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Goal: Describe two version of Simulated Annealing, a relaxation method for the numerical

calculation of equilibria. Here, calculate MHD equilibria with islands and chaos, to the

extent they exist.
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Numerical Relaxation Methods

• Many numerical techniques known: friction, conjugate gradient, etc.

• What’s new? The fundamental structure of dynamics used.



Two Simulated Annealing Methods

• Double Bracket Dynamics with M. Furukawa

• Metriplectic Dynamics with C. Bressan, M. Kraus, and O. Maj



Fundamental Structure of Nondissipative Dynamics

• All (correct) nondissipative plasma evolution equations have the split form:

∂Y
∂t

= J
δH

δY
= {Y, H}

Y state variables. e.g. for MHD u = {v,B, ρ, p}

• The Poisson operator J ⇒ Poisson bracket {F,G} satisfies

? antisymmetry {F,G} = −{G,F} and Jacobi {{F,G}, H}+ cyc = 0

? degeneracy of J explains and allows discovery of mysterious Casimir invariants

J
δC

δY
= 0

e.g. for MHD
∫
A ·B &

∫
v ·B



Double Bracket Dynamics Uses J 2

• Fake Dynamics:

∂Y
∂t

= J 2 δH

δY

? The operator J 2 is positive definite ⇒ relaxation.

? The operator J 2 has null space of J .

• The fake dynamics solves the variational principle

minH at constant C

? Choice of C → different equilibria.



Double Bracket Simulated Annealing for RMHD

M. Furukawa∗ and PJM

∗Tottori University



Motivation

❖ Simulated Annealing (SA) is a method for obtaining 
stationary states (equilibria) of Hamiltonian 
systems as energy extrema

- In the SA, we solve a system of artificial evolution 
equations derived from an original Hamiltonian 
system so that the energy (Hamiltonian) changes 
monotonically

- Casimir invariants are preserved in the SA for 
noncanonical Hamiltonian systems

❖ If an equilibrium is an energy minimum state, 
which is stable, SA will recover the equilibrium 
when started from a perturbed state

- SA can be used as a stability analysis tool
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G. R. Flierl, P. J. Morrison, Physica D 240, 212 (2011).

Cited from: M. Furukawa and P. J. Morrison, 
Plasma Phys. Control. Fusion 59, 054001 (2017).The previous studies were performed in a 2D rectangular

domain with periodic boundary conditions in both directions,
except for a few cases in [29] where layer models were used
for describing a third dimension. In the present study a 3D
code is developed, although the outer boundary of the plasma
is still cylindrical. Then a stationary state with magnetic
islands with multiple helicities can be obtained if it has lower
energy than a cylindrical symmetric state. The code uses the
symmetric bracket of [29] that can effect smoothing.
Although the code development is still in progress in some
parts, we have observed that such a smoothing effect is
important for numerical stability of the code as well as for the
computational cost. The code can be numerically unstable
easily without the smoothing. Also, the computational cost
can be affected by the smoothing because the relaxation path
to the lower energy state can be changed. Therefore, we focus
on the smoothing effect in examining numerical results.

The paper is organized as follows. In section 2, the set-
ting of the problem is explained, the SA method is summar-
ized, with a focus on the 3D low-beta reduced MHD example,
and three types of symmetric brackets are introduced.
Section 3 presents numerical results, with the choices of the
symmetric brackets examined, and a stationary state with
magnetic islands calculated. Next, section 4 contains discus-
sion, where some remaining issues are raised. Finally, the
paper is summarized in section 5.

2. Theory

2.1. Reduced MHD system

In this study, let us consider a cylindrical plasma with minor
radius a and length QR2 0. The cylindrical coordinates are

Rr z, ,( ), with the toroidal angle being [ z R0≔ and the
inverse aspect ratio given by F a R0≔ . Physical quantities
are normalized by the length a, the magnetic field in the z-
direction B0, the Alfvén velocity N Sv BA 0 0 0≔ with N0 and

S0 being vacuum permeability and typical mass density,
respectively, and the Alfvén time U a vA A≔ . Then low-beta
reduced MHD is given by
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where the fluid velocity is K� q �v ẑ , the magnetic field is
Z� � � qB z zˆ ˆ, the vorticity is � K?U ≔ , the current

density is � Z?J ≔ , the Poisson bracket for two functions f
and g is � q �zf g f g,[ ] ≔ ˆ · , the unit vector in the z
direction is denoted by ẑ, and �? is the Laplacian in the r–θ
plane.

2.2. Simulated annealing theory

Now, we briefly review the governing SA system, referring
the reader to [29] for a detailed explanation. The artificial
dynamics of SA is given by

s
s

�
u

u
t

H, , 3(( )) ( )
where u is a vector of the dynamical variables, uH [ ] is the
Hamiltonian functional and F G,(( )) is the symmetric bracket
for two functionals uF [ ] and uG [ ], defined by
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is the Poisson bracket for two functionals, with �
denoting the whole domain of the system. The quantity Jij( )
is the skew-symmetric Poisson operator, and E Eu uF [ ]
and E Eu uG [ ] are the functional derivatives of F
and G, respectively. Here a functional derivative E

E
F u

u
[ ]

of an arbitrary functional F u[ ] is defined by
�

� � �¨E � � � E
E�

F u F u u x ud ,F u
u

d
d 0

3[ ] [ ˜] ˜[ ] where ũ is an

arbitrary function satisfying the same boundary condition as
u. Note that � is a small parameter and is not the inverse
aspect ratio F. The sign of the right-hand side is taken so that
energy decreases as time progresses. Note that the Dirac
theory for imposing constraints is not used in this paper. As
we will describe in section 2.5, we can generate a variety of
artificial dynamics by the choices of the symmetric kernel.
We will introduce three types of Kij( ) in section 2.5 that can
effect smoothing. We will examine the smoothing effect in
the numerical results in section 3.

Here let us discuss briefly the meaning of the symmetric
kernel by using the finite-dimensional analogue that appeared
in section 1. The artificial dynamics generated by squaring the
Poisson bracket can be rewritten as � u u u H, , ,u

t
i j jd

d

i { }{ }

Figure 1. Schematic picture explaining Casimir leaf, physical and
artificial dynamics.
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Ideal, low-beta reduced MHD in cylindrical geometry

❖ Cylindrical plasma is considered

- Minor radius

- Length

❖ Cylindrical coordinate system               , as well as                 is used     

❖ Ideal, low-beta reduced MHD (normalized) is written as

where

4

inverse aspect ratio

: fluid velocity

: magnetic field

: vorticity (     component)
: current density
  (        component) : Poisson bracket for two functions      and

: Laplacian in             plane
: unit vector in     direction

Normalization
: length
: typical magnetic field
: typical mass density

: velocity

: time

H. R. Strauss, Phys. Fluids 19, 134 (1976).



Evolution equations for SA have same form as those of low-beta reduced MHD 
but different, artificial convection fields

❖ For the low-beta reduced MHD

the explicit form of the artificial evolution equation of SA by the symmetric bracket is

❖ The advection fields are replaced by the artificial ones

❖          is chosen to be positive definite so that the energy decreases monotonically

❖ Casimir invariants, such as magnetic helicity, are preserved since the Poisson bracket is same

5

M. Furukawa and P. J. Morrison, Plasma Phys. Control. Fusion 59, 054001 (2017).



Initial condition

❖ Initial condition is given by a summation of cylindrically symmetric state plus a perturbation 
opening a small magnetic island at the rational surface

- Cylindrically symmetric state

2

surface at

No plasma rotation

Unstable against tearing mode 
with                  and             (                  )

Inverse aspect ratio

with



Initial condition - cnt’d

❖ Initial condition is given by a summation of cylindrically symmetric state plus a perturbation 
opening a small magnetic island at the rational surface

- Perturbation part

3

, , ,with



Equilibrium with magnetic islands obtained

❖ Radial profiles of               and               at the final state (left, center)

❖ Poincaré plot (right)
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Recent Work

• Method to find desired initial conditions

• Tailoring operator to find optimal decent paths

• Adapted SA to create a stability method: convergence implies stable equilibra



Metriplectic Simulated Annealing for Beltrami

C, Bressaan, M. Kraus, O. Maj∗ and PJM

∗Garching



Fundamental Structure of Dissipative Dynamics:
Metriplectic Dynamics

• Metriplectic Systems:

∂Y
∂t

= J
δH

δY
+ G

δS

δY

Here G a metric operator, H = energy, and S = entropy. Casimirs are candidate entropies.

• Encapsulates dynamically the 1st and 2nd laws of thermodynamics:

dH

dt
= 0 and

dS

dt
≥ 0



Introduction

Metriplectic Dynamics

Dissipative generalisation of Hamiltonian dynamics1,2

dY
dt = {Y,H}+ (Y,S) ∀Y = Y(u), (u = u(t) state variable, u0 = u(0))

where { }=Poisson bracket, ( )=Metric bracket, H=Hamiltonian, S=Entropy, s.t.

{Y,S} = 0, (S,S) ≤ 0, (Y,H) = 0 ∀Y

Relaxation:
d
dtH = 0,

d
dtS = (S,S) ≤ 0

Variational principle:

u⋆ = arg min
u

{S(u) : H(u) = H(u0)}

1Morrison P J 1984, Phys. Lett. A, 100, 423-7
2Morrison P J 1986, Physica D, 18, 410-9

2 C. Bressan



Introduction

Application to Variational Problems

Variational Problem:

u⋆ = arg min
u

{S(u) : H(u) = H(u0)}

Problem: Find a metric bracket ( ) s.t. the solution u = u(t), with u(0) = u0, satisfies

u(t) → u⋆ for t → ∞

Challenges:
This requires (S,S) = 0 ⇐⇒ δS

δu = λ δH
δu .

The null space of the metric operator has to be “properly tuned
Proposed solution: Generalisation of Landau collision operator

General form amounts to an integrodifferential operator
Local (simplified) version is also available which leads to partial differential equations
Tested in 2D3

3Bressan C et al 2018, J. Phys. Conf. Ser., 1125 012002
3 C. Bressan



Introduction

Application to Beltrami Fields (Force-free MHD Equilibria)

Linear Beltrami fields: B : Ω → R3, λ ∈ R, such that

∇× B = λB, ∇· B = 0, in Ω

Variational formulation:4

S(B) =
1

2

∫

Ω

|B|2dx, H(B) =
1

2

∫

Ω

A · Bdx,
{
∇× A = B in Ω

A × n = 0 on ∂Ω

δS
δB = λ

δH
δB ⇐⇒ B = λA ⇒ ∇× B = λB

Remark: If H(B) = 0, then B = 0 is a (trivial) solution.
Aim: Find a metric bracket that relaxes an initial condition to a solution of the original
variational principle.

4Woltjer, 1958, Proc. National Academy of Sciences, 44, 6
4 C. Bressan



Numerical example

Local Collision-like Bracket for Beltrami Fields

The simplest version of the local metric collision-like bracket gives




∂tB +∇× E = 0, in Ω

E = −B × (B ×∇× B), in Ω

B · n = 0, E × n = 0, on ∂Ω

which is equivalent to the Lie-dragging of B by an effective velocity field V:

∂tB −∇× (V × B) = 0, V = (∇× B)× B

⇒ the “field-line topology” is preserved
⇒ V = 0, B 6= 0 ⇐⇒ ∇× B ∝ B

This is the method of Chodura-Schlüter5specialised to Beltrami fields and is recovered as
a special case of the collision-like metric brackets.
Remark: if the numerical scheme breaks the constraint on the conservation of the magnetic
helicity, the solution is trivial (i.e. B = 0)

5Chodura, Schlüter, J. Comp. Phys., 41, 68-88
5 C. Bressan



Numerical example

Structure-preserving Discretization I

• Finite Element Exterior Calculus for incompressible ideal MHD 6

(implemented in FEniCS7)

En+1/2
h ' Eh(tn +∆t/2) ∈ V1

h

Jn+1/2
h ' Jh(tn +∆t/2) ∈ V1

h

Hn+1/2
h ' Hh(tn +∆t/2) ∈ V1

h

Bn
h ' Bh(tn) ∈ V2

h

6Hu et. al., 2021, J. Comp. Phys., 436
7Alnaes M S et. al., 2015, Archive of Numerical Software, 3

6 C. Bressan



Numerical example

Structure-preserving Discretization II

• Crank-Nicolson discretisation in time

(∂h
t Bn

h ,Ch) + (∇× Hn+1/2
h ,Ch) = 0 ∀ Ch ∈ V2

h

(Hn+1/2
h ,Gh)− (Bn+1/2

h ,Gh) = 0 ∀Gh ∈ V1
h

(Jn+1/2
h ,Kh)− (Bn+1/2

h ,∇× Kh) = 0 ∀Kh ∈ V1
h

(En+1/2
h ,Fh)− (Hn+1/2

h × Jn+1/2
h ,Hn+1/2

h × Fh) = 0 ∀Fh ∈ V1
h

with notation ∂h
t Bn

h =
1

∆t (B
n+1
h − Bn

h), Bn+1/2
h =

1

2
(Bn+1

h + Bn
h)

• Picard iterations with block back-substitution reduce the problem to a symmetric positive-
definite linear system which can be solved efficiently with a matrix-free iterative solver.

7 C. Bressan



Numerical example

Properties of the scheme

The numerical scheme satisfies:
1 The magnetic field is divergence-free

∇· Bn
h = 0 ∀n ≥ 0 if ∇· B0

h = 0

2 The chosen entropy functional is dissipated

S(Bn+1
h ) = S(Bn

h)−∆t||Hn+1/2
n × Jn+1/2

h ||2, and thus S(Bn+1
h ) ≤ S(Bn

h)

3 The chosen Hamiltonian functions is preserved

H(Bn+1
h ) = H(B0

h) ∀ n ≥ 0

8 C. Bressan



Numerical Results

Properties of the Scheme

N 32
nt 25000
dt 10−8 − 10−6

tf 0.1

9 C. Bressan



Numerical Results

Poincarè plot of the analytical condition

10 C. Bressan



Numerical Results

Time evolution of the Poincarè plot

Final state (t=0.1)

11 C. Bressan



Central Period-2



Green Period-10



Numerical Results

Relaxation to a Beltrami Field

Evaluation of the fields H (green) and J (violet) along a selected streamline

• the angle between the vectors H and J, projected on a H1-conforming space and evaluated
on a selected streamline, decreases

t=1.5e-08 t=7.16e-02

12 C. Bressan



Numerical Results

Outlook

A metric bracket, if suitably constructed, yields a relaxation method to compute
solutions to variational problems.
We propose a generalization of the Landau collision operator which yields a class of
metric bracket with “good” relaxation dynamics.
The method of Chodura-Schlüter for linear Beltrami fields is obtained as a special
case of such a construction.
Structure-preserving discretization is crucial to obtain non-trivial solutions (i.e.
B 6= 0).
The Double Brackets8represent an alternative approach; they dissipate H while
preserving all the Casimirs of the system.

8Chikasue Y and Furukawa M 2015, Phys. Plasmas, 22
13 C. Bressan



END



Collision-like metric bracket

The Landau operator for Coulomb collisions can be written as a metric bracket.
its generalisation leads to a collision-like metric bracket s.t., for u : Ω → Rn,

(A,B) = −
∫ ∫

Li

(δA
δu

)
· TijLj

(δB
δu

)
dxdx′

L(h) = ∇h(x)−∇h(x′), h : Ω 7→ Rn, (∇h)ij =
∂hj

∂xi
Tij(x, x′) = Tji(x′, x)

The kernel of the metric bracket is defined as:

Tij(x, x′) ∝ |g(x, x′)|2I− g(x, x′)⊗ g(x, x′), g = L
(δH
δu

)

such that H is conserved and S is dissipated.
No general rigorous proof of relaxation. Beneficial properties were observed in
numerical experiments 9

To reduce the computational cost of an integro-differential operator a local version
was developed.

9Bressan C et al 2018, J. Phys. Conf. Ser., 1125 012002
14 C. Bressan



The local metric collision operator

The suggested metric operator is integro-differential ⇒ Implemented for 2D fluid theories,
in 3D is computationally prohibitive

Local class of brackets ⇒ diffusion-like operators:

(A,B) = −
∫ (

∇δA
δu

)
· Dij

(
∇δB

δu

)
dx

D(x) = |g(x)|2I− g(x)⊗ g(x), g(x) = ∇
(δH
δu

)

Remarks:
conservation of H and dissipation of S proven as in the integral case

15 C. Bressan


