

Transport \& Mixing of Tracers: An, Overview
Biased

* Kinematic Transport
* Realistic Transport ξ mixing

Reviews: Aref et al. 2017
Thiffeast 2012

See Bibliography

Three Pillars of Kinematic Transport

1) The Arena

Ocean, Atmosphere, Toramak, Solar wind, Accretion Disc, Blood Vessel
$\mathbb{R}^{n}, n \in \mathbb{Z}$, domain $D \subset \mathbb{R}^{n}$ domain of fluid $n=2,3$
differentiable manifold of any dim.
phase space $T^{*} Q$ w/ can. coonds (q, p)
Symplectic mánifold, Poisson manifold
General manifold w/ boundary
M any manifold $\omega /$ coords. $\left(z_{1}^{1}, z_{1}^{2} \cdots z^{n}\right)=z$
Types: open vs. closed pipe flow vs. Taylor-Covette
2) The Cargo
neutrally buogant ptle, dye, entrop/mass, mass devisity, vorticity, magnetic flux phase space density,...
Differential Forms:
o-form
1-form
z -form
3-form
n - form
entrops/mass
magnetic flux in MHD
fluid volume

Attributes of Lagrangian fluid elements
phase space den of Vlasov for $n=6$
Any Tensor field on M:

$$
\stackrel{\circ}{T}(z) \rightarrow T(z, t)
$$

meaning of transport
3) The Transporter

Often fluid vel. field in dim 2 on 3
phase space dynamics, Vlasov
Vector field on M in coords

$$
\begin{aligned}
& V^{i}(z) \text { or } V^{i}(z, t) \quad i=1,2, \ldots n \rightarrow i=1,2, \ldots, n+1 \\
& \frac{d z^{i}}{d t}=V^{i}(z) \quad \Rightarrow \quad z_{t}=\phi_{t} \dot{z}^{0} \quad \Leftrightarrow z^{i}=z^{i}\left(\frac{0}{z}, t\right) \\
& \text { Flow } \\
& \phi_{t} \cdot \phi_{-t}=I d \quad \Rightarrow \quad \phi_{-t^{0}} \phi_{t} z^{0}=\phi_{-t} z_{z}=z \\
& \text { Integral curves } \\
& \text { 1- parameter } \\
& \text { Abeliain group } \Rightarrow \text { transport wto } \\
& \text { mixing }
\end{aligned}
$$

Sone vector fields:
2D incompressible Euler $v=\left(\frac{\partial \psi}{\partial y},-\frac{\partial \psi}{\partial x}\right)$
NC Hamiltonian Vector field
Poisson bracket $\{,\} \quad V^{i}=J^{i j} \frac{\partial H}{\partial z^{i}}=\left\{z^{i}, H\right\}$
$\{\}:, C^{\infty}(m) \times C^{\infty}(m) \longrightarrow C^{\infty}(M)$, bilinear, autisym.
$\&$ Jacobi identity $\{f,\{g, n\}\}+\} \equiv 0$
Canonical Hamiltonian Vector field

$$
J_{c}=\left[\begin{array}{cc}
O_{n} & I_{n} \\
-I_{n} & O_{n}
\end{array}\right] \quad \text { e.j. 2D Euler }
$$

Kinematic Transport is Lie Dragging!
Arena any manifold, M
Cargo any tensor field, T
Transporter any vector field, V
$\frac{\partial T}{\partial t}+\dot{L}_{v} T=0 \quad$ Basic Equation
\mathcal{L}_{v} is the Lie derivative Yano 1957 along $V \in X(M)$ etc.

Why Lie Dragging?
Example 1 P a 3-form on 3D domain of fluid, D.

Consider arbitrary $\triangle C D$, a subvolume

$$
M_{\Delta}(t)=\int_{\Delta(t)} p(x, t) d^{3} x \quad \text { mass of fluid }
$$

Assume Δ moves w/ fluid velocity ξ

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+f_{v} \rho=0 \Rightarrow \\
& \frac{d M_{\Delta}}{d t}=0
\end{aligned}
$$

Example 2 Kinematic Dynamo

$$
\begin{aligned}
\frac{\partial B}{\partial t}=-\nabla \times E=\nabla \times(v \times B) & =-v \cdot \nabla B+B \cdot \nabla v-B \nabla \cdot v \\
=-f_{v} B \quad & B \text { is a vector density } \\
& \Leftrightarrow 2 \text {-form }
\end{aligned}
$$

D) 3 dim domain
S arbitrary 2 dim surface
$B \cdot d^{2} x$ mag. flux through - in finitesimal area

Alfven's Frozen-in Flux

$$
\frac{d \Phi_{s}}{d t}(t)=\int_{s} B \cdot d^{2} x=0
$$

Example 3 Liouville's Equation on $6 n$ dim phase space $z_{\alpha}=\left(q_{\alpha}, p_{\alpha}\right)$ for pile α
Phase space prob. density for $\alpha=1,2$,..n interacting piles

$$
\begin{aligned}
& F\left(z_{1}, z_{2}, \ldots z_{n}\right) \\
& \frac{\partial F}{\partial t}+f_{v} F=0
\end{aligned}
$$

V is a Ham. vector field

$$
\begin{aligned}
V \cdot & =\{\cdot, h\} \\
h & =\sum_{\alpha} \frac{\left|P_{\alpha}\right|^{2}}{2 m_{\alpha}}+\frac{1}{2} \sum_{\alpha, \beta} \phi_{\alpha \beta}\left(z_{\alpha}, z_{\beta}\right)
\end{aligned}
$$

Self-Consistent Transport - Hamiltomain Mean Field Theories

$$
\begin{array}{r}
H=\int h_{1}(z) f(z, t) d^{m} z+\frac{1}{2} \iint h_{2}\left(z, z^{\prime}\right) f(z, t) f\left(z^{\prime} t\right) d^{n} z d^{n} z^{\prime} \\
\quad+\cdots \\
\frac{\partial f}{\partial t}+\left\{f, \frac{\delta H}{\delta f}\right\}=0, \quad \frac{\delta H}{\delta f}=h_{1}+\int h_{2} f d z^{\prime}
\end{array}
$$

variational derivative

$$
\frac{\partial f}{\partial t}+\dot{z}_{J d H} f=0
$$

Lie dragging by a Ham. vector field depending on f !

Tennyson et al. 1994 P Jo 2003

Why Lie dragging?
Assures important physical quantity conserved along integral curves.
\Longrightarrow
Kinematic Transport meets Dynamical Systems Theory

$$
\begin{aligned}
& \text { Yet } \dot{z}=v(z) \\
& \dot{z}=\phi_{-t} 0 \phi_{t} \dot{z}=\phi_{-t} z_{t} \\
& \Rightarrow \quad \square \text { mixed }
\end{aligned}
$$

Dynamical Systems Theory - Phase Space Structures

* Periodic Orbits
stable elliptic), unstable (hyperbolic)
* Quasi periodic orbits
e.9. affracting π^{2}
* Invariant sets

Barriers to transport; exact or sticky regions
Cantor sets - strange attractors

* Regions of chaos, ergodicity, invariant measures

Tools - Fast Indicators

Lyapunov Exponent: Calculation technique Benettin et al 1980 experimental technique Wolf et al. 1985
FTLE Froeschle et al. 1997
FTLE as indicator of transport Holler $2000 \rightarrow$ others (celestial mech.): Lekien et al. 2007

Small alignment index (SALI) steokos et al 2007 General alignment index (GALI)
mean exp. growth of nearby orbits (MEGNO) Cinotta 2000
Frequency Methods: Lasker et all 1992
Finite Time Rotation Number: Szezech et al. 2013; Sander et al. FTRN "dual" to FTLE - integrability vs. chaos

Fig. 1. (Color online.) (a) Time-4T Lyapunov exponent and (b) time-4T rotation number for the double gyre system, with period $T=10$, amplitude $A=0.1$ and forcing strength $\epsilon=0.25$. (c) and (d) depict the Lagrangian coherent structures corresponding to ridges of (a) and (b), respectively.

Modelling wo Symplectic Maps
Example: Standard Map - generic near elliptic periodic orbit
Charged pole. in E-field $\quad m \ddot{x}=e E(x, t)$

$$
\begin{aligned}
E=E_{1} e^{i k_{1} x-i \omega_{1} t}+E_{2} e^{i k_{2} x-i \omega_{2} t}+\cdots \\
E_{1}=E_{2}=\cdots \quad \text { scaling } \Rightarrow H=\frac{p^{2}}{2}+i \sin q \sum_{n \in \mathbb{R}} \delta\left(t-\pi_{n}\right)
\end{aligned}
$$

Standard Map:

$$
q_{n+1}=q_{n}+p_{n+1} ; \quad p_{n+1}=p_{n}-\frac{k}{2 \pi} \sin \left(2 \pi q_{n}\right)
$$

Invariant Circles are exact barriers to transport
KAM limit, Poincare-Birkhoff Thm, Island Overlap, Greene's Method, Renormalization \& scaling.
del-Castillo-Negrete et al. 1992 Nontwist Pumped rotating annulus on β-plane

Fig. 11. - a) Streak photograph of an eastward jet generated in a slowly decelerating tank by pumping only through the middle ring of ports, which alternate as sources and sinks (acceleration rate $=0.013 \mathrm{rad} / \mathrm{s}^{2}, F=137 \mathrm{~cm}^{3} / \mathrm{s}, \Omega=25.1 \mathrm{rad} / \mathrm{s}$, exposure time $=1 / 4 \mathrm{~s}$). b) An eastward jet generated by pumping through three consecutive radial pairs of sources (at $r=35.1 \mathrm{~cm})$ and sinks (at $r=27.0 \mathrm{~cm})\left(\Omega=12.6 \mathrm{rad} / \mathrm{s}, F=200 \mathrm{~cm}^{3} / \mathrm{s}\right)$. Here the dye is injected on the inner side of the jet, filling the region of quasi-uniform q; there is only weak mixing across the center of the jet.

Zonal Flow \Rightarrow Nontwist $\Leftrightarrow \exists$ shearless Torus
del-Castillo-Negrete \& PJM 1992, 1993
Moser twist condition - further UP \Rightarrow further over

Precursors:
J. Howard
J. Weiss

Large literature Apte, Furn, Fuchs ... Viana 2021 Javier Beron-Vera today!

Behavior not captured by the standard Map!
Standard Nontwist Map

$$
q_{n+1}=q_{n}+a\left(1-p_{n+1}^{2}\right) ; p_{n+1}=p_{n}-b \sin q_{n}
$$

generic behavior of shearless tori

* nonstandard bifurcations
* nonstandard renormalization
* Broken Shearless Tori are sticky!

Realistic Partide Transport and Mixing
$\dot{z}=\phi_{u t} \cdot \phi_{t}=\dot{z} \quad$ Broken! How?
If \exists stretching ξ contracting directions \Rightarrow

Generation of fine scales

$$
\frac{\partial S}{\partial t}+v \cdot \nabla S=N \nabla^{2} S
$$

$\underset{\text { someones } \#}{\ngtr \text { Gets activated }} \underset{\text { on fine scales }}{ } \Rightarrow$ mixing
\exists measures of mixing on fine scales
other Possibilities

* collisional Kinetic theory

$$
\left.\frac{\partial f}{\partial t}+\left\{\frac{\delta H}{\delta f}, f\right\}=\frac{\partial f}{\partial t}\right\}_{c}
$$

* Damping \&́ Driving

$$
\frac{\partial s}{\partial t}+v \cdot \nabla s=D+\underset{K}{s}(s, x, t)
$$

Intentional vs. "Natural"

Natural: midlatitude ozone \rightarrow ozone hole, impüntiés in toleamak,

Intentional: diagnostic dye, Barium, neutrally buoyant pttes (PIV)

Particle Entrainonent Weeles 1997

Pile. (PIV, pollutant, mid latitude ozone,...) in vel. field. moves $w /$ fluid: $v_{p}=v_{f}$? Approx.
 $m_{f}=\frac{4}{3} \pi a^{3} p$

$$
\begin{aligned}
& +m_{f} \frac{d v_{f}}{d t} \text { pressure, viscous stresses } \\
& +\frac{1}{2} m_{f}\left(\frac{d v_{f}}{d t}-\frac{d v o}{d t}\right) \text { added mass } \\
& +6 a^{2} p \sqrt{\pi v} \int_{0}^{t} \frac{d / d r\left(v_{f}-v_{p}\right)}{\sqrt{t-r}} d r \quad \text { Basset history } \\
& +\left(m-m_{f}\right) F \quad \text { buoyancy, centripetal }
\end{aligned}
$$

That's All Foles!

BIBLIOGRAPHY FOR P. J. MORRISON ACP TALK 210601

Reviews with real mixing: [1-5]
Some Hamiltonian background: [3]
Lie derivatives: $[4,5]$
Hamiltonian mean field theories: $[6,7]$
Lyapunov exponents and fast indicators:
Famous papers on Lyapunov exponents: calculation [8] experiment [9]
Finite-time Lyapunov exponents (FTLE): [10]
Lagrangian Coherent Structures:
Based on FTLE: [11-14] and many newer papers by Haller
Based on Fast Indicators from celestial mechanics:
Small Alignment Index (SALI) and Generalized Alignment Index (GALI) [15]
Mean Exponential Growth of Nearby Orbits (MEGNO) [16]
Frequency Methods: [17]
Finite time rotation number (FTRN): [18, 19]
Swinney's Rotation Annulus: [20]
Zonal Flows have Shearless Tori/Standard Nontwist Map: [21-24]
Some later work on Shearless Tori/Standard Nontwist Map: [18, 19, 25-30]
Earlier nontwist maps: [31, 32]
Maxey - Riley equation discussion: [33]
[1] Hassan Aref, John R. Blake, Marko Budišić, Silvana S. S. Cardoso, Julyan H. E. Cartwright, Herman J. H. Clercx, Kamal El Omari, Ulrike Feudel, Ramin Golestanian, Emmanuelle Gouillart, GertJan F. van Heijst, Tatyana S. Krasnopolskaya, Yves Le Guer, Robert S. MacKay, Vyacheslav V. Meleshko, Guy Metcalfe, Igor Mezić, Alessandro P. S. de Moura, Oreste Piro, Michel F. M. Speetjens, Rob Sturman, Jean-Luc Thiffeault, and Idan Tuval. Frontiers of chaotic advection. Rev. Mod. Phys., 89:025007 (66 pages), 2017.
[2] J.-L. Thiffeault. Using multiscale norms to quantify mixing and transport. Nonlinearity, 25:R1-R44, 2012.
[3] P. J. Morrison. Hamiltonian description of the ideal fluid. Rev. Mod. Phys., 70:467-521, 1998.
[4] K. Yano. The theory of Lie derivatives and its applications. North-Holland, Amsterdam, 1957.
[5] R. d'Inverno. Introducing Einstein's Relativity. Clarendon, Oxford, 1992.
[6] J. L. Tennyson, J. D. Meiss, and P. J. Morrison. Self-consistent chaos in the beam-plasma instability. Physica D, 71:1-17, 1994.
[7] P. J. Morrison. Hamiltonian description of fluid and plasma systems with continuous spectra. In O. U. Velasco Fuentes, J. Sheinbaum, and J. Ochoa, editors, Nonlinear Processes in Geophysical Fluid Dynamics, pages 53-69. Kluwer, Dordrecht, 2003.
[8] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica, 15:1-20, 1980.
[9] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D, 16:285-317, 1985.
[10] C. Froeschlé, R. Gonczi, and E. Lega. The fast Lyapunov indicator: a simple tool to detect weak chaos. application to the structure of the main asteroidal belt. Planet. Space Sci., 45:881-886, 1997.
[11] G. Haller. Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos, 10:99-108, 2000.
[12] G. Haller. Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14:1851-1861, 2002.
[13] F. Lekien, S. C. Shadden, and J. E. Marsden. Definition and properties of lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212:271-304, 2005.
[14] S. C. Shadden, F. Lekien, and J. E. Marsden. Lagrangian coherent structures in n-dimensional systems. J. Math. Phys., 48:065404 (19 pages), 2007.
[15] C. Skokos, T. C. Bountis, and C. Antonopoulos. Geometrical properties of local dynamics in hamiltonian systems: The generalized alignment index (GALI) method. Physica D, 231:30-54, 2007.
[16] P. M. Cincotta and C. Simo. Simple tools to study global dynamics in non-axisymmetric galactic potentials - i. Astron. Astrophys. Suppl., 147:205-228, 2000.
[17] J. Laskar, C. Froeschlé, and A. Celletti. The measure of chaos by the numerical analysis of the fundamental frequencies. application to the standard mapping. Physica D, 56:253-269, 1992.
[18] J. D. Szezech Jr., I. L. Caldas, S. R. Lopes, P. J. Morrison, and R. L. Viana. Effective transport barriers in nontwist systems. Phys. Rev. E, 86:036206 (8 pages), 2012.
[19] J. D. Szezech Jr., A. B. Schelin, I. L. Caldas, S. R. Lopes, P. J. Morrison, and R. L. Viana. Finite-time rotation number: A fast indicator for chaotic dynamical structures. Phys. Lett. A, 377:452-456, 2013.
[20] J. Sommeria, S. D. Meyers, and H. L. Swinney. Experiments on vortices and Rossby waves in eastward and westward jets. In A. R. Osborne, editor, Nonlinear Topics in Ocean Physics, pages 9227-269, Amsterdam, 1991. North-Holland.
[21] D. del-Castillo-Negrete and P. J. Morrison. Hamiltonian chaos and transport in quasigeostrophic flows. In I. Prigogine, editor, Chaotic Dynamics and Transport in Fluids and Plasmas, Research Trends in Physics, pages 181-207, New York, NY, 1993. American Institute of Physics.
[22] D. del-Castillo-Negrete and P. J. Morrison. Chaotic advection by Rossby waves in shear flow. Phys. Fluids A, 5:948-965, 1993.
[23] D. del Castillo-Negrete, J. M. Greene, and P. J. Morrison. Area preserving nontwist maps: Periodic orbits and transition to chaos. Physica D, 91:1-23, 1996.
[24] D. del Castillo-Negrete, J. M. Greene, and P. J. Morrison. Renormalization and transition to chaos in area preserving nontwist maps. Physica D, 100:311-329, 1997.
[25] J. S. E. Portela, I. L. Caldas, R. L. Viana, and P. J. Morrison. Diffusive transport through a nontwist barrier in tokamaks. Int. J. Bif. Chaos, 17:1589-1598, 2007.
[26] I. I. Rypina, M. G. Brown, F. J. Beron-Vera, H. Kocak, M. J. Olascoaga, and I. A. Udovydchenkov. On the lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci., 64:3595-3610, 2007.
[27] J. D. Szezech, I. L. Caldas, S. R. Lopes, R. L. Viana, and P. J. Morrison. Transport properties in nontwist area-preserving maps. CHAOS, 19:043108 (9 pages), 2009.
[28] F. J. Beron-Vera, M. J. Olascoaga, Michael G. Brown, Huseyin Kocak, and I. I. Rypina. Invariant-tori-like Lagrangian coherent structures in geophysical flows. Chaos, 20:017514, 2010.
[29] I. Caldas, B. F. Bartoloni, D. Ciro, G. Roberson, A. B. Schelin, T. Kroetz, M. Roberto, R. L. Viana, K. C. Iarosz, A. M. Batista, and P. J. Morrison. Symplectic maps for diverted plasmas. IEEE Transactions on Plasma Science, pages 1-8, 2018.
[30] R. L. Viana, I. L. Caldas, J. D. Szezech Jr., A. M. Batista, C. V. Abud, A. B. Schelin, M. Mugnaine, M. S. Santos, B. B. Leal, B. Bartoloni, A. C. Mathias, J. V. Gomes, and P. J. Morrison. Transport barriers in symplectic maps. Brazilian Journal of Physics, 51:899-909, 2021.
[31] J. E. Howard and S. M. Hohs. Stochasticity and reconnection in hamiltonian systems. Phys. Rev. A, 29:418-421, 1984.
[32] J. B. Weiss. Transport and mixing in traveling waves. Phys. Fluids, 3:1379-1384, 1991.
[33] Eric Richard Weeks. Experimental Studies of Anomalous Diffusion, Blocking Phenomena, and Two-Dimensional Turbulence. PhD thesis, The University of Texas at Austin, 1997.

ACKNOWLEDGMENT

Supported by U.S. Dept. of Energy Contract \# DE-FG05-80ET-53088.

