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Usual Symplectic Geometry

Dynamics takes place in phase space, Z (needn’t be T ∗Q), a
differential manifold endowed with a closed, nondegenerate 2-form
ω. A patch has canonical coordinates z = (q, p).

Hamiltonian dynamics ⇔ flow on symplectic manifold: iXω = dH

Poisson tensor (Jc) is Hamiltonian bivector inverse of symplectic
2-form (ω), defining the Poisson bracket

{f, g} = 〈df, Jc(dg)〉 = ω(Xf , Xg) =
∂f

∂zα
Jαβc

∂g

∂zβ
, α, β = 1,2, . . .2N

Flows generated by Hamiltonian vector fields ZH = JcdH, H a 0-
form, dH a 1-form. Poisson bracket = commutator of Hamiltonian
vector fields etc.

Early refs.: Jost, Mackey, Souriau, Arnold, Abraham &Marsden



Noncanonical Hamiltonian Definition

A phase space P diff. manifold with binary bracket operation
on C∞(P) functions f, g : P → R, s.t. { · , · } : C∞(P) × C∞(P) →
C∞(P) satisfies

• Bilinear: {f + λg, h} = {f, h}+ λ{g, h} , ∀f, g, h and λ ∈ R

• Antisymmetric: {f, g} = −{g, f} , ∀f, g

• Jacobi: {f, {g, h}}+ {g, {h, f}}+ {h, {F, g}} ≡ 0 , ∀f, g, h

• Leibniz: {fg, h} = f{g, h}+ {f, h}g , ∀f, g, h.

Above is a Lie algebra realization on functions. Take fg to be
pointwise multiplication.

Eqs. Motion: ∂Ψ
∂t = {Ψ, H}, Ψ an observable & H a Hamiltonian.

Example: flows on Poisson manifolds, e.g. Weinstein 1983 ....



Noncanonical Hamiltonian Dynamics

Sophus Lie (1890)

Noncanonical Coordinates:

dzα

dt
= Jαβ

∂H

∂zβ
= {zα, H} , {f, g} =

∂f

∂zα
Jαβ(z)

∂g

∂zβ
, α, β = 1,2, . . .M

Poisson Bracket Properties:

antisymmetry −→ {f, g} = −{g, f} ,

Jacobi identity −→ {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates
Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

J → Jd =

 0N IN 0
−IN 0N 0

0 0 0M−2N

 .



Flow on Poisson Manifold

Definition. A Poisson manifold M is differentiable manifold with

bracket { , } : C∞(M) × C∞(M) → C∞(M) st C∞(M) with { , }
is a Lie algebra realization, i.e., is i) bilinear, ii) antisymmetric, iii)

Jacobi, and iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields,

ZH = JdH.

Because of degeneracy, ∃ functions C st {f, C} = 0 for all f ∈
C∞(M). Called Casimir invariants (Lie’s distinguished functions.)



Poisson Manifold M Cartoon

Degeneracy in J ⇒ Casimirs:

{f, C} = 0 ∀ f :M→ R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Leaf vector fields, ZH = {z,H} = JdH are tangent to leaves.



Lie-Poisson Brackets

Coordinates:

Jαβ = cαβγ zγ

where c
αβ
γ are the structure constants for some Lie algebra.

Examples:

• The 3-dimensional Bianchi algebras for the free rigid body, the

Kida vortex, & other?

• Many infinite-dimensional theories - matter models: Ideal fluid

flow, MHD, shearflow, extended MHD, Vlasov-Maxwell, BBGKY,

plethora of other plasma models, etc.



Lie-Poisson Geometry

Lie Algebra: g, a vector space with

[ , ] : g× g→ g , adv · = [v, · ]

antisymmetric, bilinear, satisfies Jacobi identity

Pairing:

〈 , 〉 : g∗ × g→ R , ad∗v · = [v, · ]∗

with g∗ vector space dual to g

Lie-Poisson Bracket:

{f, g} =
〈
z,

[
∂f

∂z
,
∂g

∂z

]〉
, z ∈ g∗,

∂f

∂z
∈ g

Dynamics:

dz

dt
= ad∗v z =

[
∂H

∂z
, z

]∗
, v =

∂H

∂z
∈ g



Example: Rattleback

Tokieda Moffat system is Hamiltonian,

d

dt

 P
R
S

 =

 αPS
−RS

R2 − αP2

 =

 0 0 αP
0 0 −R
−αP R 0


 ∂H/∂P
∂H/∂R
∂H/∂S


z = (P,R, S) with P pitch, R roll, and S spin.

H =
1

2
(P2 +R2 + S2) , C = PRα

where paramter α is aspect ratio.

Pairing between g∗ and g yields the Lie-Poisson bracket:

{f, g} = cβγα zα
∂f

∂zβ
∂g

∂zγ
,

where c
βγ
α are the structure constants for Bianchi Type VIh<−1.

Equilibrium Se has non-Hamiltonian spectrum: (0, αSe,−Se)



Rattleback Orbits (All real 3D Lie-Poisson systems)

Orbits lie on intersection of Casimir leaves and energy surface.
Singular equilibrium is at (R = P = 0, S 6= 0).



All Real 3D Lie-Poisson Structures

Bianchi classification (cf. Jacobson) of real Lie algebras

cαβγ = εβγδm
δα + δαk aβ − δ

α
β aγ , α, β, γ = 1,2,3

Class Type m aα
A I 0 0
A II diag(1,0,0) 0
A VI−1 −α 0
A VII0 diag(−1,−1,0) 0
A VIII diag(−1,1,1) 0
A IX diag(1,1,1) 0

B III −1
2
α −1

2
δα3

B IV diag(1,0,0) −δα3
B V 0 −δα3
B VIh6=−1

1
2
(h− 1)α −1

2
(h+ 1)δα3

B VIIh=0 diag(−1,−1,0) + 1
2
hα −1

2
hδα3





Division of Real 3D Lie-Poisson Structures

Class A:

Type IX – Free rigid body, spin, ...

Type II – Heisenberg algebra

Type V III – Kida vortex of fluid mechanics

Class B: ?

Type VIh<−1 – Rattleback

Other B – ?

Casimir surfaces may not be algebraic varieties



Properties of 3D Lie-Poisson Structures

• Type VIh<−1 governs rattleback system of Moffat and Tokieda.

• Chirality comes from equilibria that live on the singular set.

• Such equilibria need not have Hamiltonian spectra.

Yoshida, Tokieda and pjm, Phys. Lett. A 381, 2772 (2017)

• Rank changing is responsible for the Casimir deficit problem.

Relationship to b-symplectic and presymplectic systems.



Regular and Singular Equilibria

Let z = ze + z̃, F = H + C , and expand

dz̃

dt
= J(ze)F

′′(ze)z̃ + J(z̃)h(ze)

where

h(ze) :=
∂F

∂z

∣∣∣∣
z=ze

∈ g ,
(
F ′′(ze)jk

)
:=

∂2F

∂zk∂zj

∣∣∣∣∣
z=ze

∈ Hom(g∗, g)

Regular Equlibria h(ze) = 0:

dz

dt
= J(ze)∂zHL HL =

1

2
〈F ′′(ze)z̃, z̃〉

Singular Equlibria J(ze):

dz

dt
= J(z̃)h(ze) = [h(ze), z̃]∗

Question: When is [h(ze), · ]∗ a Hamiltonian matrix? JH



Lie Algebra Deformation

Modified Observables:

{G,H}M = 〈[∂zG, ∂zH],Mz〉 = 〈∂zG, [∂z,Mz]∗〉 , M ∈ End(g∗)

Modified Bivector and Bracket:

JM(z) = J(Mz)

{G,H}M = 〈MT [∂zG, ∂zH], z〉 = 〈[∂zG, ∂zH]M , z〉 , M ∈ End(g)

Central Question: Is the Jacobi Identity satisfied?



Main Theorem for 3D

Theorem 1 (deformation of so(3)) Every 3-dimensional real Lie
bracket can be written as [ , ]M = MT[ , ]XI with M ∈ End(R3)
which is chosen from the following two classes:

1. class A: M is an arbitrary symmetric 3× 3 matrix.

2. class B: M = N⊕0 (N is an arbitrary asymmetric 2×2 matrix).

Accordingly, we have a unified representation of all 3-dimensional
Lie-Poisson brackets:

{G,H}M = 〈[∂ξG, ∂ξH]M , ξ〉 = 〈[∂ξG, ∂ξH]IX,Mξ〉. (1)

The corresponding Poisson operator is

JM(ξ) · = JIX(Mξ) · = [ · ,Mξ]∗IX = −(Mξ)× · . (2)

The singularity (where the rank of the Poisson operator becomes
zero) is

σ = KerM.



Higher Dimensions

Definition 1 (classification into A, B and C) Let g be an n-

dimensional real Lie algebra.

• If g is fully antisymmetric (i.e. the Lie bracket is given by fully

antisymmetric structure constants), or it is the deformation of

some fully antisymmetric Lie algebra by a symmetric matrix

M ∈ End(Rn), we say that g is class A.

• If g is the deformation of some fully antisymmetric Lie algebra

by an asymmetric matrix M ∈ End(Rn), we say that g is class

B.

• If g is neither class A nor class B, we say that g is class C.



Higher Dimensions

Theorem 2 (Hamiltonian spectral symmetry) Suppose that gM
is a real n-dimensional class-A Lie algebra endowed with a Lie

bracket [ , ]M = M [ , ]AS, where [ , ]AS is a fully antisymmetric

Lie bracket, and M ∈ End(Rn) is a symmetric matrix. Then, the

linearized generator

A = −[h,M · ]∗AS (h ∈ gM)

has Hamiltonian symmetric spectra. On the other hand, the lin-

earization of a class-B or class-C system has chiral (non-Hamiltonian)

spectra.



Other Material

• 4d Lie Algebras: 24 Real Lie algebras, 10 non-composites, none

semi-simple/compact. We examined all of them.

• Infinite Dimensions: Working on fluid and plasma field theories.

Yoshida and pjm: arXiv:2001.03744v1 [math-ph] 11 Jan 2020


