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I. Hamiltonian Dynamics



Classical Field Theory for Classical Purposes

Dynamics of matter described by

• Fluid models

– Euler’s equations, Navier-Stokes, ...

• Magnetofluid models

– MHD, XMHD (Hall, electron mass physics), 2-fluid, ...

• Kinetic theories

– Vlasov-Maxwell, Landau-Lenard-Balescu, gyrokinetics, ...

• Fluid-Kinetic hybrids

– MHD + hot particle kinetics, gyrokinetics, ...

Applications:

atmospheres, oceans, fluidics, natural and laboratory plasmas



Classical Field Theories for Classical Purposes
Have Common Structure

Two Dichotomies:

• Lagrangian vs. Eulerian variables

– particle or material vs. spatial or observable

• Lagrangian vs. Hamiltonian formalisms

– Action principle vs. Poisson bracket

Basic procedure of reduction:

action principle → Hamiltonian → noncanonical Poisson bracket
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Plasma Parent Model as Example

Relativistic N-Particle Action

Dynamical Variables: qi(t), φ(x, t), A(x, t)

S[q, φ,A] = −
N∑
i=1

∫
dt mc2

√
1−
|q̇2
i |
c2

←− ptle kinetic energy

coupling −→ −e
∫
dt

N∑
i=1

∫
d3x

[
φ(x, t) +

q̇i
c
·A(x, t)

]
δ (x− qi(t))

field ‘energy′ −→ +
1

8π

∫
dt
∫
d3x

[
|E|2(x, t)− |B|2(x, t)

]
.

Variation:
δS

δqi(t)
= 0 =⇒ Newton′s 2nd & Fields ,

δS

δφ(x, t)
= 0 ,

δS

δA(x, t)
= 0 =⇒ Maxwell eqs. & Sources



Too Much Information

Reductions, Approximations, Mutilations, . . . :

⇒ Constraints (explicit or implicit) ⇒ Interesting!

Finite Systems

B-lines, ptle orbits, self-consistent models, . . .

Infinite Systems

kinetic theories, fluid models, mixed . . .

Usually Eulerian (spacial) variable field theories



Continuum Action – Particle to Field Theory

Dynamical Variables: q(z0, t), φ(x, t), A(x, t)

Particles to Fields: i→ z0, qi → q(z0, t), and
∑N
i=1 →

∫
dz0

S[q, φ,A] =
∫
dt
∫
d6z0 f0(z0)

m

2
|q̇|2(z0, t)

−e
∫
dt
∫
d6z0 f0(z0)

∫
d3x

[
φ(x, t) +

q̇

c
·A(x, t)

]
δ
(
x− q(z0, t)

)
+

1

8π

∫
dt
∫
d3x

(
|E|2(x, t)− |B|2(x, t)

)
.

Continuum Low-Like Actions: Kinetic Theories, Guiding Cen-

ter/Gyro Kinetic Theories, Fluid Theories, . . .



Canonical Hamiltonian Field Theory

Legendre Transform: {(q, π), (E,A)} ← canonical conjugates

Canonical Poisson Bracket:

{F,G} =
∫
d6z0

(
δF

δq
·
δG

δπ
−
δG

δq
·
δF

δπ

)
+
∫
d3x

(
δF

δE
·
δG

δA
−
δG

δE
·
δF

δA

)

Equations of Motion:

∂q

∂t
= {q,H} =

δH

δπ
and

∂π

∂t
= {π,H} = −

δH

δq
∂E

∂t
= {E,H} =

δH

δA
and

∂A

∂t
= {π,H} = −

δH

δE

Here H the Hamiltonian functional, δH/δq the functional deriva-

tive, z0 the particle label, x the electromagnetic field label, ...



Reduction Field Theory Example

We will see the map

{q, π, E,A} → {f(x, v, t), E(x, t), B(x, t)}

gives a gauge-free field theory Hamiltonian theory in terms of

noncanonical Poisson bracket.

But, first consider how it works in general in finite dimensions.



Hamiltonian Reduction:
Canonical to Noncanonical Poisson Brackets

Hamiltonian reduction is a way to reduce the dimension of a

system. The process may take canonical to noncanonical or

noncanonical to a smaller noncanonical.

For matter models, one can first construct underlying canoni-

cal ‘particle-like’ (Lagrangian variable) description. Then effect

Hamiltonian reduction. (Souriau’s momentum map).



Hamiltonian Reduction

Bracket Reduction:

Reduced set of variables (q, p) 7→ w(q, p) ← noninertible

Bracket Closure:

{w,w} = c(w) f(q, p) = f̂ ◦ w = f̂(w(q, p))

Chain Rule ⇒ yields noncanonical Poisson Bracket

Hamiltonian Closure:

H(q, p) = Ĥ(w)

Note ∃ symmetry, consequently a group theory interpretation ...

Reduced dynamics: ẇ = {w, Ĥ}



Angular Momentum Example

Simple particle with canonical coordinates: (r,p)

Equations of motion:

ṙ =
∂H

∂p
and ṗ = −

∂H

∂r

Angular momentum:

L = r × p

Reduction:

{Lx, Ly} = Lz

Casimir:

{|L|2, f} = 0 ∀ f

If H(L)⇒ closure, i.e. reduction of system to three dimensions!



Noncanonical Hamiltonian Structure

Sophus Lie (1890) −→ PJM (1980)....

Noncanonical Coordinates:

ẇi = J ij
∂H

∂wj
= {wj, H} , {A,B} =

∂A

∂wi
J ij(w)

∂B

∂wj

Poisson Bracket Properties:

antisymmetry −→ {A,B} = −{B,A} ,

Jacobi identity −→ {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

Matter models in Eulerian variables: J ij = c
ij
k w

k ← Lie− Poisson Brackets



Flow on Poisson Manifold

Definition. A Poisson manifold Z is differentiable manifold with
bracket

{ , } : C∞(Z)× C∞(Z)→ C∞(Z)

st C∞(Z) with { , } is a Lie algebra realization, i.e., is

i) bilinear,
ii) antisymmetric,
iii) Jacobi, and
iv) consider only Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector
fields, JdH.

Because of degeneracy, ∃ functions C st {A,C} = 0 for all
A ∈ C∞(Z). Called Casimir invariants (Lie’s distinguished func-
tions!).



Poisson Manifold Z Cartoon

Degeneracy in J ⇒ Casimirs:

{A,C} = 0 ∀ A : Z → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

inamorata



Lie Poisson Flows

g Lie algebra; basis {E1, E2, . . . , En}; structure constants ckij, i.e.,

[Ei, Ej] = ckijEk;

Dual g∗; dual basis {E1
∗ , E

2
∗ , . . . , E

n
∗ };

〈
Ei∗, Ej

〉
= δij ; standard

pairing 〈 · , · 〉 : g∗ × g→ R.

Smooth A : g∗ → R has derivative DA(µ) ∈ g at µ ∈ g∗ for any
δµ ∈ g∗,

〈δµ,DA(µ)〉 =
d

ds
A(µ+ sδµ)

∣∣∣∣
s=0

⇒ DA(µ) =
∂A

∂µi
(µ)Ei.

Lie-Poisson bracket on g∗, for all A,B : g∗ → R,

{A,B}LP := 〈µ, [DA,DB]〉 = µkc
k
ij
∂A

∂µi

∂B

∂µj
.

Dynamics with Hamiltonian H : g∗ → R

µ̇i = {µi, H}LP = µkc
k
ij
∂H

∂µj
⇔ µ̇ = − ad∗DH µ



Maxwell-Vlasov Reduction

Under the map

{q, π, E,B} → {f(x, v, t), E(x, t), B(x, t)}

the canonical Poisson bracket

{F,G} =
∫
d6z0

(
δF

δq
·
δG

δπ
−
δG

δq
·
δF

δπ

)
+
∫
d3x

(
δF

δE
·
δG

δA
−
δG

δE
·
δF

δA

)

gives →



Maxwell-Vlasov Poisson Bracket

Hamiltonian:

H =
∑
s

ms

2

∫
|v|2fs d3x d3v +

1

8π

∫
(|E|2 + |B|2) d3x ,

Bracket:

{F,G} =
∑
s

∫ (
1

ms
fs
(
∇Ffs · ∂vGfs −∇Gfs · ∂vFfs

)
+

es

m2
sc
fsB ·

(
∂vFfs × ∂vGfs

)
+

4πes
ms

fs
(
GE · ∂vFfs − FE · ∂vGfs

) )
d3x d3v

+ 4πc
∫

(FE · ∇ ×GB −GE · ∇ × FB) d3x ,

where ∂v := ∂/∂v, Ffs means functional derivative of F with
respect to fs etc.

pjm 1980,1982; Marsden and Weinstein 1982



Maxwell-Vlasov Equations and Casimirs

Equations of Motion:

∂fs

∂t
= {fs, H} ,

∂E

∂t
= {E, H} ,

∂B

∂t
= {B, H} .

Casimirs invariants:

Cfs [fs] =
∫
Cs(fs) d3xd3v

CE[E, fs] =
∫
hE(x)

(
∇ ·E − 4π

∑
s
es

∫
fs d

3v

)
d3x ,

CB[B] =
∫
hB(x)∇ ·B d3x ,

where Cs, hE and hB are arbitrary functions of their arguments.

These satisfy the degeneracy conditions

{F,C} = 0 ∀F .



Main Conclusion

Equations for the dynamics of (dissipation free) matter are nat-

urally given in terms of noncanonical Poisson brackets of Lie-

Poisson form. When coupled to a gauge field like electromag-

netism, there will also be a canonical component.

All good models have this form!



Classical Field Theory for Classical Purposes

Dynamics of matter described by

• Fluid models

– Euler’s equations, Navier-Stokes, ...

• Magnetofluid models

– MHD, XMHD (Hall, electron mass physics), 2-fluid, ...

• Kinetic theories

– Vlasov-Maxwell, Landau-Lenard-Balescu, gyrokinetics, ...

• Fluid-Kinetic hybrids

– MHD + hot particle kinetics, gyrokinetics, ...

Applications:

atmospheres, oceans, fluidics, natural and laboratory plasmas



II. Metriplectic Dynamics

An encompassing formulation that combines Hamiltonian dy-

namics with dissipation, consistent with thermodynamical Laws.

pjm 1984; Kaufman almost: Grmela renamed Generic



Overview

1. Other attempts

(a) Rayleigh Dissipation Function

(b) Cahn-Hilliard Equation

2. Metriplectic Dynamics

(a) gradient flows

(b) Hamiltonian flows

(c) metriplectic flows

3. Geometrical Aspects



Other Attempts



Rayleigh Dissipation Function

Introduced for study of vibrations, stable linear oscillations, in

1873 (see e.g. Rayleigh, Theory of Sound, Chap. IV §81)

Linear friction law for n-bodies, Fi = −bi(ri)vi, with ri ∈ R3.

Rayleigh was interested in linear vibrations, F =
∑
i bi ||vi||2/2.

Coordinates ri → qν etc. ⇒

d

dt

(
∂L
∂q̇ν

)
−
(
∂L
∂qν

)
+

(
∂F
∂q̇ν

)
= 0

Ad hoc, phenomenological, yet is generalizable, geometrizable

(e.g. Bloch et al.,...)



Cahn-Hilliard Equation

Models phase separation, nonlinear diffusive dissipation, in binary
fluid with ‘concentrations’ n, n = 1 one kind n = −1 the other

∂n

∂t
= ∇2δF

δn
= ∇2

(
n3 − n−∇2n

)

Lyapunov Functional

F [n] =
∫
d3x

[
1

4

(
n2 − 1

)2
+

1

2
|∇n|2

]
dF

dt
=
∫
d3x

δF

δn

∂n

∂t
=
∫
d3x

δF

δn
∇2δF

δn
= −

∫
d3x

∣∣∣∣∇δFδn
∣∣∣∣2 ≤ 0

For example in 1D

lim
t→∞

n(x, t) = tanh(x/
√

2)

Ad hoc, phenomenological, yet generalizable and very important
(Otto, Ricci Flows, Poincarè conjecture on S3, ...)



Metriplectic Dynamics

A dynamical model of thermodynamics that ‘captures’:.

• First Law: conservation of energy

• Second Law: entropy production



Example – Transport Equation

∂f

∂t
= −v · ∇f − a · ∇vf +

∂f

∂t

)
c

where

Collision term →
∂f

∂t

)
c

could be Boltzmann, Landau, etc.

Conserves, mass, momentum, energy,

dH

dt
=

d

dt

∫ 1

2
mv2f + interaction = 0

and makes entropy

dS

dt
= −

d

dt

∫
f ln(f) ≥ 0



Vlasov Kinetic Theory

Noncanonical Poisson Brackets:

{F,G} =
∫
dxdv f

[
δF

δf
,
δG

δf

]
= −

∫
dxdv

δF

δf
[f, ·]

δG

δf

f = distribution fn, E = v2/2−φ(f ;x) = δH/δf = particle energy

[f, g] = fxgv − fvgx

Hamiltonian:

H[f ] =
1

2

∫
dxdv v2 +

1

2

∫
dx |∇φ|2

Equation of Motion:

ft = {f,H}

PJM (1980)



Metripletic Flows

• Casimirs of { , } are ‘candidate’ entropies. Election of par-
ticular S ∈ {Casimirs} ⇒ thermal equilibrium (relaxed) state.

• Generator: F = H + S

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = {H,F}+ (H,F) = 0 + (H,H) + (H,S) = 0

Foliate P by level sets of H i.e. (H,F ) = 0 ∀ F ∈ C∞(P ).

• 2nd Law: entropy production

Ṡ = {S,F}+ (S,F) = (S, S) ≥ 0

Lyapunov relaxation to equilbrium: i.e., dynamics effects the
variational principle: δF = 0.



Examples

• Finite dimensional theories, rigid body, etc.

• Kinetic theories: Boltzmann equation, Landau-Lenard-Balescu

equation, ...

• Fluid flows: various nonideal fluids, etc.

• Magnetofluid flows, MHD, XMHD, gyrofluids, etc.



Collision Operator

Two counting dichotomies:

• Exclusion vs. Nonexclusion

• Distinguishability vs. Indistinguishability

⇒ 4 possibilities

Indistinguishable + Exclusion → Fermi−Dirac

Indistinguishable + Nonexclusion → Bose− Einstein

Distinguishable + Nonexclusion → Maxwell−Boltzmann

Distinguishable + Exclusion → Lynden−Bell∗

* Lynden-Bell (1967) proposed this for stars which are distinguishable.



Collision Operator

Kadomstev and Pogutse (1970) collision operator

with formal H-theorm to F-D ?

Metriplectic formalism → can do for any monotonic distribution

(A,B) =
∫
dz
∫
dz′

[
∂

∂vi

δA

δf(z)
−

∂

∂v′i

δA

δf(z′)

]
Tij(z, z

′)

×

 ∂

∂vj

δB

δf(z)
−

∂

∂v′j

δB

δf(z′)


Tij(z, z

′) = wij(z, z
′)M(f(z))M(f(z′)/2

Conservation and Lyapunov:

wij(z, z
′) = wji(z, z

′) wij(z, z
′) = wij(z

′, z) giwij = 0 with gi = vi−v′i
‘Entropy’ Compatibility:

S[f ] =
∫
dz s(f) ⇒ M

d2s

df2
= 1



Collision Operator Examples

Landau kernel:

w
(L)
ij = (δij − gigj/g2)δ(x− x′)/g

Landau Entropy Compatibility

S[f ] =
∫
dz f ln f ⇒ M

d2s

df2
= 1⇒M = f

Lynden-Bell Entropy Compatibility

S[f ] =
∫
dz s(f) ⇒ M

d2s

df2
= 1⇒M = f(1− f)



General Form

(F,G) =
∫
dnz

∫
dnz′L′

(
δF

δχ

)
· g(z, z′;χ) · L

(
δG

δχ

)

L a formally self-adjoint pseudo-differential operator, g a sym-

metric operator, z = (z1, . . . , zn), and χ = χ1, . . . χm).

Degeneracies can appear from kernel of L and g



Geometrical Aspects

Bloch, PJM, Ratiu 2013



Geometical Definition

A metriplectic system consists of a smooth manifold P , two

smooth vector bundle maps π, γ : T ∗P → TP covering the iden-

tity, and two functions H,S ∈ C∞(P ), the Hamiltonian and the

entropy of the system, such that

(i) {F,G} := 〈dF, π(dG)〉 is a Poisson bracket; π∗ = −π;

(ii) (F,G) := 〈dF, γ(dG)〉 is a positive semidefinite symmetric

bracket, i.e., ( , ) is R-bilinear and symmetric, so γ∗ = γ, and

(F, F ) ≥ 0 for every F ∈ C∞(P );

(iii) {S, F} = 0 and (H,F ) = 0 for all F ∈ C∞(P )

⇐⇒ π(dS) = γ(dH) = 0.



The Flow

The metriplectic dynamics of the system is given in terms of the

two brackets by

dF

dt
= {F,H + S}+ (F,H + S) (1)

= {F,H}+ (F, S), ∀ F ∈ C∞(P ),

or, equivalently, as an ordinary differential equation, by

dz(t)

dt
= π(z(t))dH(z(t)) + γ(z(t))dS(z(t)). (2)

The Hamiltonian vector field XH := π(dH) ∈ X(P ) represents the

Hamiltonian part, whereas YS := γ(dS) ∈ X(P ) the dissipative

part of the full metriplectic dynamics (1) or (2).



General Construction

Suppose manifold P has both Riemannian and Symplectic struc-

ture: Given two vector fields Z1,2 ∈ X(P ) the following is defined:

g(Z1, Z2) : X(P )× X(P )→ R

If the two vector fields are Hamiltonian, say ZF , ZG, then we have

the bracket

(F,G) = g(ZF , ZG)

which produces a ‘relaxing’ gradient flow. Such flows exist for

Kähler manifolds. If P is a Poisson manifold with Casimir C,

then (F,C) ≡ 0 ∀ F .



Summary

• The noncanonical Lie-Poisson bracket description is natural for

describing classical field theories intended for classical purposes.

• Metriplectic dynamics serves as a normal form for dissipation,

one that gives a dynamical version of the first and second laws

of thermodynamics


