Ffs · ∂vGfs −∇Gfs · ∂vFfs

)
+

es

m2
sc
fsB ·

(
∂vFfs × ∂vGfs

)
+

4πes
ms

fs
(
GE · ∂vFfs − FE · ∂vGfs

) )
d3x d3v

+ 4πc
∫

(FE · ∇ ×GB −GE · ∇ × FB) d3x ,

where ∂v := ∂/∂v, Ffs means functional derivative of F with re-
spect to fs etc.

pjm 1980,1982; Marsden and Weinstein 1982



Maxwell-Vlasov Structure (cont)

Equations of Motion:

∂fs

∂t
= {fs, H} ,

∂E

∂t
= {E, H} ,

∂B

∂t
= {B, H} .

Casimirs invariants:

Cfs [fs] =
∫
Cs(fs) d3xd3v

CE[E, fs] =
∫
hE(x)

(
∇ · E− 4π

∑
s
es

∫
fs d

3v

)
d3x ,

CB[B] =
∫
hB(x)∇ ·B d3x ,

where Cs, hE and hB are arbitrary functions of their arguments.

These satisfy the degeneracy conditions

{F,C} = 0 ∀F .



Summary

Poisson brackets defined by J, dynamics ∂ψ/∂t = {ψ,H}:

JMHD → Casimirs

JXMHD → Casimirs

JV−M → Casimirs

Good theories in their ideal limit (ν, η, · · · → 0) conserve energies,

H, and have Poisson brackets. Bad theories do bad things:

unaccounted energy, unphysical instabilities, etc.



Other Models

• Reduced Fluid Models: aspect ratio expansion, 4-field model,

fluid models with gyroviscosity, Hall physics, etc.

Hazeltine et al., Waelbroeck, Tassi, Grasso, Pegoraro et al., ...

• Hybrid Models: hot particle species, kinetic MHD, gyro-fluid

models , etc.

Tronci, Tassi, et al., Burby et al., etc. ...

The good theories in their ideal limit (ν, η, · · · → 0) conserve

energies, H, and have Poisson brackets. Bad theories do bad

things: unaccounted energy, unphysical instabilities, etc. Bonus:

Casimir invariants emerge.



Energy Principles

All good theories have energy principles, akin to δW of MHD.

∂ψ

∂t
= {ψ,H} = {ψ,H + C} = 0 →

• Variational principle for equilibrium, δF = δ(H + C) = 0

• Dirichlet energy theorem: δ2F definite ⇒ stability

• Lagrange iff energy theorem: δ2F = Kinetic + Potential

MHD: e.g. Andreussi, et al. 2010 – 2019

XMHD: e.g. Kaltsas et al. 2019

Explains “mysterious” ad hoc discoveries over the years and leads

to new results.



Dissipation and Metriplectic Dynamics



Metriplectic Dynamics

General dynamical framework making thermodynamics dynamical.

Captures:

• First Law: conservation of energy

• Second Law: entropy production

pjm, ... 1982,1984. ... Generic 1998



Prototypes and Examples

• Finite-dimensional systems: rigid body ,,, Materassi, Tassi, ...

• Kinetic theories: Vlasov Fokker-Planck equation, Lenard-Balescu

equation, etc.

• Fluid flows: various nonideal fluids, Navier-Stokes, MHD, XMHD,

etc.

• Many more ...



Entropy, Degeneracies, and 1st and 2nd Laws

• Casimirs of {, } are ‘candidate’ entropies. Election of particular
S ∈ {Casimirs} ⇒ thermal equilibrium (relaxed) state.

• Generator (free energy): F = H + S

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = {H,F}+ (H,F) = 0 + (H,H) + (H,S) = 0

Degeneracy such that (H, f) = 0 ∀ f

• 2nd Law: entropy production

Ṡ = {S,F}+ (S,F) = (S, S) ≥ 0

Lyapunov relaxation to the equilibrium state: δF = 0.



Preliminaries

Entropy/volume: σ(x, t)

Density of Extensive variable: ζa(x, t) a = 1,2, . . .

dσ =
∑
a

∂σ

∂ζadζa
=:

∑
a
Xadζa

∂ζa

∂t
+∇ · JT =

∑
a
Ja · ∇Xa ,

JT =
∑
a
XaJa , Ja = unknown flux?

Near Equilibrium Assumption:

Ja =
∑
b

Lab∇Xb

Onsager for Afifnity ∇Xa:

Lab = Lba ⇒ Second Law



Whence (F,G)?

The Dissipative Bracket:

(F,G) =
1

T

∫
d3x∇

δF

δζa
· Lab[ζ] · ∇

δG

δζb

Natural Variable E:

H =
∫
d3x E ⇒ (F,H) = 0 ∀F

Hamiltonian (M ,B∗, ρ, σ) vs. Metriplectic (M ,B∗, ρ, E)

Onsager Pairs (Force/Flux):

• Current ↔ Temp, etc., in particular

• Viscosity ↔ Current

XMHD, Coquinot & pjm 2019



Structure and Computation

• Poisson Integrator

• Simulated Annealing



Poisson Integrator

Symplectic Integrator: z(t)→ z(t+ δt) via a canonical transfor-
mation ⇒ volume preservation, all Poincare invariants, symplectic
invariants. Energy is shadowed.

Noncanonical phase space (Poisson manifold):

Poisson Integrator:
• Exactly preserves Casimir leaf (constraint surface)
• Symplectic on each leaf.



GEMPIC

A Maxwell-Vlasov structure preserving particle-in-cell algorithm.

A Poisson integrators:

Kraus, et al. 2017.

Other structure preserving: Qin + , Xiao Zhou, ... Shadwick +,

etc.

Review: pjm 2017



Discretizing the Noncanonical Maxwell-Vlasov
Hamiltonian Structure

• Discretize fields f (particles), E, B (finite element exterior cal-

culus)

• Discretize Vlasov-Maxwell noncanonical Poisson bracket

• Discretize Hamiltonian Ĥ

• Obtain finite-dimensional noncanonical Hamiltonian system for

z = (z1, z2, . . . , zN) = (X,V ,E,B)

żi = {zi, Ĥ}d
with N very large. Splitting method.



Simulated Annealing

Metriplectic integrators: For accurate collision operators, that

relax to thermal equilibrium while preserving energy etc.

Hirvijoki, Kraus, Burby, ...

Relaxation by False Dynamics: Construct system, metriplectic

or other that relaxes to desired equilbrium while conserving desired

quantities.

MHD equilibria: Furukawa, Bressen, Maj, ...

Geophysical Fluid Dynamics: Flierl + pjm
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