# Deformation of Lie-Poisson algebras and chiral non-Hamiltonian dynamics* 

P. J. Morrison<br>Department of Physics and Institute for Fusion Studies<br>The University of Texas at Austin<br>morrison@physics.utexas.edu<br>http://www.ph.utexas.edu/~morrison/<br>AMS Denver January 15, 2020

Investigation of strange behavior caused by singularities of Poisson manifolds.
*Collaborator: Zensho Yoshida, University of Tokyo arXiv:2001.03744v1 [math-ph] 11 Jan 2020

## Usual Symplectic Geometry

Dynamics takes place in phase space, $\mathcal{Z}$ (needn't be $T^{*} Q$ ), a differential manifold endowed with a closed, nondegenerate 2-form $\omega$. A patch has canonical coordinates $z=(q, p)$.

Hamiltonian dynamics $\Leftrightarrow$ flow on symplectic manifold: $i_{X} \omega=d H$
Poisson tensor ( $J_{c}$ ) is Hamiltonian bivector inverse of symplectic 2-form ( $\omega$ ), defining the Poisson bracket
$\{f, g\}=\left\langle d f, J_{c}(d g)\right\rangle=\omega\left(X_{f}, X_{g}\right)=\frac{\partial f}{\partial z^{\alpha}} J_{c}^{\alpha \beta} \frac{\partial g}{\partial z^{\beta}}, \quad \alpha, \beta=1,2, \ldots 2 N$
Flows generated by Hamiltonian vector fields $Z_{H}=J_{c} d H, H$ a 0form, $d H$ a 1-form. Poisson bracket $=$ commutator of Hamiltonian vector fields etc.

Early refs.: Jost, Mackey, Souriau, Arnold, Abraham \&Marsden

## Noncanonical Hamiltonian Definition

A phase space $\mathcal{P}$ diff. manifold with binary bracket operation on $C^{\infty}(\mathcal{P})$ functions $f, g: \mathcal{P} \rightarrow \mathbb{R}$, s.t. $\{\cdot, \cdot\}: C^{\infty}(\mathcal{P}) \times C^{\infty}(\mathcal{P}) \rightarrow$ $C^{\infty}(\mathcal{P})$ satisfies

- Bilinear: $\{f+\lambda g, h\}=\{f, h\}+\lambda\{g, h\}, \quad \forall f, g, h$ and $\lambda \in \mathbb{R}$
- Antisymmetric: $\{f, g\}=-\{g, f\}, \quad \forall f, g$
- Jacobi: $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{F, g\}\} \equiv 0, \quad \forall f, g, h$
- Leibniz: $\{f g, h\}=f\{g, h\}+\{f, h\} g, \quad \forall f, g, h$.

Above is a Lie algebra realization on functions. Take $f g$ to be pointwise multiplication.

Eqs. Motion: $\frac{\partial \Psi}{\partial t}=\{\Psi, H\}, \Psi$ an observable \& $H$ a Hamiltonian.
Example: flows on Poisson manifolds, e.g. Weinstein 1983 ....

## Noncanonical Hamiltonian Dynamics

Sophus Lie (1890)
Noncanonical Coordinates:
$\frac{d z^{\alpha}}{d t}=J^{\alpha \beta} \frac{\partial H}{\partial z^{\beta}}=\left\{z^{\alpha}, H\right\}, \quad\{f, g\}=\frac{\partial f}{\partial z^{\alpha}} J^{\alpha \beta}(z) \frac{\partial g}{\partial z^{\beta}}, \quad \alpha, \beta=1,2, \ldots M$
Poisson Bracket Properties:
antisymmetry $\longrightarrow \quad\{f, g\}=-\{g, f\}$,
Jacobi identity $\longrightarrow\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0$
G. Darboux: $\operatorname{det} J \neq 0 \Longrightarrow J \rightarrow J_{c}$ Canonical Coordinates Sophus Lie: $\operatorname{det} J=0 \Rightarrow$ Canonical Coordinates plus Casimirs

$$
J \rightarrow J_{d}=\left(\begin{array}{ccc}
0_{N} & I_{N} & 0 \\
-I_{N} & 0_{N} & 0 \\
0 & 0 & 0_{M-2 N}
\end{array}\right)
$$

## Flow on Poisson Manifold

Definition. A Poisson manifold $\mathcal{M}$ is differentiable manifold with bracket $\{\}:, C^{\infty}(\mathcal{M}) \times C^{\infty}(\mathcal{M}) \rightarrow C^{\infty}(\mathcal{M})$ st $C^{\infty}(\mathcal{M})$ with $\{$, is a Lie algebra realization, i.e., is i) bilinear, ii) antisymmetric, iii) Jacobi, and iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields, $Z_{H}=J d H$.

Because of degeneracy, $\exists$ functions $C$ st $\{f, C\}=0$ for all $f \in$ $C^{\infty}(\mathcal{M})$. Called Casimir invariants (Lie's distinguished functions.)

## Poisson Manifold $\mathcal{M}$ Cartoon

Degeneracy in $J \Rightarrow$ Casimirs:

$$
\{f, C\}=0 \quad \forall f: \mathcal{M} \rightarrow \mathbb{R}
$$

Lie-Darboux Foliation by Casimir (symplectic) leaves:


Leaf vector fields, $Z_{H}=\{z, H\}=J d H$ are tangent to leaves.

## Lie-Poisson Brackets

Coordinates:

$$
J^{\alpha \beta}=c_{\gamma}^{\alpha \beta} z^{\gamma}
$$

where $c_{\gamma}^{\alpha \beta}$ are the structure constants for some Lie algebra.
Examples:

- The 3-dimensional Bianchi algebras for the free rigid body, the Kida vortex, \& other?
- Many infinite-dimensional theories - matter models: Ideal fluid flow, MHD, shearflow, extended MHD, Vlasov-Maxwell, BBGKY, plethora of other plasma models, etc.


## Lie-Poisson Geometry

Lie Algebra: $\mathfrak{g}$, a vector space with

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}, \quad \operatorname{ad}_{\boldsymbol{v}} \cdot=[\boldsymbol{v}, \cdot]
$$

antisymmetric, bilinear, satisfies Jacobi identity

Pairing:

$$
\langle,\rangle: \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow \mathbb{R}, \quad \operatorname{ad}_{\boldsymbol{v}}^{*} \cdot=[\boldsymbol{v}, \cdot]^{*}
$$

with $\mathfrak{g}^{*}$ vector space dual to $\mathfrak{g}$

Lie-Poisson Bracket:

$$
\{f, g\}=\left\langle z,\left[\frac{\partial f}{\partial z}, \frac{\partial g}{\partial z}\right]\right\rangle, \quad z \in \mathfrak{g}^{*}, \frac{\partial f}{\partial z} \in \mathfrak{g}
$$

Dynamics:

$$
\frac{d z}{d t}=\operatorname{ad}_{\boldsymbol{v}}^{*} z=\left[\frac{\partial H}{\partial z}, z\right]^{*}, \quad \boldsymbol{v}=\frac{\partial H}{\partial z} \in \mathfrak{g}
$$

## Example: Rattleback

Tokieda Moffat system is Hamiltonian,

$$
\frac{d}{d t}\left(\begin{array}{c}
P \\
R \\
S
\end{array}\right)=\left(\begin{array}{c}
\alpha P S \\
-R S \\
R^{2}-\alpha P^{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & \alpha P \\
0 & 0 & -R \\
-\alpha P & R & 0
\end{array}\right)\left(\begin{array}{c}
\partial H / \partial P \\
\partial H / \partial R \\
\partial H / \partial S
\end{array}\right)
$$

$z=(P, R, S)$ with $P$ pitch, $R$ roll, and $S$ spin.

$$
H=\frac{1}{2}\left(P^{2}+R^{2}+S^{2}\right), \quad C=P R^{\alpha}
$$

where paramter $\alpha$ is aspect ratio.
Pairing between $\mathfrak{g}^{*}$ and $\mathfrak{g}$ yields the Lie-Poisson bracket:

$$
\{f, g\}=c_{\alpha}^{\beta \gamma} z^{\alpha} \frac{\partial f}{\partial z^{\beta}} \frac{\partial g}{\partial z^{\gamma}},
$$

where $c_{\alpha}^{\beta \gamma}$ are the structure constants for Bianchi Type $\mathrm{VI}_{h<-1}$.
Equilibrium $S_{e}$ has non-Hamiltonian spectrum: $\left(0, \alpha S_{e},-S_{e}\right)$

## Rattleback Orbits (All real 3D Lie-Poisson systems)

Orbits lie on intersection of Casimir leaves and energy surface. Singular equilibrium is at ( $R=P=0, S \neq 0$ ).


## All Real 3D Lie-Poisson Structures

Bianchi classification (cf. Jacobson) of real Lie algebras

$$
c_{\beta \gamma}^{\alpha}=\epsilon_{\beta \gamma \delta} m^{\delta \alpha}+\delta_{k}^{\alpha} a_{\beta}-\delta_{\beta}^{\alpha} a_{\gamma}, \quad \alpha, \beta, \gamma=1,2,3
$$

| Class | Type | $m$ | $a_{\alpha}$ |
| :--- | :--- | :--- | :--- |
| A | I | 0 | 0 |
| A | II $^{2}$ | $\operatorname{diag}(1,0,0)$ | 0 |
| A | VI $_{-1}$ | $-\alpha$ | 0 |
| A | VII $_{0}$ | $\operatorname{diag}(-1,-1,0)$ | 0 |
| A | VIII | $\operatorname{diag}(-1,1,1)$ | 0 |
| A | IX | $\operatorname{diag}(1,1,1)$ | 0 |
| B | III | $-\frac{1}{2} \alpha$ | $-\frac{1}{2} \delta_{3}^{\alpha}$ |
| B | IV | $\operatorname{diag}(1,0,0)$ | $-\delta_{3}^{\alpha}$ |
| B | V | 0 | $-\delta_{3}^{\alpha}$ |
| B | $\mathrm{VI}_{h \neq-1}$ | $\frac{1}{2}(h-1) \alpha$ | $-\frac{1}{2}(h+1) \delta_{3}^{\alpha}$ |
| B | $\mathrm{VII}_{h=0}$ | $\operatorname{diag}(-1,-1,0)+\frac{1}{2} h \alpha$ | $-\frac{1}{2} h \delta_{3}^{\alpha}$ |



## Division of Real 3D Lie-Poisson Structures

Class A:
Type $I X \quad-\quad$ Free rigid body, spin, ...
Type II - Heisenberg algebra
Type VIII - Kida vortex of fluid mechanics

Class B: ?
Type $\mathrm{VI}_{h<-1} \quad-\quad$ Rattleback
Other B - ?

Casimir surfaces may not be algebraic varieties

## Properties of 3D Lie-Poisson Structures

- Type $\mathrm{VI}_{h<-1}$ governs rattleback system of Moffat and Tokieda.
- Chirality comes from equilibria that live on the singular set.
- Such equilibria need not have Hamiltonian spectra.

Yoshida, Tokieda and pjm, Phys. Lett. A 381, 2772 (2017)

- Rank changing is responsible for the Casimir deficit problem.

Relationship to b-symplectic and presymplectic systems.

## Regular and Singular Equilibria

Let $z=z_{e}+\tilde{z}, F=H+C$, and expand

$$
\frac{d \tilde{z}}{d t}=J\left(z_{e}\right) F^{\prime \prime}\left(z_{e}\right) \tilde{z}+J(\tilde{z}) h\left(z_{e}\right)
$$

where
$h\left(z_{e}\right):=\left.\frac{\partial F}{\partial z}\right|_{z=z_{e}} \in \mathfrak{g}, \quad\left(F^{\prime \prime}\left(z_{e}\right)_{j k}\right):=\left.\frac{\partial^{2} F}{\partial z^{k} \partial z^{j}}\right|_{z=z_{e}} \in \operatorname{Hom}(\mathfrak{g} *, \mathfrak{g})$
Regular Equlibria $h\left(z_{e}\right)=0$ :

$$
\frac{d z}{d t}=J\left(z_{e}\right) \partial_{z} H_{L} \quad H_{L}=\frac{1}{2}\left\langle F^{\prime \prime}\left(z_{e}\right) \tilde{z}, \tilde{z}\right\rangle
$$

Singular Equlibria $J\left(z_{e}\right)$ :

$$
\frac{d z}{d t}=J(\tilde{z}) h\left(z_{e}\right)=\left[h\left(z_{e}\right), \tilde{z}\right]^{*}
$$

Question: When is $\left[h\left(z_{e}\right), \cdot\right]^{*}$ a Hamiltonian matrix? $J \mathcal{H}$

## Lie Algebra Deformation

Modified Observables:

$$
\{G, H\}_{M}=\left\langle\left[\partial_{z} G, \partial_{z} H\right], M z\right\rangle=\left\langle\partial_{z} G,\left[\partial_{z}, M z\right]^{*}\right\rangle, \quad M \in \operatorname{End}\left(\mathfrak{g}^{*}\right)
$$

Modified Bivector and Bracket:

$$
\begin{aligned}
& J_{M}(z)=J(M z) \\
& \{G, H\}_{M}=\left\langle M^{T}\left[\partial_{z} G, \partial_{z} H\right], z\right\rangle=\left\langle\left[\partial_{z} G, \partial_{z} H\right]_{M}, z\right\rangle, \quad M \in \operatorname{End}(\mathfrak{g})
\end{aligned}
$$

Central Question: Is the Jacobi Identity satisfied?

## Main Theorem for 3D

Theorem 1 (deformation of $\mathfrak{s o ( 3 ) )}$ Every 3-dimensional real Lie bracket can be written as $[,]_{M}=M^{\top}[,]_{X I}$ with $M \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ which is chosen from the following two classes:

1. class $A: M$ is an arbitrary symmetric $3 \times 3$ matrix.
2. class $B: M=N \oplus 0$ ( $N$ is an arbitrary asymmetric $2 \times 2$ matrix).

Accordingly, we have a unified representation of all 3-dimensional Lie-Poisson brackets:

$$
\begin{equation*}
\{G, H\}_{M}=\left\langle\left[\partial_{\xi} G, \partial_{\xi} H\right]_{M}, \boldsymbol{\xi}\right\rangle=\left\langle\left[\partial_{\xi} G, \partial_{\xi} H\right]_{\mathrm{IX}}, M \boldsymbol{\xi}\right\rangle \tag{1}
\end{equation*}
$$

The corresponding Poisson operator is

$$
\begin{equation*}
J_{M}(\boldsymbol{\xi}) \cdot=J_{\mathrm{IX}}(M \boldsymbol{\xi}) \cdot=[\cdot, M \boldsymbol{\xi}]_{\mathrm{IX}}^{*}=-(M \boldsymbol{\xi}) \times \cdot \tag{2}
\end{equation*}
$$

The singularity (where the rank of the Poisson operator becomes zero) is

$$
\sigma=\operatorname{Ker} M
$$

## Higher Dimensions

Definition 1 (classification into $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$ ) Let $\mathfrak{g}$ be an $n$ dimensional real Lie algebra.

- If $\mathfrak{g}$ is fully antisymmetric (i.e. the Lie bracket is given by fully antisymmetric structure constants), or it is the deformation of some fully antisymmetric Lie algebra by a symmetric matrix $M \in \operatorname{End}\left(\mathbb{R}^{n}\right)$, we say that $\mathfrak{g}$ is class $A$.
- If $\mathfrak{g}$ is the deformation of some fully antisymmetric Lie algebra by an asymmetric matrix $M \in \operatorname{End}\left(\mathbb{R}^{n}\right)$, we say that $\mathfrak{g}$ is class $B$.
- If $\mathfrak{g}$ is neither class $A$ nor class $B$, we say that $\mathfrak{g}$ is class $C$.


## Higher Dimensions

Theorem 2 (Hamiltonian spectral symmetry) Suppose that $\mathfrak{g}_{M}$ is a real n-dimensional class-A Lie algebra endowed with a Lie bracket $[,]_{M}=M[,]_{\mathrm{AS}}$, where $[,]_{\mathrm{AS}}$ is a fully antisymmetric Lie bracket, and $M \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ is a symmetric matrix. Then, the linearized generator

$$
\mathcal{A}=-[\boldsymbol{h}, M \cdot]_{\mathrm{AS}}^{*} \quad\left(\boldsymbol{h} \in \mathfrak{g}_{M}\right)
$$

has Hamiltonian symmetric spectra. On the other hand, the linearization of a class-B or class-C system has chiral (non-Hamiltonian) spectra.

## Other Material

- 4d Lie Algebras: 24 Real Lie algebras, 10 non-composites, none semi-simple/compact. We examined all of them.
- Infinite Dimensions: Working on fluid and plasma field theories.

Yoshida and pjm: arXiv:2001.03744v1 [math-ph] 11 Jan 2020

