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9I 3 8°F: A Generalized Energy Principle for Determining Linear and Nonlinear Stability.*
P. J. MORRISON,* * Institute for Fusion Studies, The University of Texas at Austin.

A generalization of the ideal MHD energy principle, 3W, is presented. The generalization is applicable to the equilibria of all of the basic
nondissipative plasma models. Thus, for example, one can treat fluid equilibria with flow, models with finite Larmour radius effects, and kinetic
theories. The W energy principle arises because the perturbed Hamiltonian for static MHD equilibria has kinetic and potential energy terms of
standard form, in which case (Liapunov) stability is determined by the potential alone. More generally the Hamiltonian structure of plasma models
in Eulerian variables is noncanonical! and the Hamiltonian is not of standard form. Nevertheless, there is a generalization of the Hamiltonian, a
generalized free energy (F), that has equilibria as stationary points and for which definiteness of the second variation, 82F, is sufficient for stability 2.
This definiteness of 32F is a more dependable criterion for practical stability than conventional linear spectral stability. Indeed, sometimes spectral
theory is highly misleading because nonlinear instability for arbitrarily small perturbations can arise. This can occur when 8%F is indefinite, yet
spectral stability theory indicates stability. Physically, 82F - not the second variation of the "usual” energy-is the appropriate perturbed energy.
Identifying the appropriate energy yields a new, more general, definition of a negative energy mode: indefiniteness of 82F and concomitant spectral
stability. One can use 82F in much the same spirit as 8W; i.e. insert trial functions and then vary parameters to search for indefiniteness. A
further test is used to distinguish linear instability from negative energy modes. Note that 82F is applicable even if the dielectric functional is
intractable or not even defined. Many examples are available. In particular the 82F velocity thresholds for fluid and kinetic streaming instabilities
are lower than those of conventional linear theory. Also MHD equilibria with flow and FLR effects> have been treated.

*Supported by the U.S. Department of Energy under Contract #DE FG05-80ET-53088.

**In collaboration with M. Kotschenreuther.
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91 4 Dynamics of Resonant Magnetic Perturbations in Toroidal Plasmas with Low Collisionality.* i
MICHAEL KOTSCHENREUTHER, Institute for Fusion Studies, The University of Texas at Austin.

Neoclassical effects are shown to strongly modify the dynamics-of resonant magnetic perturbations, when the mean free path is long. The analysis
begins by rigorously deriving reduced nonlinear fluid equations to describe the region near a rational surface using kinetic theory. Novel effects of the
neoclassical terms are demonstrated both analytically and by numerical simulation of the fluid equations!. These equations are derived using a
systematic two scale expansion in the parallel gradients, which is the kinetic analog of previous MHD calculations in toroidal geometry 2. Strong
rotational damping and bootstrap current effects arise, as previously discussed by Callen and Shaing3. New effects considered include 1) Large self-
consistent plasma currents are shown to arise in magnetic islands and stochasticity when the neoclassical transport is not intrinsically ambipolar. In
stellarator fusion reactor regimes, large steady state resonant magnetic perturbations (e.g. from equilibrium Pfirsch-Schluter currents or coil errors)
can be strongly reduced or "healed". The linear and nonlinear stability of low and moderate m tearing and interchange modes is also affected. 2) In
tokamaks, an analysis of nonlinear Rutherford Island evolution shows that boofstrap current effects contribute a destabilizing term4. The
destabilizing term dominates for island widths smaller than qB/A"Ve. Overlap of the resulting moderate-m islands can seriously degrade confinement
for B > 1%.

IM. Kotschenreuther and A.Y. Aydemir, Institute for Fusion Studies Report.

2M. Kotschenreuther, R.D. Hazeltine and P.J. Morrison, Phys. Fluids 28, 294 (1985).
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91 5 Nonlinear Periodic Waves in Plasma Physics.* TE.R. TRACY, College of William and Mary.

During the study of the nonlinear aspects of plasma behavior one often turns to simplified models
with the hope of gaining deeper insight than can be gotten by a direct approach on the full
problem. Such models retain many of the relevant physical properties of the full system, but

are more amenable to study. A number of important nonlinear models (the so-called soliton
systems) have the added bonus cof being exactly solvable so that, in principle, we can answer
rigorously whatever physical questions we wish to pose. Many scientists are familiar with
soliton systems on the infinite line (i.e. when the wave disturbances are localized in space).
However, the recent progress made in the study of these systems with periodic boundary conditions,
which are also physically important, is much less familiar. Many important new physical affects
appear and new techniques have been developed for their investigation. For example: the non-
linear Schrodinger equation arises commonly in the study of modulational problems. On the
infinite line this system is stable, but with periodic boundary conditions solutions exhibit
instabilities. Recent brogress in the study of important nonlinear boundary value problems will
also be discussed. Examples to be discussed include the Sinh-Poisson equation™ - which arises in
the study of two dimensional guiding center plasmas, and the Liouville equation - which occurs in
the study of ideal two dimensional MHD equilibria. Also to be discussed are nonintegrable

models which exhibit chaotic solitons<.

1) A. C. Ting, PhD. Thesis, University of Maryland (198k4).
2) S. N. Qian, PhD. Thesis, University of Maryland (1986).

*This work was carried out in collaboration with H. H. Chen and Y. C. Lee of the University of
Maryland.
+This work was supported by NSF, ONR and the College of William and Mary.
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