Deformation of Lie-Poisson algebras and chiral non-Hamiltonian dynamics*

P. J. Morrison

Department of Physics and Institute for Fusion Studies The University of Texas at Austin

morrison@physics.utexas.edu
http://www.ph.utexas.edu/~morrison/

AMS Denver January 15, 2020

Investigation of strange behavior caused by singularities of Poisson manifolds.

*Collaborator: Zensho Yoshida, University of Tokyo arXiv:2001.03744v1 [math-ph] 11 Jan 2020

Usual Symplectic Geometry

Dynamics takes place in phase space, \mathcal{Z} (needn't be T^*Q), a differential manifold endowed with a closed, nondegenerate 2-form ω . A patch has canonical coordinates z = (q, p).

Hamiltonian dynamics \Leftrightarrow flow on symplectic manifold: $i_X \omega = dH$

Poisson tensor (J_c) is Hamiltonian bivector inverse of symplectic 2-form (ω) , defining the Poisson bracket

$$\{f,g\} = \langle df, J_c(dg) \rangle = \omega(X_f, X_g) = \frac{\partial f}{\partial z^{\alpha}} J_c^{\alpha\beta} \frac{\partial g}{\partial z^{\beta}}, \quad \alpha, \beta = 1, 2, \dots 2N$$

Flows generated by Hamiltonian vector fields $Z_H = J_c dH$, H a 0form, dH a 1-form. Poisson bracket = commutator of Hamiltonian vector fields etc.

Early refs.: Jost, Mackey, Souriau, Arnold, Abraham & Marsden

Noncanonical Hamiltonian Definition

A phase space \mathcal{P} diff. manifold with binary bracket operation on $C^{\infty}(\mathcal{P})$ functions $f, g: \mathcal{P} \to \mathbb{R}$, s.t. $\{\cdot, \cdot\}: C^{\infty}(\mathcal{P}) \times C^{\infty}(\mathcal{P}) \to C^{\infty}(\mathcal{P})$ satisfies

- Bilinear: $\{f + \lambda g, h\} = \{f, h\} + \lambda \{g, h\}, \quad \forall f, g, h \text{ and } \lambda \in \mathbb{R}$
- Antisymmetric: $\{f,g\} = -\{g,f\}, \quad \forall f,g$
- Jacobi: $\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{F, g\}\} \equiv 0, \quad \forall f, g, h$
- Leibniz: $\{fg,h\} = f\{g,h\} + \{f,h\}g$, $\forall f,g,h$.

Above is a Lie algebra realization on functions. Take fg to be pointwise multiplication.

Eqs. Motion: $\frac{\partial \Psi}{\partial t} = \{\Psi, H\}$, Ψ an observable & H a Hamiltonian. Example: flows on Poisson manifolds, e.g. Weinstein 1983

Noncanonical Hamiltonian Dynamics

Sophus Lie (1890)

Noncanonical Coordinates:

$$\frac{dz^{\alpha}}{dt} = J^{\alpha\beta} \frac{\partial H}{\partial z^{\beta}} = \{z^{\alpha}, H\}, \quad \{f, g\} = \frac{\partial f}{\partial z^{\alpha}} J^{\alpha\beta}(z) \frac{\partial g}{\partial z^{\beta}}, \quad \alpha, \beta = 1, 2, \dots M$$

Poisson Bracket Properties:

antisymmetry $\longrightarrow \{f, g\} = -\{g, f\},\$

Jacobi identity $\longrightarrow \{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$

G. Darboux: $det J \neq 0 \implies J \rightarrow J_c$ Canonical Coordinates Sophus Lie: $det J = 0 \implies$ Canonical Coordinates plus <u>Casimirs</u>

$$J \to J_d = \begin{pmatrix} 0_N & I_N & 0\\ -I_N & 0_N & 0\\ 0 & 0 & 0_{M-2N} \end{pmatrix}$$

Flow on Poisson Manifold

Definition. A Poisson manifold \mathcal{M} is differentiable manifold with bracket $\{,\}: C^{\infty}(\mathcal{M}) \times C^{\infty}(\mathcal{M}) \to C^{\infty}(\mathcal{M})$ st $C^{\infty}(\mathcal{M})$ with $\{,\}$ is a Lie algebra realization, i.e., is i) bilinear, ii) antisymmetric, iii) Jacobi, and iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields, $Z_H = JdH$.

Because of degeneracy, \exists functions C st $\{f, C\} = 0$ for all $f \in C^{\infty}(\mathcal{M})$. Called Casimir invariants (Lie's distinguished functions.)

Poisson Manifold \mathcal{M} Cartoon

Degeneracy in $J \Rightarrow$ Casimirs:

$$\{f, C\} = 0 \quad \forall \ f : \mathcal{M} \to \mathbb{R}$$

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Leaf vector fields, $Z_H = \{z, H\} = JdH$ are tangent to leaves.

Lie-Poisson Brackets

Coordinates:

$$J^{\alpha\beta} = c_{\gamma}^{\alpha\beta} z^{\gamma}$$

where $c_{\gamma}^{\alpha\beta}$ are the structure constants for some Lie algebra. Examples:

• The 3-dimensional Bianchi algebras for the free rigid body, the Kida vortex, & other?

• Many infinite-dimensional theories - matter models: Ideal fluid flow, MHD, shearflow, extended MHD, Vlasov-Maxwell, BBGKY, plethora of other plasma models, etc.

Lie-Poisson Geometry

Lie Algebra: \mathfrak{g} , a vector space with $[,]:\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}, \quad \operatorname{ad}_{v} \cdot = [v, \cdot]$ antisymmetric, bilinear, satisfies Jacobi identity Pairing:

$$\langle \ , \ \rangle : \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R} \,, \qquad \operatorname{ad}_{\boldsymbol{v}}^* \cdot = [\boldsymbol{v}, \cdot \,]^*$$

with \mathfrak{g}^* vector space dual to \mathfrak{g}

Lie-Poisson Bracket:

$$\{f,g\} = \left\langle z, \left[\frac{\partial f}{\partial z}, \frac{\partial g}{\partial z}\right] \right\rangle, \qquad z \in \mathfrak{g}^*, \ \frac{\partial f}{\partial z} \in \mathfrak{g}$$

Dynamics:

$$\frac{dz}{dt} = \operatorname{ad}_{\boldsymbol{v}}^* z = \left[\frac{\partial H}{\partial z}, z\right]^*, \qquad \boldsymbol{v} = \frac{\partial H}{\partial z} \in \mathfrak{g}$$

Example: Rattleback

Tokieda Moffat system is Hamiltonian,

$$\frac{d}{dt} \begin{pmatrix} P \\ R \\ S \end{pmatrix} = \begin{pmatrix} \alpha PS \\ -RS \\ R^2 - \alpha P^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \alpha P \\ 0 & 0 & -R \\ -\alpha P & R & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial H}{\partial P} \\ \frac{\partial H}{\partial R} \\ \frac{\partial H}{\partial S} \end{pmatrix}$$

z = (P, R, S) with P pitch, R roll, and S spin.

$$H = \frac{1}{2}(P^2 + R^2 + S^2), \qquad C = PR^{\alpha}$$

where paramter α is aspect ratio.

<u>Pairing</u> between \mathfrak{g}^* and \mathfrak{g} yields the <u>Lie-Poisson bracket</u>:

$$\{f,g\} = c_{\alpha}^{\beta\gamma} z^{\alpha} \frac{\partial f}{\partial z^{\beta}} \frac{\partial g}{\partial z^{\gamma}},$$

where $c_{\alpha}^{\beta\gamma}$ are the structure constants for Bianchi Type VI_{h<-1}.

Equilibrium S_e has non-Hamiltonian spectrum: $(0, \alpha S_e, -S_e)$

Rattleback Orbits (All real 3D Lie-Poisson systems)

Orbits lie on intersection of Casimir leaves and energy surface. Singular equilibrium is at $(R = P = 0, S \neq 0)$.

All Real 3D Lie-Poisson Structures

Bianchi classification (cf. Jacobson) of real Lie algebras

$$c^{\alpha}_{\beta\gamma} = \epsilon_{\beta\gamma\delta} m^{\delta\alpha} + \delta^{\alpha}_k a_{\beta} - \delta^{\alpha}_{\beta} a_{\gamma}, \quad \alpha, \beta, \gamma = 1, 2, 3$$

Class	Туре	m	a_{lpha}
A	Ι	0	0
A	II	diag(1, 0, 0)	0
A	VI ₋₁	$-\alpha$	0
A	VII ₀	diag(-1, -1, 0)	0
A	VIII	diag(-1,1,1)	0
А	IX	diag(1, 1, 1)	0
В	III	$-\frac{1}{2}\alpha$	$-\frac{1}{2}\delta_3^{lpha}$
В	IV	diag(1,0,0)	$-\overline{\delta_3^{lpha}}$
В	V	0	$-\delta_3^{lpha}$
В	$VI_{h\neq -1}$	$\frac{1}{2}(h-1)lpha$	$-rac{1}{2}(h+1)\delta_3^lpha$
В	$VII_{h=0}$	$\overline{diag(-1,-1,0)} + \frac{1}{2}h\alpha$	$-\frac{1}{2}h\delta_3^{lpha}$

Division of Real 3D Lie-Poisson Structures

Class A:		
Type IX	_	Free rigid body, spin,
Type II	—	Heisenberg algebra
Type VIII	_	Kida vortex of fluid mechanics
<u>Class B</u> : ?		
Type VI $_{h<-1}$		– Rattleback
Other B		- ?

Casimir surfaces may not be algebraic varieties

Properties of 3D Lie-Poisson Structures

• Type $VI_{h<-1}$ governs rattleback system of Moffat and Tokieda.

• Chirality comes from equilibria that live on the singular set.

- Such equilibria need not have Hamiltonian spectra.
- Yoshida, Tokieda and pjm, Phys. Lett. A 381, 2772 (2017)
- Rank changing is responsible for the Casimir deficit problem.

Relationship to b-symplectic and presymplectic systems.

Regular and Singular Equilibria

Let
$$z = z_e + \tilde{z}$$
, $F = H + C$, and expand

$$\frac{d\tilde{z}}{dt} = J(z_e)F''(z_e)\tilde{z} + J(\tilde{z})h(z_e)$$

where

$$h(z_e) := \frac{\partial F}{\partial z}\Big|_{z=z_e} \in \mathfrak{g}, \qquad \left(F''(z_e)_{jk}\right) := \frac{\partial^2 F}{\partial z^k \partial z^j}\Big|_{z=z_e} \in \operatorname{Hom}(\mathfrak{g}_*, \mathfrak{g})$$

Regular Equibria $h(z_e) = 0$:

$$\frac{dz}{dt} = J(z_e)\partial_z H_L \qquad H_L = \frac{1}{2} \langle F''(z_e)\tilde{z}, \tilde{z} \rangle$$

Singular Equilbria $J(z_e)$:

$$\frac{dz}{dt} = J(\tilde{z})h(z_e) = [h(z_e), \tilde{z}]^*$$

Question: When is $[h(z_e), \cdot]^*$ a Hamiltonian matrix? JH

Lie Algebra Deformation

Modified Observables:

$$\{G,H\}_M = \langle [\partial_z G, \partial_z H], Mz \rangle = \langle \partial_z G, [\partial_z, Mz]^* \rangle, \qquad M \in \mathsf{End}(\mathfrak{g}^*)$$

Modified Bivector and Bracket:

$$J_M(z) = J(Mz)$$

 $\{G,H\}_M = \langle M^T[\partial_z G, \partial_z H], z \rangle = \langle [\partial_z G, \partial_z H]_M, z \rangle, \qquad M \in \mathsf{End}(\mathfrak{g})$

Central Question: Is the Jacobi Identity satisfied?

Main Theorem for 3D

Theorem 1 (deformation of $\mathfrak{so}(3)$) Every 3-dimensional real Lie bracket can be written as $[,]_M = M^{\mathsf{T}}[,]_{\mathsf{XI}}$ with $M \in \mathsf{End}(\mathbb{R}^3)$ which is chosen from the following two classes:

1. class A: M is an arbitrary symmetric 3×3 matrix.

2. class B: $M = N \oplus 0$ (N is an arbitrary asymmetric 2×2 matrix).

Accordingly, we have a unified representation of all 3-dimensional Lie-Poisson brackets:

$$\{G,H\}_M = \langle [\partial_{\boldsymbol{\xi}} G, \partial_{\boldsymbol{\xi}} H]_M, \boldsymbol{\xi} \rangle = \langle [\partial_{\boldsymbol{\xi}} G, \partial_{\boldsymbol{\xi}} H]_{\mathrm{IX}}, M \boldsymbol{\xi} \rangle.$$
(1)

The corresponding Poisson operator is

$$J_M(\boldsymbol{\xi}) \cdot = J_{\mathrm{IX}}(M\boldsymbol{\xi}) \cdot = [\cdot, M\boldsymbol{\xi}]_{\mathrm{IX}}^* = -(M\boldsymbol{\xi}) \times \cdot.$$
 (2)

The singularity (where the rank of the Poisson operator becomes zero) is

$$\sigma = \operatorname{Ker} M.$$

Higher Dimensions

Definition 1 (classification into A, B and C) Let \mathfrak{g} be an *n*-dimensional real Lie algebra.

- If \mathfrak{g} is fully antisymmetric (i.e. the Lie bracket is given by fully antisymmetric structure constants), or it is the deformation of some fully antisymmetric Lie algebra by a symmetric matrix $M \in \operatorname{End}(\mathbb{R}^n)$, we say that \mathfrak{g} is class A.
- If \mathfrak{g} is the deformation of some fully antisymmetric Lie algebra by an asymmetric matrix $M \in \text{End}(\mathbb{R}^n)$, we say that \mathfrak{g} is class B.
- If \mathfrak{g} is neither class A nor class B, we say that \mathfrak{g} is class C.

Higher Dimensions

Theorem 2 (Hamiltonian spectral symmetry) Suppose that \mathfrak{g}_M is a real *n*-dimensional class-A Lie algebra endowed with a Lie bracket $[,]_M = M[,]_{AS}$, where $[,]_{AS}$ is a fully antisymmetric Lie bracket, and $M \in \text{End}(\mathbb{R}^n)$ is a symmetric matrix. Then, the linearized generator

$$\mathcal{A} = -[h, M \cdot]^*_{\mathsf{AS}} \quad (h \in \mathfrak{g}_M)$$

has Hamiltonian symmetric spectra. On the other hand, the linearization of a class-B or class-C system has chiral (non-Hamiltonian) spectra.

Other Material

- <u>4d Lie Algebras</u>: 24 Real Lie algebras, 10 non-composites, none semi-simple/compact. We examined all of them.
- Infinite Dimensions: Working on fluid and plasma field theories.

Yoshida and pjm: arXiv:2001.03744v1 [math-ph] 11 Jan 2020