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Goal: Describe two version of Simulated Annealing, a relaxation method for the numerical
calculation of equilibria. Here, calculate MHD equilibria with islands and chaos, to the

extent they exist.
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Numerical Relaxation Methods

e Many numerical techniques known: friction, conjugate gradient, etc.

e What's new? The fundamental structure of dynamics used.



Two Simulated Annealing Methods

e Double Bracket Dynamics with M. Furukawa

e Metriplectic Dynamics with C. Bressan, M. Kraus, and O. Maj



Fundamental Structure of Nondissipative Dynamics

e All (correct) nondissipative plasma evolution equations have the split form:

oy 5H

Y state variables. e.g. for MHD u = {v, B, p,p}
e The Poisson operator J =- Poisson bracket {F,G} satisfies
*x antisymmetry {F,G} = —{G, F'} and Jacobi {{F,G},H} +cyc=0

*x degeneracy of J explains and allows discovery of mysterious Casimir invariants
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e.g. for MHD [A-B & [v-B



Double Bracket Dynamics Uses 72

e Fake Dynamics:

oY _ ooH
ot =J 5y

* [ he operator T2 is positive definite = relaxation.
* [ he operator J2 has null space of J.

e [ he fake dynamics solves the variational principle

min H at constant C

* Choice of C — different equilibria.



Double Bracket Simulated Annealing for RMHD

M. Furukawa™ and PJM

*Tottori University



Motivation

*» Simulated Annealing (SA) is a method for obtaining
stationary states (equilibria) of Hamiltonian O
systems as energy extrema
G. R. Flierl, P. J. Morrison, Physica D 240, 212 (2011).
— In the SA, we solve a system of artificial evolution
equations derived from an original Hamiltonian

system so that the energy (Hamiltonian) changes
monotonically

— Casimir invariants are preserved in the SA for
noncanonical Hamiltonian systems

< If an equilibrium is an energy minimum state,
which is Stable, SA will recover the equilibrium Figure 1. Schematic picture explaining Casimir leaf, physical and

artificial dynamics.
when started from a perturbed state
Cited from: M. Furukawa and P. J. Morrison,



Ideal, low-beta reduced MHD in cylindrical geometry

¢ Cylindrical plasma is considered

— Minor radius a

- - — %
— Length 27Ry inverse aspect ratio € 1= Ry
2
% Cylindrical coordinate system (r,0,z) ,as wellas (:= — is used —
Ry Normalization
¢ Ideal, low-beta reduced MHD (normalized) is written as a :length
oU 9.J | H-R.Strauss, Phys. Fluids 19, 134 (1976). By :typical magnetic field
E - [Uv 90] + [w, J] - 58—C Po : typical mass density
W _ ) - <22 on e B0 elocty
or ¥ 6a§ v/ 40 P0o
where TA = — : time
v=2XVyp : fluid velocity VA
B =2+ V4 X 2 :magnetic field Z unitvectorinz direction
U := AJ_QD . vorticity (2 component) A1 :laplacianin 7 — 6 plane
J =/ . current density lf,9] =2-VfxVg
(—Zz component) . Poisson bracket for two functions f and g



Evolution equations for SA have same form as those of low-beta reduced MHD
but different, artificial convection fields

*» For the low-beta reduced MHD

o 5.
5 = Ul + 1Y, ]—ga—g =: f!
> 9

el e e

the explicit form of the artificial evolution equation of SA by the symmetric bracket is
M. Furukawa and P. J. Morrison, Plasma Phys. Control. Fusion 59, 054001 (2017).
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**» The advection fields are replaced by the artificial ones
% (K;;) is chosen to be positive definite so that the energy decreases monotonically

< Casimir invariants, such as magnetic helicity, are preserved since the Poisson bracket is same



Initial condition

¢ Initial condition is given by a summation of cylindrically symmetric state plus a perturbation
opening a small magnetic island at the rational surface

U(x,0) =U_y/1(r)sin(—20 + ()
Y(x,0) = %/0(7“) + ¢—2/1(7“) cos(—26 + ()

— Cylindrically symmetric state

- ~ 4

Jojo(r) = Jojo(1 —7%) with  Jos0 = ~ 35
1
Inverse aspect ratio ¢ T 1—0

q = 2 surfaceat r = 5

No plasma rotation

Unstable against tearing mode
with m=—-2 andn=1 (A’ ~22.4)



Initial condition - cnt'd

¢ Initial condition is given by a summation of cylindrically symmetric state plus a perturbation
opening a small magnetic island at the rational surface

— Perturbation part

T—7Tg

90—2/1(51370) = —95—2/1(7' —rg)r(l—r) e (T > sin(—26 + ()

T—Ts

J_2/1<33, O) = —j_z/l’l“(]. — T) e_(T)2 COS(—QH + C)

with 7g



Equilibrium with magnetic islands obtained

% Radial profiles of R¢,,,, and RJ,,,, atthe final state (left, center)

*» Poincaré plot (right)




Recent Work

e Method to find desired initial conditions

e Tailoring operator to find optimal decent paths

e Adapted SA to create a stability method: convergence implies stable equilibra



Metriplectic Simulated Annealing for Beltrami

C, Bressaan, M. Kraus, O. Maj* and PJM

*Garching



Fundamental Structure of Dissipative Dynamics:
Metriplectic Dynamics

e Metriplectic Systems:

0 OH d.S
g g2

ot Y% R
Here G a metric operator, H = energy, and S = entropy. Casimirs are candidate entropies.

e Encapsulates dynamically the 15t and 29 |aws of thermodynamics:

dH d
— =20 and —SZO
dt dt



Introduction

Metriplectic Dynamics

Dissipative generalisation of Hamiltonian dynamics®’?

% ={V,H}+ (),S) VY =Y(u), (u = u(t) state variable, up = u(0))

where { }=Poisson bracket, ( )=Metric bracket, H=Hamiltonian, S=Entropy, s.t.

{y,8y=0, (5,8)<0, YV,H)=0 VY

Relaxation: Variational principle:
SH=0, L5=(58)<0 u, = arg min{S(u) : H(u) = H(uo)}

'Morrison P J 1984, Phys. Lett. A, 100, 423-7
2Morrison P J 1986, Physica D, 18, 410-9



Introduction

Application to Variational Problems

Variational Problem:

u, = argmin{S(u) : H(uw) = H(uo)}

u

Problem: Find a metric bracket () s.t. the solution u = u(t), with u(0) = o, satisfies

w(t) = ux fort— oo

Challenges:

: , _ 5S __ \OH
@ This requires (5,5) =0 <= 5> = A

ou *

@ The null space of the metric operator has to be “properly tuned
Proposed solution: Generalisation of Landau collision operator
@ General form amounts to an integrodifferential operator

@ Local (simplified) version is also available which leads to partial differential equations

@ Tested in 2D3

3Bressan C et al 2018, J. Phys. Conf. Ser., 1125 012002




Application to Beltrami Fields (Force-free MHD Equilibria)

Linear Beltrami fields: B: ) — R>, )\ € R, such that
VxB=AB, V- -B=0, in

Variational formulation:*

A= Bin Q
S(B):E/\dex, ”H(B):l/A - Bdz, Vo "
2 Jo 2 Jq Axn=0on 0N
0S5 OH
5_B_AE<:>B_>\A:>V><B_>\B

Remark: If H(B) = 0, then B= 0 is a (trivial) solution.

Aim: Find a metric bracket that relaxes an initial condition to a solution of the original
variational principle.

*Woltjer, 1958, Proc. National Academy of Sciences, 44, 6



Numerical example

Local Collision-like Bracket for Beltrami Fields

The simplest version of the local metric collision-like bracket gives

(0,B+V x E=0, inQ
F=—-Bx(BxVxB),inQ
B-n=0, Exn=20, onof2

7\

\

which is equivalent to the Lie-dragging of B by an effective velocity field V-

0B—V x(VxB)=0, V=(VxB)xB

= the “field-line topology" is preserved
= V=0, B#0 < VX BxB

This is the method of Chodura-Schliiter’specialised to Beltrami fields and is recovered as
a special case of the collision-like metric brackets.

Remark: if the numerical scheme breaks the constraint on the conservation of the magnetic
helicity, the solution is trivial (i.e. B=0)

®Chodura, Schliiter, J. Comp. Phys., 41, 68-88




Numerical example

Structure-preserving Discretization |

e Finite Element Exterior Calculus for incompressible ideal MHD °

(implemented in FEniCS")

EVTY? ~ Byt + AL/2) € Vi
T2~ (b + AL)2) € Vi

H'Y? ~ Hy(t, + AL/2) € V7
By ~ Bi(t,) € Vi

®Hu et. al., 2021, J. Comp. Phys., 436
"Alnaes M S et. al., 2015, Archive of Numerical Software, 3




Numerical example

Structure-preserving Discretization ||

e Crank-Nicolson discretisation in time

(OrB, C) + (V x H'TY? ¢y =0 VC,e Vi

(HY2 6h) — (BYFY2,Gh) =0 YGy €V

(JIT2 K — (B2 V x Ky) =0 VK, € Vi

(EPTY2 By — (HPPY? s o2 Y2 S ) =0 VF, € V)
1

1 n n T
with notation 8} B} = Kt(BZJr1 — By), BhH/2 = i(BhJr1 + B})

e Picard iterations with block back-substitution reduce the problem to a symmetric positive-
definite linear system which can be solved efficiently with a matrix-free iterative solver.



Numerical example

Properties of the scheme

The numerical scheme satisfies:

© The magnetic field is divergence-free

V- -Bl'=0 VYn>0 if V- B =0

© The chosen entropy functional is dissipated

S(BM) = S(By) — AY|HY2 5 T2, and thus S(BITY) < S(BY)

© The chosen Hamiltonian functions is preserved

H(BTY =H(B)) ¥V n>0



Numerical Results

Properties of the Scheme

N 32
nt 25000
dt 1073 —-10"°




Numerical Results

Poincare plot of the analytical condition



Numerical Results

Time evolution of the Poincare plot

Final state (t=0.1)



Central Period-2



Green Period-10



Numerical Results

Relaxation to a Beltrami Field

Evaluation of the fields H (green) and J (violet) along a selected streamline

e the angle between the vectors H and J, projected on a H*-conforming space and evaluated
on a selected streamline, decreases

t=1.5e-08 t=7.16e-02



Outlook

A metric bracket, if suitably constructed, yields a relaxation method to compute
solutions to variational problems.

We propose a generalization of the Landau collision operator which yields a class of
metric bracket with “good” relaxation dynamics.

The method of Chodura-Schliiter for linear Beltrami fields is obtained as a special
case of such a construction.

Structure-preserving discretization is crucial to obtain non-trivial solutions (i.e.

BZ0).

The Double Brackets®represent an alternative approach; they dissipate 4 while
preserving all the Casimirs of the system.

8Chikasue Y and Furukawa M 2015, Phys. Plasmas, 22




END



Collision-like metric bracket

@ The Landau operator for Coulomb collisions can be written as a metric bracket.

@ its generalisation leads to a collision-like metric bracket s.t., for u: Q2 — R",

// - TyLj (gﬁ)dxdx
Oh;

L(h) = Vh(z) — Vh(Z), h: Q—=R", (Vh)y= . Tii(z, 7)) =

Ti(2, x)

The kernel of the metric bracket is defined as:
Ty(a, o) o< lo(n, )T - o(n, o) @ gl 2), 9= (0

such that H is conserved and S is dissipated.
@ No general rigorous proof of relaxation. Beneficial properties were observed in
numerical experiments °
@ To reduce the computational cost of an integro-differential operator a local version

was developed.
9Bressan C et al 2018, J. Phys. Conf. Ser., 1125 012002




The local metric collision operator

The suggested metric operator is integro-differential = Implemented for 2D fluid theories,
in 3D is computationally prohibitive

Local class of brackets = diffusion-like operators:

(A, B) = —/(v%) - Dij(v%) dz

D(a) = |9(a) "I - g(x) @ 9(a),  9(x) = V(

57—[)
ou
Remarks:

@ conservation of ‘H and dissipation of S proven as in the integral case



