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The particle and thermal transport by low-frequency drift waves in

magnetized plasmas are studied with theories and simulations. Universal in

inhomogeneous plasmas, drift waves in Earth’s ionosphere, the GAMMA-10

Tandem Mirror machine, the Columbia Linear Machine and C-Mod tokamak

are studied in this thesis.

The first investigations are the E × B particle transport in the given

electric and magnetic fields of the GAMMA-10 mirror machine at the Univer-

sity of Tsukuba in Japan. The results show that the formation of Er-shear by

local heating of electrons can reduced the radial particle loss.

The turbulent impurity particle transport driven by various modes in

the MIT tokamak Alcator C-Mod is studied by a quasilinear theory and com-

pared to experimental measurement of Boron density profiles. A code is de-

veloped for solving eigensystems of drift wave turbulence equations for the
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multi-component fusion plasmas and calculating quasilinear particle fluxes.

The calculations are much faster than nonlinear simulations and may be suit-

able for real-time analysis and feedback control of tokamak plasmas.

The electron temperature gradient (ETG) mode is a candidate mech-

anism for anomalous electron thermal transport across various magnetic con-

finement geometries. This mode was produced in the Columbia Linear Ma-

chine (CLM) at Columbia University. Large scale simulations of the ETG

mode in the CLM by a gyrokinetic code GTC are carried out on supercomput-

ers at TACC and NERSC. The results show good agreement with experiments

in the dominant mode number, wave frequencies and the radial structure.

Some nonlinear properties are also analyzed using the code.
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Chapter 1

Introduction

1.1 Magnetic Confinement of Plasmas

The ultimate goal of controlled thermonuclear fusion is to confine high

temperature gases (plasmas) for a long enough time to make sustained nuclear

fusion reactions for creating a new carbon-free electric power supply for civilian

use. Unlike the Sun, which confines hot plasma by its gravity, laboratory

devices on the Earth use either inertia or magnetic fields to confine plasmas.

The most feasible reaction in the lab is the deuterium-tritium (D-T) reaction

2
1D + 3

1T −→ 4
2He (3.5MeV) + 1

0n (14.1Mev).

The famous Lawson criterion states that for the D-T reaction to reach

ignition (energy produced by the reaction exceeds the energy losses without

external power input), the product of plasma density ne and the energy con-

finement time τE must satisfy

neτE ≥ 1.5× 1020m−3s (1.1)

where the minimum occurs at temperature T = 25 keV (1 eV≈11600 K).

These plasma parameters pose strong gradients of density and temperature
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across the machine confining the plasma since at the wall the plasma density

drops to zero and temperature drops to the room temperature.

The most promising way (at present) of confining plasmas is to use

strong magnetic fields to harness hot charge particles comprising the plasma.

Among many configurations of confinement field, closed field line geometries

of the tokamak and stellarator are most popular. In fact, the international

project ITER (Table 4.3), which is still under construction, will be the largest

tokamak ever built. In the tokamak geometry, a donut shaped (torus) plasma

is confined by a closed magnetic field generated by the combination of the

current in external coils and the internal current carried by the plasma. The

m = 2, n = 1 magnetic field line of an axisymmetric tokamak plasma with

circular cross section is shown in Fig. 1.1, where m and n are the number of

turns the field line travels in the long (toroidal) way and in short (poloidal)

way around the torus before it closes on itself. Two key parameters for a

tokamak are the major radius R0 and minor radius a as shown in Fig. 1.2.

In the 70’s and 80’s, MHD was the focus of plasma stability and con-

trol. However, as the confinement approached the criterion in Eq. (1.1), low-

frequency small-scale turbulence driven by micro-instabilities dominated the

transport and produced the turbulent transport observed in tokamaks. Drift

wave instabilities, driven by density and temperature gradients arise in such

inhomogeneous plasmas, and degrade the confinement. We shall discuss more

on drift waves later.

2



Figure 1.1: A closed magnetic field line in the tokamak, with m = 2, n =
1. Arrows point to the local direction of the magnetic field, and the color
represents the strength of the B field.
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Figure 1.2: Tokamak with a circular cross section, with major radius R0 and
minor radius a.
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1.2 Classical, Neoclassical and Turbulent Transport

Although the magnetic field is a very good insulator for plasmas, there

always exist some sort of “leaking” even for closed magnetic field lines, i.e.

particle, momentum or energy fluxes perpendicular to the magnetic field. In

other words, there exist transport across magnetic field lines.

Let us take a look at a simple picture with an ion (proton) gyrating

in a constant magnetic field, as shown in Fig. 1.3. In the collisionless case,

the trajectory of a ion is a circle and the ion is “attached” to a field line.

However, if there is a collision (e.g. with a neutral atom), the trajectory

of the ion changes abruptly, causing the ion to jump from one field line to

another. Thus, particles diffuse and spatial inhomogeneity is reduced by such

an effect. In the absence of collisions the system is of Hamiltonian form with

given complex electromagnetic fields. Collisions add a stochastic component

to the dynamics that breaks the volume preserving flow in the single particle

phase space.

Classical transport theory studies the transport of plasma due to (Coulomb)

collisions in homogeneous magnetic fields, while neoclassical theory deals with

transport in inhomogeneous magnetic fields, especially the effect of the toka-

mak geometry with both curvature and spatial variation of the magnetic field.

Both classical and neoclassical theories are complete. However, turbulent

transport, which is still an open and active area of research, studies the trans-

port caused by fluctuating electric and magnetic fields. Drift wave or drift-

wave like turbulence is one of the most important mechanisms for turbulent

5



+

B

Figure 1.3: A gyrating ion undergoes collision with neutral atoms. The ion
diffuses away, no longer being attached to a certain field line.

transport.

Comprehensive references for transport research are the three books by

R. Balescu, covering classical[4], neoclassical[5] and turbulent[6] transport in

plasmas. New progress on turbulent transport in magnetized plasmas can be

found in a recent book by Horton [37].

6



1.3 Drift Wave Basics

In the magnetized inhomogeneous plasma, the bulk of the plasma moves

in the direction of the diamagnetic drift

v∗ =
b×∇p

qnB
. (1.2)

In the configuration shown in Fig. 1.4, the plasma density has a gradient in the

−x direction, the B field points in the z direction out-of-plane and electrons

drift in the y direction.

The mechanism of turbulent particle transport driven by drift waves

is as follows. Suppose a fluctuation of the electric potential φ produces an

electric field E pointing out from the center of the excess, as in Fig. 1.4(a).

Then, the plasma will rotate at the E × B velocity, causing the high and

low density plasma to mix. If the density fluctuation δn is in-phase with the

electric potential fluctuation φ, particle flux in positive x direction cancels the

particle flux in negative x direction and there is no net flux. However, if there

is phase difference between δn and φ (due to dissipation, for example) as shown

in Fig. 1.4(b), a net particle flux arises. The particle flux across the magnetic

field in the x direction is given by the average of the density fluctuation times

the E×B drift velocity along the y direction,

Γ = 〈δnvE〉 ∝ −Im(δn/φ)|φ|2, (1.3)

where vE = cB ×∇φ/B2. The phase shift between δn and φ determines the

direction of the particle flux, as shown in Fig. 1.5. If φ leads δn, the net flux

7



(a) in-phase (b) out-of-phase

Figure 1.4: Drift waves with (a) δn and φ in phase (b) δn and φ out of phase.
A net flux of particles in the x direction is generated in (b), while no net flux
in (a).

is in positive x direction, otherwise if φ lags δn, the net flux is in the negative

x direction.

The derivation of the drift wave equations and dispersion relation will

be presented in the next chapter. A comprehensive reference of drift waves

and transport is given by Horton [32].
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Figure 1.5: The role of the phase shift on the particle flux for fixed fluctuation
amplitudes is shown by comparing the left figure, where the potential leads
the density by 1 radian phase, with the right figure, where the potential lags
the density by 1 radian for a wave propagating to the right. δn = sin(y),
φ = sin(y +∆).
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Chapter 2

Methods and Models for Transport Study

In this chapter, the analytical and numerical methods used in this thesis

are summarized. Also, various models for turbulent transport are introduced.

2.1 Kinetic Methods

Plasmas are complex with a huge number of degrees of freedom. Instead

of describing the motions of individual particles, one can use a distribution

function f(x,v, t). Due to the conservation of particle number, the equation

for the distribution function can be written as

df

dt
≡ ∂f

∂t
+ v · ∂f

∂x
+

F

m
· ∂f
∂v

= 0 (2.1)

where F(x, t) is the Lorentz force acting on the particle of mass m.

2.1.1 Gyrokinetic Method

In the presence of strong magnetic fields, the gyration of charge parti-

cles can be orders of magnitude faster than motion across the magnetic field

lines. Therefore if we are interested in plasma phenomena on time scales much

slower than that of gyromotion, the gyromotion can be averaged out and only

the motion of the guiding center traced. This process effectively reduces the
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6-dimensional distribution function f(x,v) to a 5-dimensional phase space

density F (R, µ, v‖). Also, due to the removal of the fast gyromotion, the time

step can be much larger than gyrofrequencies, and thus save a lot of time for

computer simulations. With present-day supercomputers, gyrokinetic particle

simulations of the plasma in an entire plasma machine are made possible.

There are three approaches to derive the gyrokinetic equation:

1) Conventional: One performs a coordinate transformation from (x,v) space

to guiding center space (R, µ, v‖, φ), and then average over the phase an-

gle φ based on the gyrokinetic ordering. For example, Lee [44] derived the

gyrophase-averaged Vlasov equation and devised a new scheme for particle

simulations.

2) Lie transform: The Lie transform method is based on the variational princi-

ple of the guiding center motion, which was first introduced by Littlejohn [49].

A recent review on nonlinear gyrokinetic equations can be found in Brizard

and Hahm [9].

3) Mixed variable generating function: This method is based on Pfirsch-

Morrison Hamilton-Jacobi action principle [57], and it was published in two

papers [58, 13].

The electromagnetic gyrokinetic equation reads [31]:

d

dt
fα
(

X, µ, v‖, t
)

≡
[

∂

∂t
+ Ẋ · ∇+ v̇‖

∂

∂v‖
− Cα

]

fα = 0, (2.2)

Ẋ = v‖
B

B0
+ vE + vd

v̇‖ = − 1

mα

B∗

B0
· (µ∇B0 + Zα∇φ)− Zα

mαc

∂A‖

∂t
.

(2.3)
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where species index α = e, i for electron and ion. Zα is the particle charge

and mα is the particle mass, B0 ≡ B0b0 is the spatially varying equilibrium

magnetic field, B ≡ B0 + δB, and

B∗ = B∗
0 + δB = B0 +

B0v‖
Ωα

∇× b0 + δB.

The gyrokinetic Poisson’s equation and Ampere’s law are

4πZ2
i ni

Ti

(

φ− φ̃
)

= 4π (Zini − ene) , (2.4)

∇2
⊥A‖ =

4π

c

(

eneu‖e − Ziniu‖i

)

, (2.5)

where δB = ∇ × A‖b0 is the magnetic fluctuation. In writing Eq. (2.4),

we assume the Debye length is much smaller than the spatial scale of the

fluctuation. φ̃ is the gyro-averaged electric potential.

2.1.2 Drift Kinetic Method

The gyrokinetic description can be greatly simplified if the gyroradii

are much smaller than the spatial scale of interest, which leads to the drift

kinetic models. The derivation of drift-kinetic equations is in textbooks [e.g.

24]. For a simple low-β(electrostatic) slab plasma, the drift-kinetic equation

for electrons is given by

∂fe
∂t

+ vE · ∇⊥fe + vz
∂f

∂z
− e

m
Ez

∂fe
∂vz

= 0 (2.6)

where vE = cE×B/B2.
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2.2 Fluid Methods

By taking velocity moments of the kinetic equation, one can get a chain

of coupled fluid equations. The first few moments are density, fluid velocity

and temperature given by

nα(x) =

∫

fα(x,v)d
3v

nαvα(x) =

∫

vfα(x,v)d
3v

nαTα(x) =
1

3

∫

mα(v − vα)
2fα(x,v)d

3v.

These quantities are more accessible experimentally than the distribution func-

tion. However, since the argument of fα is 6-dimensional, while the arguments

of each moment are only 3-dimensional, we need an infinite number of mo-

ments to fully represent the distribution function. In fact, we usually only use

the first few moments and truncate the chain of moment equations based on

some assumptions or closures of higher moments.

In the presence of strong magnetic fields, the plasma fluid equations

can be further reduced according to the drift ordering. In Sec. 2.4, we will

derive some well known reduced fluid models.

2.3 Computer Simulations

Due to the complicated geometry of confining magnetic fields and the

lack of mathematical tools for solving nonlinear equations, modern plasma

physics research relies heavily on computer simulations. Writing computer
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codes to solve nonlinear partial differential equations (PDEs) and simulate

dynamics of plasmas has become important for understanding the behavior

of plasmas and aiding the design of new machines. Computer simulations are

widely used in the study of turbulent transport. Based on the analytic methods

discussed above, various types of numerical codes have been developed. In this

thesis, two major numerical methods are used.

2.3.1 Fluid Simulations

A set of PDE’s for fluid moments will be solved numerically in a 2D or

3D domain. Fluid simulations are usually fast and global simulations are often

performed. However, some important kinetic effects such as Landau damping,

wave-particle interactions, are missing in such simulations.

In this thesis, a 2D pseudo-spectral Fortran code called DTRANS is

used. In this code a set of PDEs is converted to ordinary differential equa-

tions (ODEs) by Fast Fourier Transform (FFT), and the equations are then

solved by an ODE solver for the time advancement. The book by Boyd [8]

is a comprehensive reference for spectral methods. Another book on spectral

methods with a lot of examples in Matlab written by Trefethen [64] is a good

introductory reference.

A second fluid code used in the thesis is the BOUT++ code [17], which

is a 3D finite differencing fluid simulation framework, written in C++. The

code is equipped with MPI parallelization and designed to separate physical

equations from numerical schemes.
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2.3.2 Gyrokinetic Simulations

The gyrokinetic distribution function is numerically solved. Kinetic

effects such as velocity-space instabilities and finite gyro-radius effects are

included. Due to the high dimensionality, large scale gyrokinetic simulations

are very resource consuming (large memory and long running time).

In this thesis, we use the Gyrokinetic Toroidal Code (GTC) [31] to

study electron turbulent transport. GTC is a 3D particle-in-cell code de-

signed for simulations of low frequency micro-instabilities and turbulences in

tokamak-like plasmas [31]. It uses field-aligned flux coordinates. A δf algo-

rithm is used to reduce noise. The GTC code has been highly optimized for

parallel computing with both MPI and OpenMP. It is also equipped with the

ADIOS library for advanced parallel I/O.

2.3.3 Computing Resources

The capability of personal computers has evolved very quickly in the

past decades, which makes simulations of physical problems possible even on a

laptop. However for realistic plasma simulations nowadays, the supercomputer

is still a necessary tool. In this thesis, supercomputers at the Texas Advanced

Computing Center (TACC) and the National Energy Research Scientific Com-

puting Center (NERSC) are used to carry out large scale simulations. A large

scale simulation task is often divided into a large number of small parallel tasks

and distributed over many computing units (cores) to reduce the computing

time. Message Passing Interface (MPI) and OpenMP are two major techniques
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for parallel computing. MPI libraries provide functional calls for exchanging

data and other information between different computing units which in general

do not share memory, while OpenMP provides API for shared-memory parallel

programming. Sophisticated codes usually take advantage of both techniques.

2.4 Turbulent Transport Models

In this section, several well known models for studying turbulence are

derived and discussed. These models will be used as base models in Chapter

4 and 5.

In the presence of a strong magnetic field, the velocity of the guiding

center of species s is

vs = vE + vds + vps + vπs + v‖s (2.7)

where s = e, i, z for electrons, ions, and impurities, respectively. The drift

velocities are defined as follows:

vE =
cb̂×∇φ

B
(2.8)

v∗s =
cTsb̂×∇ns

qsnsB
(2.9)

vds =
cb̂×∇ps
qsnsB

= (1 + ηs)v∗s (2.10)

vps = −c2ms

B2qs

(

∂

∂t
+ vs · ∇

)

∇φ =
c

BΩs

dE

dt
(2.11)

vπs =
cb̂×∇ · πs

qsnsB
(2.12)
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Usually vE is of the leading order in magnitude, vds could be of the same order

as vE or smaller, and vps is one order of magnitude smaller than vE .

We will restrict to the electrostatic limit and quasi-neutral limit (
∑

nsqs =

0), unless otherwise specified.

2.4.1 Hasegawa-Mima Model

Hasegawa and Mima [27] proposed a simple 2D nonlinear model for

turbulence in plasma to explain the spectrum observed in experiments. In

the original model, both the magnetic field and the plasma are homogeneous.

In the following, we include a background density profile with the density

gradient scale length

Ln = − n0

∂n0/∂x
(2.13)

to study drift waves.

With following assumptions:

1. uniform B = B0êz

2. quasi-neutral condition δni = δne = δn

3. adiabatic electron response

δn

n0
=

eφ

Te
(2.14)

4. no ion parallel motion and

17



5. the parallel (to B) wave number is much smaller than the perpendicular

wave number, k‖ ≪ k⊥,

the model is simplified to one equation, i.e. the ion continuity equation

∂δn

∂t
+ (vE · ∇)n0 + n∇⊥ · vpi = 0. (2.15)

In this equation, nonlinearity originates from the convective derivative of the

polarization drift vpi.

The normalizations adapted by Hasegawa and Mima [27] are

t̃ = tωci, l̃ = l/ρs, ρs = cs/ωci, cs =
√

Te/mi, φ̃ = eφ/Te (2.16)

and the equation can be written as

∂

∂t̃
φ̃+

ρs
Ln

∂

∂ỹ
φ̃− ∂

∂t̃
∇̃2

⊥φ̃− [∇̃⊥φ̃× z · ∇̃⊥]∇̃2
⊥φ̃ = 0 (2.17)

or more compactly as

∂

∂t̃
(φ̃− ∇̃2

⊥φ̃) = − ρs
Ln

∂

∂ỹ
φ̃+

[

φ̃, ∇̃2
⊥φ̃
]

(2.18)

where the Poisson bracket [, ] is defined as

[f, g] =
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y
. (2.19)

Rescaling quantities to drift wave units as follows:

t̃ = t̄
Ln

ρs
, φ̃ = φ̄

ρs
Ln

, (2.20)
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gives a new normalized equation

∂

∂t̄
(φ̄−∇2

⊥φ̄) = − ∂

∂ỹ
φ̄+

[

φ̄,∇2
⊥φ̄
]

. (2.21)

It can be shown that the following two quantities:

W =
1

2

∫

[φ2 + (∇φ)2]dV (2.22)

U =
1

2

∫

[(∇φ)2 + (∇2φ)2]dV (2.23)

are conserved. In k-space, the equation reads

(1 + k2
⊥)

∂

∂t
φk = −ikyφk + [φ,∇2

⊥φ]k (2.24)

where k2
⊥ = k2

x + k2
y, and energy conservation can be easily checked

dW

dt
=

d

dt

∑

(1 + k2
⊥)φkφ

∗
k = 0 (2.25)

where the Poisson brackets are summed up to a boundary term, which is zero

for periodic boundary conditions. And, since there are no dissipative terms,

there is no linear growth rate. The frequency, phase velocity and group velocity

are given by

ω =
ky

1 + k2
⊥

(2.26)

vp =
ω

k

k

k
=

kykxêx + k2
yêy

(1 + k2
⊥)k

2
⊥

(2.27)

vg =
dω

dk
=

−2kxkyêx + (1 + k2
x − k2

y)êy

(1 + k2
⊥)

2
. (2.28)
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2.4.2 Density-Gradient-Driven Drift Waves

Probably the simplest model to study transport by drift waves is the

electrostatic drift wave driven by the density gradient in slab geometry. This

type of drift wave is treated in detail in textbooks [e.g. 24, chap. 21], [or

28, chap. 6.6], and is usually called Hasegawa-Wakatani model [25]. In this

subsection, I summarize the key results.

The model includes two dynamical equations, the electron continuity

equation

∂δne

∂t
+ vE · ∇⊥ne +∇‖(nev‖) = 0 (2.29)

and the ion continuity equation

∂δni

∂t
+ vE · ∇⊥ni + ni(∇⊥ · vpi) = 0, (2.30)

and two constraints, the equation of electron parallel motion

0 = −Te∇‖ne + nee∇‖φ− nemeνev‖ (2.31)

and the quasineutral condition δne ≈ δni. Here νe = νei for Coulomb collisions

or νe = k‖vte for electron Landau damping.

Assuming

1. homogeneous B = B0êz,

2. cold ions limit Ti ≈ 0, and

3. no parallel motion of ions.
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and normalization as in Eq. (2.16) and Eq. (2.20),

x̃ = xρs, ỹ = yρs, z̃ = zLn, t̃ = t
cs
Ln

, φ̃ =
eφ

Te

ρs
Ln

, ñ =
δn
n0

ρs
Ln

, (2.32)

Eq. (2.29) and Eq. (2.30) become (bars removed)

− ∂

∂t
∇2

⊥φ−
[

φ,∇2
⊥φ
]

− τ∇2
‖(φ− n) = 0 (2.33)

∂

∂t
n +

∂

∂y
φ+ [φ, n] + τ∇2

‖(φ− n) = 0 (2.34)

where

τ =
v2e

νecsLn
. (2.35)

The Hasegawa-Mima equation (Eq. (2.21)) can be obtained by summing the

two equations above and equating φ with n.

The equations in k-space are

(

k2
⊥ 0
0 1

)

∂φ

∂t
= Cφ+ SNL[φ,φ] (2.36)

where

φ =

[

φ
n

]

, C =

[

−ν‖ ν‖
−ikykn + ν‖ −ν‖

]

(2.37)

kn = 1 (retained as a reminder of the background density gradient), ν‖ = τk2
‖

and

SNL[φ,φ] =

[

snl1[φ,∇2φ]k
−snl2[φ, n]k

]

. (2.38)

The energy evolution of the system is

dW

dt
=

d

dt

1

2

∑

k2
⊥φφ

∗ + nn∗ (2.39)

=
d

dt

1

2

∑

[

−2ν‖|n− φ|2 + Re(ikyknnφ
∗)
]

(2.40)

21



where the first part in the summation is the dissipative term (energy sink)

while the second is the driving term (energy source). If there is no density

gradient (kn = 0), the system will relax to the equilibrium of n = φ. One can

prove that

dH

dt
≤ 0, whereH =

∫ |∇φ|2
2

+
n2

2
. (2.41)

Assuming φ = φ0 exp(ik · x − iωt), we solve the eigenvalue problem

giving the dispersion relation

k2
⊥ω

2 + iν‖[(1 + k2
⊥)ω − kykn] = 0 (2.42)

When the collision rate νe is very small, ν‖ → ∞, and we get quasi-adiabatic

response for the electrons.

ω1 =
kykn
1 + k2

⊥

+
i

ν‖

(

kykn
1 + k2

⊥

)2

, ω2 = −iν‖
1 + k2

⊥

k2
⊥

(2.43)

where ω1 is the drift wave branch and the dependence of the growth rate on

collisions is evident.

When νe is very large, ν‖ → 0, there is no parallel electron motion, and

we get the hydrodynamic limit

ω1 =
−1 + i√

2

√

ν‖kykn
k2
⊥

, ω2 =
1− i√

2

√

ν‖kykn
k2
⊥

(2.44)

The frequency and growth rate versus ν‖/ω∗ for the unstable mode ω1

is plotted in Fig. 2.1, with k⊥ = ky and ω∗ = kykn.
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Figure 2.1: The growth rate and frequency of drift waves as a function of ν‖.
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2.4.3 Ion Temperature Gradient Modes

So far we have considered density gradients as the energy source for

instabilities. And the drift wave instability arises due to some dissipation

(collision or Landau damping). In tokamaks, however, dissipation is usually

weak in the core and the compression caused by temperature fluctuations can

also trigger instability. The ion temperature gradient (ITG or ηi) mode is one

of this type of instability. The key parameter for ITG is

ηi ≡
∇ lnTi

∇ lnni

=
Lni

LT i

. (2.45)

In order to model ITG, a new field pi or Ti is needed. The simplest

model is

δTi

Ti

=
ky
ω

1

LT i

cTe

eB

eφ

Te

(2.46)

where the perturbation is driven by E × B convection in a background tem-

perature gradient. A complete equation for Ts is

3

2
ns

(

∂

∂t
+ vs · ∇

)

Ts + ps∇ · vs = −∇ · qs − π : ∇vs +
∑

j 6=s

Qsj (2.47)

As shown by Weiland [66, chapter 5.11], the contribution of the diamagnetic

drift vds to the convective derivative and part of ∇· (nvds) will cancel the first

part of the diamagnetic heat flux

∇ · q∗i = −5

2
nv∗i · ∇Ti +

5

2
nvDi · ∇Ti, (2.48)

where the term with vDs originate from the inhomogeneity of the magnetic

field (see Chap 4.3.3). Therefore we can eliminate vds from vs in the temper-

ature equation too. Assuming simple parallel thermal diffusion, we obtain the
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equation for Ti in the toroidal geometry

3

2
ni

(

∂

∂t
+ vE · ∇

)

Ti + vDi · ∇pi − enivDe · ∇φ+ niTi∇‖v‖i

+
5

2
nivDi · ∇Ti = κi

‖∇2
‖Ti (2.49)

where κi
‖ = 3.9niv

2
ti/νii, and νii is the ion-ion collision frequency. Parallel ion

motion is included to model ion acoustic waves

mini

∂v‖i
∂t

= −eni∇‖φ− Ti∇‖ni − ni∇‖Ti. (2.50)

With adiabatic electron response δne/ne = eφ/Te and quasi-neutrality condi-

tion, the ion continuity equation can be written as

ene

Te

∂

∂t
φ+ vE · ∇⊥ni + ni(−

e

Te
vDe · ∇φ+ vDi ·

∇pi
pi

− c2mi

eB2

d

dt
∇2φ

+∇‖v‖i) +
c2νini

eB2
∇4φ = 0 (2.51)

Linearizing these three equations gives a matrix equation of the form

(−iω)AΦ = CΦ (2.52)

where

A =





1 + k2
⊥ρ

2
s 0 0

0 1 0
0 0 1



 , Φ =





eφ
Te

δTi

Tiv‖i
vti



 (2.53)

and

C =





iω∗i + iωDe(1 + τi)− µik
4
⊥ρ

2
s iωDeτi −ik‖vti

iωT i +
2
3
[iωDe(1 + τi)] i7

3
ωDeτi − 2

3
χi
‖ −ik‖vti

−ik‖vti(1 + Te/Ti) −ik‖vti 0



 (2.54)

A similar toroidal ITG model without parallel ion motion was given by Hu

and Horton [40].
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2.4.4 Trapped Electron Modes

In the toroidal geometry, the toroidal magnetic field (|B| ∝ 1/R) on the

inner side of the torus is weaker than the field on the outer side, thus forming

a magnetic mirror for charge particles. Because of the trapping, electrons

cannot move freely along the field line to cancel charge separation, making

drift waves unstable. Consider a trapped electron density nt = ne0ft + δnt,

and a passing electron density np = ne0fp+ δnp, with ft+ fp = 1 where ft and

fp are the fractions of trapped and passing electrons, respectively. For a large

aspect ratio R0/a, the trapped fraction is

ft =

(

1− Bmin

Bmax

)1/2

=

√

2r

R0 + r
≈

√
2ǫ, (2.55)

where ǫ = r/R. The equation governing trapped electrons is

∂nt

∂t
+ (vE + vDe) · ∇nt + nt(∇ · vE + vDe · ∇Te/Te) =

−νeff(nt − nt0) (2.56)

where νeff = ν/ǫ is the effective collision rate of trapped electron loss (to

passing electrons). If we use the simplest model for temperature fluctuations

dTe

dt
≈ 0, (2.57)

the responses of trapped and passing electrons are

δnt

ne
=

−iω∗e − iωDe − iωTeωDe/ω

−iω + iωDe + νeff
ft
eφ

Te
(2.58)

δnp

ne
= fp

eφ

Te
. (2.59)
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The linearized TEM equations are








−fp 1 −1 0
−iω∗i − iωDe − iωk2

⊥ρ
2
s −iω − iωDeτi 0 0

i(ω∗e + iωDe)ft 0 −iω + iωDe + νeff iωDe

iω∗eηe 0 0 −iω

















eΦ
Te

δni

ni

δnt

ne

δTe

Te









=









0
0
0
0









(2.60)

which can be reduced to the matrix equation

(−iω)AΦ = CΦ (2.61)

where

A =





k2
⊥ρ

2
s 1 0

−fp 1 0
0 0 1



 , Φ =





eφ
Te

δni

ni

δTe

Te



 (2.62)

and

C =





iω∗i + iωDe iωDeτi 0
−iω∗eft − iωDe(ft − fp) + fpνeff −iωDe − νeff −iωDe

iω∗eηe 0 0



 . (2.63)

A simplified version of TEM without Te fluctuations can be easily obtained by

removing the third row and the third column in the equations above.

2.4.5 Electron Temperature Gradient Modes

The fluid equations used to model the electrostatic electron tempera-

ture gradient (ETG) mode [33] are the electron continuity equation

∂

∂t
δne + vE · ∇⊥ne + ne∇⊥ · vpe +∇‖(nev‖) = 0 (2.64)
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the electron parallel momentum equation

(
∂

∂t
+ vE · ∇⊥)v‖ +

∇‖pe

mene

− e

me

∇‖φ+ νev‖ = 0, (2.65)

the thermal balance equation

∂

∂t
Te + vE · ∇Te + (Γ− 1)Te(∇⊥ · vpe +∇‖v‖) = κ‖∇2

‖Te, (2.66)

where Γ = 5/3,

κ‖∇2
‖Te =







−αv2e
νe

k2
‖δTe, when k2

‖v
2
e ≤ ν2

e

−αve|k‖|δTe, when k2
‖v

2
e > ν2

e

, (2.67)

and α = 3.16, and Poisson’s equation

δne =
∇2φ

4πe
+ Zδni. (2.68)

We consider a slab model with homogeneous magnetic field and assume a

quasi-adiabatic ion response

δni ≈ −niZ(1− iδ)eφ/Ti (2.69)

which leads to

δne/ne = −Apeφ/Te (2.70)

where

Ap = Z2Te

Ti
(1− iδ) + k2λ2

D. (2.71)

Using the following normalization:

ñ =
δne

ne
, t̃ = tωce, l̃ = l/ρe, ṽ‖ =

v‖
vte

, φ̃ =
eφ

Te
, T̃e =

δTe

Te
, κ̃‖ =

κ‖

ρevte
(2.72)
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the normalized equations are

−Ap
∂

∂t̃
φ̃+

ρe
Ln

∂

∂ỹ
φ̃+

∂

∂t̃
∇̃2

⊥φ̃+
[

φ̃, ∇̃2
⊥φ̃
]

+ ∇̃‖ṽ‖ = 0 (2.73)

∂

∂t̃
ṽ‖ − Ap∇̃‖φ̃+

νe
ωce

ṽ‖ + ∇̃‖T̃e +
[

φ̃, ṽ‖

]

= 0 (2.74)

∂

∂t̃
T̃e +

ρe
LTe

∂

∂ỹ
φ̃+

[

φ̃, T̃e

]

+ (Γ− 1)∇̃‖ṽ‖ + κ̃‖∇̃2
‖T̃e = 0. (2.75)

Since ρe/Ln is usually very small, we can rescale all quantities as

t̃ = t̄
Ln

ρe
, φ̃ = φ̄

ρe
Ln

, ṽ‖ = v̄‖
ρe
Ln

, T̃e = T̄e
ρe
Ln

, ∇̃‖ = ∇̄‖
ρe
Ln

, κ̃‖ = κ̄‖
Ln

ρe
(2.76)

and obtain a set of equations suitable for computer simulations

−Ap
∂

∂t̄
φ̄+

∂

∂ỹ
φ̄+

∂

∂t̄
∇̃2

⊥φ̄+
[

φ̄, ∇̃2
⊥φ̄
]

+ ∇̄‖v̄‖ = 0 (2.77)

∂

∂t̄
v̄‖ −Ap∇̄‖φ̄+

νeLn

vte
v̄‖ + ∇̄‖T̄e +

[

φ̄, v̄‖
]

= 0 (2.78)

∂

∂t̄
T̄e + ηe

∂

∂ỹ
φ̄+

[

φ̄, T̄e

]

+ (Γ− 1)∇̄‖v̄‖ + κ̄‖∇̄2
‖T̄e = 0 (2.79)

where ηe = ∇(lnTe)/∇(lnne).

By introducing a three component vector field

φ = (φ1, φ2, φ3)
T = (Ln/ρe)(eφ/Te, v‖e/vte, δTe/Te)

T , (2.80)

the equations in k-space can be written in matrix form as





Ap + k2
⊥ρ

2
e 0 0

0 1 0
0 0 1





∂φ

∂t
= Cφ+ SNL[φ1,φ] (2.81)
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where Ap = Z2 Te

Ti
(1− iδ) + k2λ2

D,

C =





ikyρe ik‖Ln 0
ik‖LnAp −νeLn/vte −ik‖Ln

−ikyρeηe −(Γ− 1)ik‖Ln −κ̄(k‖Ln)
2



 (2.82)

and

SNL[φ1,φ] =





snl1[φ1,∇2φ1]k
−snl2[φ1, φ2]k
−snl3[φ1, φ3]k



 (2.83)

where we introduce three parameters snl1, snl2, and snl3 (equal to either 1

or 0) to turn on or off the nonlinear effect.

We can check energy conservation by calculating the following quanti-

ties:

dW1

dt
=

1

2
(Ap + k2

⊥ρ
2
e)Ap

∂

∂t
φ∗
1φ1

=
1

2

∑

k

Ap(ikyρeφ
∗
1φ1 + C.C.) + P12 (2.84)

dW2

dt
=

1

2

∂

∂t
φ∗
2φ2 = P21 −

νeLn

vte

∑

k

φ∗
2φ2 + P23 (2.85)

dW3

dt
=

1

2

1

Γ− 1

∂

∂t
φ∗
3φ3

=
1

2

1

Γ− 1

∑

k

(ikyρeηeφ
∗
1φ3 + C.C.) + P32

− κ̄(k‖Ln)
2

Γ− 1

∑

k

φ∗
3φ3 (2.86)
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where

P12 =
1

2

∑

k

Ap(ik‖Lnφ
∗
1φ2 + C.C.) (2.87)

P21 =
1

2

∑

k

Ap(ik‖Lnφ
∗
2φ1 + C.C.) (2.88)

P23 =
1

2

∑

k

(ik‖Lnφ
∗
2φ3 + C.C.) (2.89)

P32 =
1

2

∑

k

(ik‖Lnφ
∗
3φ2 + C.C.) (2.90)

so P12 = −P21 and P23 = −P32. Energy is conserved if dissipative terms and

linear drive terms are turned off.

2.4.6 Drift Waves in Earth’s ionosphere and magnetosphere

Drift waves are universal in inhomogeneous plasmas. The plasma sur-

rounding the Earth is a good stage for drift waves. Here, I will show equations

for drift waves in the ionosphere where plasma density varies with height. The

resulting turbulence will affect the electromagnetic waves (e.g. GPS signals)

traveling through the ionosphere. Here I will show an example in the E-layer

where ions are unmagnetized due to the high collision rate with neutral par-

ticles and electrons remain magnetized. Therefore, the drift waves are on

the electron scale. With Te = 300K, B = 0.3G, the electron gyroradius is

ρe ≈ 1.3 cm.

We use a slightly different coordinate system from previous subsections:

the x-axis points to the west, y points up, and z points to the north, the

direction of magnetic field in the earth’s rest frame. This is the case when we
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stand on the magnetic equator. The gradient of density ne is then in the y

direction. In addition, there is a strong eastward zonal wind in the E-layer,

vn = −v0êx.

The three dynamical equations we need are the electron continuity

equation

∂δne

∂t
+ vE · ∇(n0 + δne) +∇ · (nevpe) +∇‖(nev‖e) = 0 (2.91)

the ion continuity equation

∂δni

∂t
+∇ · (nivi) = 0 (2.92)

and the ion equation of motion

mi

(

∂vi

∂t
+ vi · ∇vi

)

= eE− ∇pi
ni

−miνin(vi − vn) (2.93)

where νin is the collision rate between ions and neutrals. For the parallel

motion of electrons, from the dynamical equation

me

dve‖
dt

= e∇‖φ− ∇‖pe
ne

−meνen(ve‖ − vn‖) (2.94)

one can derive

ve‖ =
Te

meνen
∇‖

(

eφ

Te
− δne

ne

)

(2.95)

when the collision frequency is much larger the dynamical frequency, i.e. νen ≫

ω.
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Now we transform to the reference frame of the neutral wind. According

to the special relativity, the new electromagnetic fields are

E′ = γ

(

E+
vn ×B

c

)

(2.96)

B′ = γ

(

B− vn × E

c

)

. (2.97)

It can be shown that the E × B drift is invariant under this transformation.

For vn ≪ c, one can approximate the fields as

E′ ≈ E+
vn ×B

c
, (2.98)

B′ ≈ B. (2.99)

For example, given vn/c ∼ 10−6 and B = 1 Gauss, ∆E = E ′−E ∼ 10 mV/m.

While given E ∼ 10 mV/m, ∆B = B′−B ∼ 10−12 Gauss, is negligible. Other

terms in the continuity equation and the momentum equation are invariant

under the Galilean transformation.

The ion equation of motion (a vector equation) in this frame can be

further simplified if we assume

v′
i = vi − vn = −∇χ (2.100)

where only compressional ion motions (sound wave like motion) are allowed

and no vortex is formed. Thus we have(from now on the “′” will be dropped)

vi · ∇vi =
1

2
∇(vi · vi) =

1

2
∇(∇χ · ∇χ) (2.101)

−∇ · (nvi) = ∇n0 · ∇χ+ n0∇2χ+∇δn · ∇χ+ δn∇2χ (2.102)
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and Eq. (2.93) reads

∂χ

∂t
− 1

2
∇χ · ∇χ =

e

mi
(φ0 + φ) +

Ti

mi
lnni − νinχ (2.103)

where a ∇ has been removed from both sides of the equation, φ0 is the back-

ground potential, and lnni = lnn0 + ln(1 + δn/n0).

Equations (2.91), (2.92) and (2.95) can be combined into the vortex

equation

c2me

eB2

(

∂

∂t
∇2

⊥φ+
c

B
[φ,∇2

⊥φ]

)

+
c

B

∂φ

∂x

dn0

dy
− c

B

∂φ0

∂y

∂δn

∂x

+
c

B
[φ, δn] +

n0Te

meνen
∇2

‖

(

eφ

Te

− δn

n0

)

+
dn0

dy

∂χ

∂y
+ n0∇2χ

+∇δn · ∇χ+ δn∇2χ = 0 (2.104)

Upon normalization of the independent variable with drift wave units

x = x̄ρs, y = ȳρs, z = z̄Ln, t = t̄Ln/ve (2.105)

and the fields as

n̄ =
δn

n0

Ln

ρe
(2.106)

φ̄ =
eφ

Te

Ln

ρe
(2.107)

χ̄ =
χ

ρ2eve/Ln

Ln

ρe
(2.108)

the vortex Eq. (2.104) in the dimensionless form (with bars removed) becomes:

∂

∂t
∇2

⊥φ+ [φ,∇2
⊥φ] +

∂φ

∂x
− ∂φ0

∂y

∂n

∂x
+ [φ, n] +

1

νen
∇2

‖(φ− n)

+∇2χ+
ρe
Ln

(

∂χ

∂y
+∇n · ∇χ+ n∇2χ

)

= 0, (2.109)
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where terms in the second line are of magnitude of ρe/Ln smaller. The nor-

malized ion continuity equation is

∂n

∂t
− ρe

Ln
∇n · ∇χ−∇2χ = 0 (2.110)

and the normalized ion equation of motion reads

∂χ

∂t
− 1

2

ρe
Ln

|∇χ|2 = c2s(φ0 + φ) + v2i (lnn0 + n)− νinχ, (2.111)

where velocities are normalized by ρeve/Ln. Notice that the equilibrium will

require terms for which φ0 and n0 cancel.

Equations (2.109), (2.110), and (2.111) form a complete set of equations

for modeling drift waves in the E-layer.

Introducing a three component vector field

φ = (φ1, φ2, φ3)
T = (φ̄, n̄, χ̄)T (2.112)

in k-space these equations become




k2
⊥ 0 0
0 1 0
0 0 1





∂φ

∂t
= Cφ+ SNL (2.113)

where

C =





−ikx − ν‖ ikyφ0 + ν‖ −k2

0 0 −k2

c2s v2i −νin



 (2.114)

and

SNL =





snl1[φ1,∇2φ1]k + snl2[φ1, φ2]k
snl3(∇φ2 · ∇φ3)k
snl4(∇φ3 · ∇φ3)k



 . (2.115)

Here we denote nonlinear effects by snl1, snl2, snl3 and snl4.
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Inside Outside

n = 200 cm−3 n = 10 cm−3

ρi = 3× 104 cm
B = 500 nT (at 4RE)

Ti = Te = 1 eV
Ln = 0.1RE

k‖ = π/L‖ ≈ 5× 10−10 cm

Table 2.1: Typical parameters inside and outside the plasmapause. The loca-
tion of the plasmapause is at ∼ 4RE .

Another place where drift waves could be important is in the plasma-

pause. The dense and cold plasma in the plasmasphere terminated at the

sharp boundary that occurs at ∼ 3−5RE , where the density drops from ∼ 103

to a few electrons per cubic centimeter (Table 2.1). The possibility of drift

wave instability at the plasmapause was first studied by Hasegawa [26]. Typ-

ical parameters are shown in Table 2.1. The drift wave linear frequency and

growth rate are (in CGS units)

ω∗ ∼ 3× 103k⊥, γ ∼ ω∗; (2.116)

with k⊥ρi ≤ 1, the frequency is ∼ 10−2 rad/s. However, direct evidence of

drift waves at the plasmapause is sparse, owing to their low frequency and

small spatial scales. A review of the plasmapause data is given in Frey [19].

The drift wave instability has also been proposed to explain large-scale auroral

undulations observed by IMAGE satellite [46].
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Chapter 3

Particle Transport in Mirror Machines

3.1 Gamma-10 at the University of Tsukuba

Although tokamaks are the dominant configurations for magnetic fu-

sion, linear mirror machines have several advantages over the toroidal fusion

systems:

• No toroidal curvature. The linear magnetic geometry avoids many plasma

instabilities induced by the curvature of the magnetic field.

• Weak internal current. Many instabilities associated with plasma cur-

rents, like kink modes, tearing modes, etc. do not exist in linear ma-

chines. In mirror machines all The magnetic fields are generated by

external coils.

• Natural open divertor. Linear machines have two ends serving as natural

way of diverting plasmas, which is convenient to convert fusion energy

into electricity–the ultimate goal of fusion research.

• Easy control of the radial electric field. It has been confirmed that the

radial Er-shear can suppress turbulence and thus enhance confinement.
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In mirror machines, the radial potential profile can be modified by se-

lectively heating electrons at the desired radial position.

The linear machine has its disadvantages too. The end loss is a major con-

cern for plasma confinement. Historically, the United States pursued linear

machines in the 1970s and dropped the approach in the 1980s to concentrate

on the tokamak approach to fusion power.

Gamma-10 is a tandem mirror system located in the Plasma Research

Center at University of Tsukuba, Japan. A schematic of Gamma-10 machine

is shown in Fig. 3.1. The 27m long mirror machine has a central cell of 6m

length, and several anchor and plug coils to minimize the end loss. We focus

on the radial particle transport in the central cell and assume a homogeneous

B field.

3.2 Drift Waves in the Mirror Machine

In this chapter we focus on the radial loss of plasma due to drift wave

turbulences. A simple model for the density n(r) in the linear machine is

n(r) = n0 exp(−r2/2a2) (3.1)

and the drift frequency is independent of radius r

ω∗e =
kyTe

eBLn
=

Te

eB

m

a2
, (3.2)

where Ln = −n/∇n and ky = m/r.
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Figure 3.1: A schematic of the Gamma-10 machine: (a) the coils that generate
confining magnetic field, (b) the magnetic flux surface, and (c) the electric
potential Φ and the magnetic field B on the axis.

3.3 Particle Transport in Gamma-10

Now we study the particle transport in the presence of turbulent drift

waves in Gamma-10 [35]. The radial profiles of measured electric potential Φ

are shown in Fig. 3.2. Filled circles and the solid line represent the profile

of Φ with the injection of electron cyclotron heating and hollow circles and

the dashed line shows the normal profile without any heating. Experiments

showed that the turbulent transport was greatly reduced by the injection and

a transport barrier is formed [12].

Particle guiding center motion in cylindrical devices like Gamma-10 can
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Figure 3.2: Radial profile of the electric potential Φ measured in Gamma-10
(Reproduced from Ref. [12].)
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be described by

d~x

dt
=

êz ×∇Φ

B
, or (ṙ, rθ̇, ż) = (

−1

rB

∂Φ

∂θ
,
1

B

∂Φ

∂r
, 0). (3.3)

Upon defining I ≡ r2/2 and H ≡ Φ/B, one find the equations of motion are

Hamiltonian

dθ

dt
=

∂H

∂I
, (3.4)

dI

dt
= −∂H

∂θ
. (3.5)

The total electric field consist of the background field and the fluctu-

ating part from drift waves

Φ(r, θ) = Φ0(r) +
∑

m

φm cos(mθ − ωmt+ ξm) (3.6)

where ωm = ω∗e is the drift wave frequency for mode m, φm is the wave

amplitude, and ξm is the relative phase. Given the spectrum φm and phases

ξm, the particle dynamics is determined. However, obtaining the spectrum,

which requires nonlinear simulations or sophisticated measurements, is not an

easy task.

Instead, we examine an over-simplified case in which we assume an

infinite coherent spectrum for drift waves, and it turns out that the set of

ODEs are reduced to a map. Before doing this reduction, assume φ, I, ωm

and H are normalized as

Φ → eΦ/Te, I → r2/2a2, ωm → m,H → HeB/Te. (3.7)
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Summing over all waves with equal amplitude and phase, and different

frequencies nωm where n ∈ Z, the normalized Hamiltonian becomes

H(θ, I, t) = Φ0(I) +
∞
∑

n=−∞

φm cos(mθ − nmt). (3.8)

Using the following:

∞
∑

n=−∞

cos(mθ − nmt) = cos(mθ)
∞
∑

n=−∞

cos(nmt) (3.9)

= cos(mθ)
∞
∑

n=−∞

δ(t − 2nπ

m
), (3.10)

and the property of the δ-function enables us to obtain a “kick” map:

In+1 = In +mφm sin(mθn) (3.11)

θn+1 = θn +
dΦ0(In+1)

dI
(3.12)

where θn is defined at t = tn = 2nπ/ωm and In is defined during tn−1 < t < tn.

Two models for the electric potential Φ representing the experiments

are the Er-positive (monotonic potential) model

Φ1(I) = −0.3I2 + 0.56, (3.13)

and the Er-reversed (twist) model

Φ2(I) = −0.8I(I − 0.5) + 0.51 (3.14)

shown in Fig. 3.3. We also consider a third “nontwist” model with

Φ3(I) = −I(I − 0.25)(I − 0.5) + 0.51, where
dΦ2

dI2
= 0 at I = 0.17. (3.15)
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Figure 3.3: Models for the electric potential Φ in Gamma-10

This name is given due to the fact that the twist condition dH2/dI2 6= 0,

which is a prerequisite for many theorems (e.g. KAM and Poincaré-Birkhoff),

is violated in a generic way [14]. The I − θ maps for these three models are

shown in Fig. (3.4)-(3.6). For the Er-reversed potential, a transport barrier is

formed at I = 0.25 where dH/dI = 0. The behavior of particle in the nontwist

map is quite different from the other two maps. Even for small amplitude drift

waves φm = 0.01, particles are not well confined.

Marcus et al. [51] study the reduction of particle transport driven by

drift waves in sheared flows. A similar Hamiltonian structure was obtained

with two drift waves, the minimum number necessary for chaos. It was shown

that a robust barrier is formed near the location where the shear vanishes.
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Figure 3.4: I − θ phase space map for the monotonic potential Φ1, with
eφm/Te = 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, using Eqs. (3.11)-(3.12).
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Figure 3.5: I − θ phase space map for the Er-reversed potential Φ2.
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Figure 3.6: I − θ phase space map for the nontwist potential Φ3.
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The reduction of turbulent transport by reversed Er-shear is observed in many

experiments, e.g. TCABR [51], LAPD [56], Helimak [63], GAMMA-10 [11] etc.
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Chapter 4

Impurity Transport in Tokamaks

4.1 Impurity Transport

Turbulent transport from drift waves is a key problem for fusion physics

across all magnetic confinement geometries. In contrast to particle and heat

transport of electrons and main ions, the understanding of impurity transport

is limited. Impurity accumulation in the core leads to fuel dilution and radia-

tion losses, potentially degrading the performance of fusion reactors. From this

perspective, the use of light impurities, including helium(He), beryllium(Be),

boron(B) and carbon(C), are better choices for impurity content of the burn-

ing plasma when such choices are practical. In JET, enhanced performance

with low effective charge Zeff < 2 was obtained by changing the plasma facing

components (PFC) from graphite to beryllium as shown by Dietz and Team

[16]. For basically this reason, the choice of the plasma facing components in

the ITER machine is beryllium [10], an alkaline-earth metal with Z=4, A=9

and a melting point of ∼ 1300◦ C. On the other hand, the injection of argon

at the edge of the plasma is widely considered as a method to create an edge

localized radiation belt for continuous heat exhaust that reduces the thermal

load on the divertor plates[50]. This favorable role of impurities must be bal-

anced with possible accumulation of impurities in the core plasma. Therefore,
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Figure 4.1: (a)Time evolution of boron density profile in the C-Mod discharge
with 3.5 MW ICRF heating, from the H-mode (blue circles), transition (black
squares), to ITB (red triangles); (b) boron density gradient profile in H-mode
(blue dash) and ITB (red solid).[60]

we see that it is crucial to understand the conditions needed for impurities to

accumulate in the core.

4.2 C-Mod Impurity Experiments

Recently, Rowan et al. [60] show that the light impurity boron peaks

strongly in the core of the ICRF driven ITB plasmas, as had been shown

earlier for argon in C-Mod, JET and JT-60U. Figure 4.1 shows the time evo-

lution of the fully stripped boron density profile from the H-mode to the ITB.

Figure 4.1(a) shows the change of the boron density profile from hollow at

t = 0 (circles) through the transition with flat profile at t = 0.12 (squares),

to the peaked profile in the ITB regime t = 0.24 to 0.36s (diamonds). The

normalized density gradient scale length of boron B5+ is shown in Fig. 4.1(b)
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from negative in the H-mode to positive in the ITB regime.The peak of the

ICRF power deposition is at ρ = 0.5, just outside the ITB region that starts

at ρ = 0.4. One interpretation is that the ITG-TEM modes are transporting

the boron with convection velocity (also called pinch velocity) V = −D/Ln.

The change in the electron density profile from flat R/Lne ∼ 0 in the H-mode

regime to peaked R/Lne ∼ 5 in the ITB regime weakens the ITG and enhances

the density gradient driven TEM mode. This density profile change motivates

us to investigate density-gradient-driven drift waves.

4.3 Quasilinear Theory

To analyze plasmas with impurities, we extend the multi-fluid mod-

els given in Futatani et al. [23]. A set of fluid equations is used to find the

eigenmodes and eigenfrequencies of a nonuniform, magnetized plasma with a

fluctuation vector Xk composed of fluctuations of the electron density δne, the

main ion (working gas) density δni, the impurity density δnz and the elec-

trostatic potential φ. From the eigenmodes and eigenvectors we compute the

out-of-phase part of the density-to-potential fluctuations and derive the quasi-

linear particle fluxes driven by the plasma gradients. The fluctuation power

spectrum is taken from nonlinear simulations and their parameterization. This

quasilinear method can be much faster than nonlinear gyrokinetic simulations

and it enable us to develop a fast code for impurity transport estimation.

We then use data from Alcator C-Mod with boronized walls to obtain

a wide range of realistic plasma gradients for the wide range of confinement
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regimes. Multiple types of drift wave modes exist in such plasmas. In the

nonlinear state the modes are coupled in a complex manner. For weakly

turbulent states, we use the quasilinear theory to calculate particle fluxes for

separate modes. The qualitative changes of the particle fluxes with variation

of the sign and strength of the density gradients are compared with C-Mod

plasmas in the H-mode, ITB, and I-mode regimes. We show that the impurity

gradient driven drift wave is unstable for the impurity profile peaked toward

the plasma edge and produces inward transport of impurities and an outward

flux of main ions. Similar results are reported in [2, 36] from quasilinear

models.

4.3.1 Density Gradient Driven Drift Waves

Now let us introduce the equations needed to model ordinary drift

waves, i.e. density gradient driven drift waves, in three component plasmas.

We assume the temperature profile is flat and temperature fluctuations are

negligible.

First, the ion continuity equation reads

∂δni

∂t
+∇⊥ · ni(vE + vdi + vpi + vπi) +

c2ηi
eB2

∇4φ = 0, (4.1)

where we use the low frequency assumption ω ≪ ωci, so that vE ≫ vpi. The

viscosity originates from the off-diagonal terms of the stress tensor

−∇ · π = η∇2v. (4.2)
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The ion viscosity ηi can be estimated as (e.g. p38 NRL 2007)

ηi =
3niTi

10ω2
ciτi

. (4.3)

Second, the impurity continuity equation is similar

∂δnz

∂t
+∇⊥ · nz(vE + vdz + vpz + vπz) +

c2ηz
ZeB2

∇4φ = 0, (4.4)

where the impurity viscosity is

ηz =
3nzTz

10ω2
czτz

. (4.5)

Third, in the electron continuity equation

∂δne

∂t
+∇ · ne(vE + vde) + ne∇‖v‖e = 0, (4.6)

we neglect the electron polarization term. Lastly, the equation of electron

parallel motion

0 = −Te∇‖ne + nee∇‖φ− nemeνeiv‖e, (4.7)

where νei is the electron-ion collision rate(p33 NRL 2007),

νei =

√
2nie

4 ln Λ

12π3/2ǫ20m
1/2
e T

3/2
e

≈ 2.9× 10−6ni(ln Λ)T
−3/2
e . (4.8)

This gives Ohm’s law

j‖ = −enev‖e = σ‖

(

−∇‖φ+
Te

ene
∇‖ne

)

, (4.9)

where

σ‖ =
e2ne

meνei
. (4.10)
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Here we neglect the acceleration term on the left hand side of Eq. (4.7) based

on the low frequency assumption that |ω| ≪ νei. In the case of very low

collisionality, dissipation due to electron Landau damping can be important.

We model this kinetic effect by a fluid-like effective collision rate νeff ∼ |k‖|ve.

It is usually convenient to replace one of the continuity equations by

the vortex equation when applying the quasineutrality condition

∇⊥ · [nivdi + Znzvdz − nevde] +∇⊥ · [ni(vpi + vπi) + Znz(vpz + vπz)]

+
1

e
∇‖j‖ = 0. (4.11)

4.3.2 Slab Geometry

In slab geometry, coordinates are setup so that the magnetic field is

along z direction B = Bêz, x is the direction of the minor radius, and y is

the poloidal direction. The background density only has a gradient in the x

direction. Therefore, the equations are simplified as

∇ · vE = 0 (4.12)

∇ · (nsvds) = 0 (4.13)

∇ · ns(vps + vπs) ≈ −insk
2
⊥ρ

2
s(ω − ωds)

eφ

Te

, (4.14)

where the gyro-viscosity cancellation is used in the last equation.

Now consider small perturbations of the densities δns = ns − ns0 (sub-

script 0 denotes equilibrium quantities) and electric potential φ (zero equilib-

rium potential). Quasi-neutrality requires

δni + Zδnz = δne. (4.15)
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Let

ñs =
δns

ns
, φ̃ =

eφ

Te
, (4.16)

then we have equations for the ordinary drift waves

dñi

dt
− v∗i

Ti

Te

∂

∂y
φ̃− d

dt
ρ2s∇2φ̃+ µ̃iρ

4
s∇4

⊥φ̃ = 0 (4.17)

dñz

dt
− v∗z

ZTz

Te

∂

∂y
φ̃− A

Z

d

dt
ρ2s∇2φ̃+

A

Z
µ̃zρ

4
s∇4

⊥φ̃ = 0 (4.18)

dñe

dt
+ v∗e

∂

∂y
φ̃+

Te

meνei
∇‖(−∇‖ñe +∇‖φ̃) = 0 (4.19)

where

d

dt
≡ ∂

∂t
+ vE · ∇. (4.20)

Using the following normalization

t̃ = tωci, l̃ = l/ρs, ρs = cs/ωci, cs =
√

Te/mi, (4.21)

and defining the density scale length

Lns = − ns0

dns0

dx

, (4.22)

the equations become

∂ñi

∂t̃
+

ρs
Lni

∂

∂ỹ
φ̃+

[

φ̃, ñi

]

−
(

∂

∂t̃
∇̃2

⊥φ̃+
[

φ̃, ∇̃2
⊥φ̃
]

)

+ µ̃i∇̃4
⊥φ̃ = 0 (4.23)

∂ñz

∂t̃
+

ρs
Lnz

∂

∂ỹ
φ̃+

[

φ̃, ñz

]

− A

Z

(

∂

∂t̃
∇̃2

⊥φ̃+
[

φ̃, ∇̃2
⊥φ̃
]

)

+
A

Z
µ̃z∇̃4

⊥φ̃ = 0(4.24)
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∂ñe

∂t̃
+

ρs
Lne

∂

∂ỹ
φ̃+

[

φ̃, ñe

]

+
mi

me

ωci

νei
∇̃‖(−∇̃‖ñe + ∇̃‖φ̃) = 0, (4.25)

where

µ̃i =
ηi

mini

1

ρscs
, µ̃z =

ηz
mznz

1

ρscs
, (4.26)

and the Poisson bracket is defined as

[f, g] =
∂f

∂x̃

∂g

∂ỹ
− ∂g

∂x̃

∂f

∂ỹ
. (4.27)

Equation (4.25) can be replaced by Eq. (4.11)

(

ni

ne

+ A
nz

ne

)(

− ∂

∂t̃
∇̃2

⊥φ̃−
[

φ̃, ∇̃2
⊥φ̃
]

)

+ (µ̃i
ni

ne

+ µ̃zA
nz

ne

)∇̃4
⊥φ̃

−mi

me

ωci

νei
(∇̃2

‖φ̃− ni

ne
∇̃2

‖ñi − Z
nz

ne
∇̃2

‖ñz) = 0. (4.28)

Equations (4.23) (4.24) (4.28) describe the ordinary drift waves in a three-

component plasma.

4.3.2.1 Linear Analysis

For a linear analysis, we assume the time dependence e−iωt, drop nonlin-

ear terms (Poisson brackets), and rewrite the linearized equations for ordinary

drift waves in slab geometry in the following matrix form:









0 ni

ne
Z nz

ne
−1

−iω∗i − iωk2
⊥ρ

2
s + µik

4
⊥ρ

2
s −iω 0 0

−iZω∗z − iωA
Z
k2
⊥ρ

2
s + µz

A
Z
k4
⊥ρ

2
s 0 −iω 0

iω∗e − ν‖ 0 0 −iω + ν‖

















eΦ
Te

δni

ni

δnz

nz

δne

ne









=









0
0
0
0









(4.29)
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The drift frequencies are defined by

ω∗i ≡ ky
cTe

eB

1

ni

∂ni0

∂x
= −kyρs

cs
Lni

= ky
Te

Ti

v∗i (4.30)

ω∗z ≡ ky
cTe

ZeB

1

nz

∂nz0

∂x
= −kyρs

cs
ZLnz

= ky
Te

Tz
Zv∗z (4.31)

ω∗e ≡ −ky
cTe

eB

1

ne

∂ne0

∂x
= kyρs

cs
Lne

= kyv∗e (4.32)

ν‖ =
Tek

2
‖

meνei
, (4.33)

and therefore

1

Lne

=
ni

ne

1

Lni

+ Z
nz

ne

1

Lnz

(4.34)

or

ω∗e +
ni

ne
ω∗i + Z2nz

ne
ω∗z = 0. (4.35)

Here we let ion and electron drift frequencies have opposite signs to emphasize

the different diamagnetic-drift directions for different species.

By using the quasi-neutrality condition, we can eliminate δne

ne
and get





−iω 0 a13
0 −iω a23
0 0 a33









δni

ni

δnz

nz

eφ
Te



 =





0
0
0



 (4.36)

where

a13 = −iω∗i + µik
4
⊥ρ

2
s − iωk2

⊥ρ
2
s (4.37)

a23 = −iZω∗z +
A

Z
µzk

4
⊥ρ

2
s − iω

A

Z
k2
⊥ρ

2
s (4.38)

a33 =
ν‖ − iω

iω
(k4

⊥ρ
2
sµτ − iωk2

⊥ρ
2
snτ + iω∗e) + (iω∗e − ν‖) (4.39)

nτ =
ni

ne
+ A

nz

ne
(4.40)

µτ =
ni

ne
µi + A

nz

ne
µz. (4.41)
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The dispersion relation, obtained by setting the determinant (which is

the product of diagonal terms for upper triangle matrices) to be zero, is

ω(Aω2 +Bω + C) = 0 (4.42)

where

A = k2
⊥ρ

2
snτ (4.43)

B = i[k4
⊥ρ

2
sµτ + ν‖(1 + k2

⊥ρ
2
snτ )] (4.44)

C = −(k4
⊥ρ

2
sµτ + iω∗e)ν‖. (4.45)

For the ω = 0 mode, there is no potential fluctuation and φ = 0, which implies

δni + Zδnz = 0. (4.46)

There are two non-zero roots. We can estimate the growth rate and frequency

in the limit of zero viscosities by substituting ω = ωr + iγ into Eq. (4.42).

First we assume |γ| ≪ ωr, ν‖, balance the real and imaginary parts and get

ωr =
ω∗e

1 + k2
⊥ρ

2
snτ

, (4.47)

γ =
ω2
∗ek

2
⊥ρ

2
snτ

(1 + k2
⊥ρ

2
snτ )3ν‖

, (4.48)

and the polarization

δni

ni

/

eφ

Te

= −
[

1− i
k2
⊥ρ

2
snτ

(1 + k2
⊥ρ

2
snτ )2

ω∗e

ν‖

]

(1 + k2
⊥ρ

2
snτ )

ω∗i

ω∗e

− k2
⊥ρ

2
s. (4.49)

Note that this is the unstable mode driven by the electron density gradient.

Secondly for |γ| ≫ ω, we can get a strongly damped mode with

ωr = − ω∗e

1 + k2
⊥ρ

2
snτ

, (4.50)
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γ = −ν‖
1 + k2

⊥ρ
2
snτ

k2
⊥ρ

2
snτ

. (4.51)

Equation (4.36) can also be written as

(−iω)AΦ = CΦ (4.52)

where

A =





k2
⊥ρ

2
snτ 0 0

k2
⊥ρ

2
s 1 0

A
Z
k2
⊥ρ

2
s 0 1



 , Φ =





eφ
Te

δni

ni

δnz

nz



 (4.53)

and

C =





−ν‖ − k4
⊥ρ

2
sµτ ν‖

ni

ne
ν‖Z

nz

ne

iω∗i − µik
4
⊥ρ

2
s 0 0

iZω∗z − µz
A
Z
k4
⊥ρ

2
s 0 0



 . (4.54)

4.3.3 Toroidal Effects

In tokamaks, the toroidal fields are generated by external coils, so

Bt = B0ẑ
R0

R
=

B0ẑ

1 + r
R0

cos θ
(4.55)
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and ∇×Bt = 0, where B0 and R0 are the magnetic field and the major radius

at the center, respectively. In this geometry, assuming B ≈ Bt, we have

∇ · vE = (∇ 1

B2
) · (cB×∇φ) +

c

B2
∇ · (B×∇φ) (4.56)

=
2x̂

B2R
· cB×∇φ+ 0 (4.57)

=
qs
Ts

vDs · ∇φ, (4.58)

where

vDs =
2cTs

qsBR
x̂× b̂ (4.59)

and if ∇n is in x̂ direction, then vDs = 2ǫnv∗s, where ǫn = Ln/R. Also,

∇ · vds =
c

qs
∇ · B×∇ps

nsB2
(4.60)

=
c

qs

[

∇ 1

B2
· B×∇ps

ns
+

1

B2
∇ · (B×∇ps

ns
)

]

(4.61)

=
c

qs

[

2x̂× b̂

BRns

· ∇ps −
1

B2

∇ns

n2
s

·B×∇ps

]

(4.62)

= vDs ·
∇ps
ps

− vds ·
∇ns

ns

(4.63)

= vDs ·
∇ps
ps

+ vds ·
∇Ts

Ts
(4.64)

where in the last step we make use of ∇ns × ∇ps = ∇ns × ns∇Ts = ∇ps ×

ns∇Ts/Ts. The second to last line shows the cancellation of the diamagnetic

convection so that ∇ · nsvds = vDs · ∇ps/ps. The gyro-viscosity cancellation

is used to eliminate the diamagnetic contribution in ∇ · vps ,

∇ · ns(vps + vπs) ≈ −insk
2
⊥ρ

2
s(ω − ωds)

eφ

Te
. (4.65)

59



Therefore, assuming constant temperatures, the continuity equations

are

dñi

dt
− (v∗i

Te

Ti

+ vDe)
∂

∂y
φ̃− Ti

Te

vDe
∂

∂y
ñi −

d

dt
ρ2s∇2φ̃+ µiρ

2
s∇4

⊥φ̃ = 0 (4.66)

dñz

dt
− (v∗z

ZTe

Tz

+ vDe)
∂

∂y
φ̃− Tz

ZTe

vDe
∂

∂y
ñz −

A

Z

d

dt
ρ2s∇2φ̃

+
A

Z
µzρ

2
s∇4

⊥φ̃ = 0 (4.67)

dñe

dt
+ (v∗e − vDe)

∂

∂y
φ̃+ vDe

∂

∂y
ñe +

Te

meνei
∇‖(−∇‖ñe +∇‖φ̃) = 0 (4.68)

And the last equation can be replaced by the vortex equation

−(
ni

ne

+ A
nz

ne

)
d

dt
ρ2s∇2φ− vDe[

ni

ne

(
Ti

Te

+ 1)
∂

∂y
ñi +

nz

ne

(
Tz

Te

+ Z)
∂

∂y
ñz] (4.69)

+(
ni

ne
µi + A

nz

ne
µz)ρ

2
s∇4

⊥φ+
Te

meνei
∇2

‖(
ni

ne
ñi + Z

nz

ne
ñz − φ̃) = 0.

In matrix form, these equations are

(−iω)AΦ = CΦ (4.70)

where

A =





k2
⊥ρ

2
snτ 0 0

k2
⊥ρ

2
s 1 0

A
Z
k2
⊥ρ

2
s 0 1



 , Φ =





eφ
Te

δni

ni

δnz

nz



 (4.71)

and

C =





−ν‖ − k4
⊥ρ

2
sµτ

ni

ne
(ν‖ + iωDeτ

′
i)

nz

ne
(ν‖Z + iωDeτ

′
z)

iω∗i + iωDe − µik
4
⊥ρ

2
s iωDeτi 0

iZω∗z + iωDe − µz
A
Z
k4
⊥ρ

2
s 0 iωDe

τz
Z



 .(4.72)

Here ωDe = kyvDe, τs = Ts/Te, τ
′
s = Ts/Te + Zs.
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4.3.3.1 Without Impurity

The dispersion relation is a cubic equations with three roots in general.

If we first take the limit with no impurity, then a simplified dispersion relation

is obtained by considering only the first two columns and the first two rows of

both matrices A and C:

k2
⊥ρ

2
sω

2 + iω[ν‖(1 + k2
⊥ρ

2
s) + ik2

⊥ρ
2
sωDeZi]

+i(ν‖ + iωDeτ
′
i)(ω∗i + ωDe) + iν‖ωDeτi = 0. (4.73)

Assuming γ ≪ ωr, ν‖, and ωDe ≪ ν‖, the approximate solution is ω = ωr + iγ

where

ωr =
−ω∗i − ωDe(1 + τi)

1 + k2
⊥ρ

2
s

, (4.74)

γ =
ωr(ωr − ωDe)k

2
⊥ρ

2
s − (ω∗i + ωDe)ωDeτ

′
i

ν‖(1 + k2
⊥ρ

2
s)

. (4.75)

Sometimes we may further restrict ωDe ≪ ω∗i, in which case the mode is

destablized when ωDeω∗i < 0 (bad curvature) and stablized when ωDeω∗i > 0

(good curvature). But in real tokamaks, often ωDe is comparable to ω∗i. In

C-Mod H mode discharges, ωDe is even larger than ω∗i for flat density profiles,

and the above dispersion relation will give damping for small k⊥ρs regardless

of the sign of ωDe.

For another limit with |γ| ≫ |ωr|, ωDe, ω∗i, we find the frequency and

growth rate of a strongly damped mode with

ωr =
(1 + k2

⊥ρ
2
s)ωDeZi + ω∗i + ωDe(1 + τi)

1 + k2
⊥ρ

2
s

, (4.76)

γ = −ν‖(1 + k2
⊥ρ

2
s)

k2
⊥ρ

2
s

. (4.77)
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4.3.3.2 With Impurity

When a significant amount of impurity is present, a third “impurity

mode” emerges. The frequency and growth rate of this mode can be estimated

as

ωr ≈ −ωDe
τz
Z

= kyvDz, (4.78)

γ ≈ −nz

ne
ωDeτzk

2
⊥ρ

2
s[ωDe(1−

Aτz
Z2

k2
⊥ρ

2
s) + Zω∗z]. (4.79)

The properties of the impurity mode change with the curvature effect. In the

limit of a slab geometry(1/R → 0), the frequency of this mode is zero for all

ky, and the eigenvector shows Zδnz+δni = 0 and φ = 0, therefore no transport

results. The curvature effect breaks this symmetry between the main ions and

the impurity ions, and give rises to significant particle transport.

Before showing numerical results, we list the reference parameters for

ITER and Alcator C-Mod in Table 4.1. For the rest of this chapter, numerical

results are based on C-Mod parameters unless otherwise specified.

The dispersion relation of these modes for a set of typical C-Mod pa-

rameters with peaked impurity profile are shown in Fig. 4.2. Although the

growth rate of the impurity mode is relatively small compared to the ITG

mode (Fig. 4.4), it can still be important in nonlinear wave interactions and

contribute to the impurity flux as we will see later.

The dimensionless eigenvectors X(k) = ΦTe/eφ (we call them “polar-

ization vectors”) corresponding to these three modes, determine the particle
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Figure 4.2: The frequencies and growth rates versus kyρ for the three modes for
the density-gradient-driven drift wave, based on typical C-Mod parameters in
plasmas with peaked impurity profiles. (a)-(b) The frequency and growth rate
of the impurity mode. (c)-(d) The frequency and growth rate of the electron
drift wave mode. (e)-(f) The frequency and growth rate of the damped mode.
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ITER C-Mod
B G 50000 50000

Ti ≈ Te eV 1000 3000
R cm 600 76
a cm 200 22
Z 4 (beryllium) 5 (boron)
A 9 (beryllium) 10 (boron)
ne cm−3 1014 1014

nz cm−3 1012 5× 1011

Zeff 1.12 1.1

Table 4.1: Reference parameters of ITER and C-Mod.

Figure 4.3: Polarization diagram of two eigenmodes of the drift wave model.
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fluxes. As we will see later, the quasilinear flux is proportional to the phase

difference between δns and φ or ImX(k). We show these X(k) in Fig. 4.3 on

the complex plane for a typical case with Lnz > 0. The phase angle of the

vector with respect to the potential fluctuation is the polar angle of the vector

with respect to the positive x-axis in the figure and the length of the vector

gives the magnitude of the response with respect to the normalized potential

fluctuation eφ/Te. For the case given in Fig. 4.3, the impurity mode gives rise

to positive particle fluxes while the electron drift wave mode gives negative

fluxes.

4.4 Impurity Drift Waves

4.4.1 Ion Parallel Motion

In the above analysis, we assumed that the parallel motion of ions and

impurities are negligible. For low frequency modes, we may include the parallel

ion motion described by

0 = −Ti∇‖δni − nie∇‖φ− nimiνivi‖, (4.80)

where νi ≈ |k‖|vti is the effective ion collision rate due to the ion Landau damp-

ing. Upon substituting parallel ion velocity vi‖ into the continuity equation,

we get a new term

∇‖vi‖ = −c2s
νi
∇2

‖

(

eφ

Te
+

Ti

Te

δni

ni

)

= ν‖i
eφ

Te
+ ν‖i

Ti

Te

δni

ni
. (4.81)

Similarly, for impurities

∇‖vz‖ = ν‖zZ
eφ

Te
+ ν‖z

Tz

Te

δnz

nz
(4.82)
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where νz ≈ νzi is due to collisions with main ions.

4.4.2 Impurity Drift Waves

In the case of ν‖ → ∞, the electron response is adiabatic, i.e.

δne

ne
=

eΦ

Te
. (4.83)
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In this case we have impurity drift wave (IDW) equations





−1 ni

ne
Z nz

ne

−iω∗i − iωDe − iωk2
⊥ρ

2
s + µik

4
⊥ρ

2
s + ν‖i −iω − iωDe +

Ti

Te
ν‖i 0

−iZω∗z − iωDe − iωA1

Z
k2
⊥ρ

2
s + µz

A1

Z
k4
⊥ρ

2
s + Zν‖z 0 −iω − iωDe +

Tz

Te
ν‖z









eΦ
Te

δni

ni

δnz

nz



 =





0
0
0



 (4.84)

which are reduced to
[ ni

ne
(−iω∗i − iωDe − iωk2

⊥ρ
2
s + µik

4
⊥ρ

2
s + ν‖i)− iω − iωDe +

Ti

Te
ν‖i −Z nz

ne
(−iω − iωDe +

Ti

Te
ν‖i)

−iZω∗z − iωDe − iωA1

Z
k2
⊥ρ

2
s + µz

A1

Z
k4
⊥ρ

2
s + Zν‖z −iω − iωDe +

Tz

Te
ν‖z

]

[ eΦ
Te

δnz

nz

]

=

[

0
0

]

(4.85)

by substituting
δni

ni

= (
eφ

Te

− Z
nz

ne

δnz

nz

)
ne

ni

. (4.86)
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The system can be written as
(−iω)ĀΦ = C̄Φ, (4.87)

where

Ā =

[

1 + k2
⊥ρ

2
s
ni

ne
−Z nz

ne

A1

Z
k2
⊥ρ

2
s 1

]

, Φ =

[ eφ
Te

δnz

nz

]

(4.88)

and

C̄ =

[

iω∗i
ni

ne
+ iωDe(

ni

ne
+ 1)− ν‖i(

ni

ne
+ τi)− µi

ni

ne
k4
⊥ρ

2
s Z nz

ne
(τiν‖i − iωDe)

iZω∗z + iωDe − µz
A1

Z
k4
⊥ρ

2
s − Zν‖z −ν‖z

Tz

Te
+ iωDe

]

(4.89)

The ion response has two limits

δni

ni
=

(

iω∗i + iωDe + iωk2
⊥ρ

2
s − ν‖i

−iω − iωDe + ν‖iTi/Te

)

eφ

Te
(4.90)

=











−eφ

Ti

adiabatic when ν‖i → ∞

−ω∗i

ω

eφ

Te
hydrodynamicwhen ν‖i → 0

(4.91)
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4.5 Passive Impurity Transport

Usually the concentration of impurity is very small, so in the limit of

nz ≪ ne our model should go back to the passive limit, where the impurity

is not involved in the dynamics, but evolves passively due to the potential

fluctuations.

The density, parallel velocity and temperature equations for the impu-

rity are

(−iω + iωDz)n̄z − (iω∗z + iωDe + iω
A

Z
k2
⊥ρ

2
s)φ̄+ iωDzT̄z

+ik‖csv̄‖ = 0 (4.92)

A

Z
(−iω)v̄‖ + (ik‖csn̄ + ik‖csT̄z)

τz
Z

+ ik‖csφ̄ = 0 (4.93)
[

3

2
(−iω)− 7

2
iωDe

τz
Z

]

T̄z − (
3

2
iω∗T + iωDe)φ̄− iωDe

τz
Z
n̄z

+ik‖csv̄‖ = 0, (4.94)

which can be written as a system of linear inhomogeneous equations

Ax = b (4.95)

where

x =





n̄z

T̄z

v̄‖



 /φ̄, b =





Zω∗z + ωDe + ωA
Z
k2
⊥ρ

2
s

3
2
ω∗T + ωDe

−k‖cs



 , (4.96)

A =





−ω − τz
Z
ωDe −ωDe

τz
Z

k‖cs
−ωDe

τz
Z

−3
2
− 7

2
ωDe

τz
Z

k‖cs
k‖cs

τz
Z

k‖cs
τz
Z

−ωA
Z
.



 (4.97)

In the case of passive impurity, ω can be given by linear instability analysis

for two-component plasmas. Then, we can solve the equations above for the

vector x, and calculate quasilinear fluxes for the impurity.
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4.6 Neoclassical Impurity Transport

As mentioned in Chapter 1, the neoclassical theory predicts transport

due to Coulomb collisions in plasmas in the toroidal geometry. Although the

neoclassical theory usually underestimates the transport in present day toka-

maks, the theory sets a good reference point for turbulent transport studies.

The neoclassical transport theory of plasmas with impurity is well doc-

umented in Wenzel and Sigmar [67] and exact formulas are quite complicated.

Simplified analytic formulas for the impurity flux in the Pfirsch-Schlüter regime

is given by Rutherford [61]

ΓPS
z =

q2niρ
2
i νiz

Z

[

Cn

(

∂ lnni

∂r
− 1

Z

∂ lnnz

∂r

)

− CT
∂ lnTi

∂r

]

, (4.98)

where

νiz =
16
√
πe4 ln Λ

3m2
i v

3
ti

nzZ
2 (4.99)

Cn = 1− 0.52α

0.59 + α+ 1.34g−2
(4.100)

CT = 0.5− 0.29 + 0.68α

0.59 + α + 1.34g−2
, (4.101)

and α = nzZ
2/ni, g = ǫ3/2ν∗ is the collisionality parameter of the working gas.

Therefore,

DPS
z =

q2ρ2i νzi
Z

mz

mi
Cn

1

Z
(4.102)

V PS
z =

q2ρ2i νzi
Z

mz

mi

(

−Cn

Lni
+

CT

LT i

)

, (4.103)

where νzi = νiz
ni

nz

mi

mz
.
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4.7 Kinetic Theory of Fluctuations

We can also get a dispersion relation from kinetic theory

Dk(ω) = k2λ2
De + (1− iδek) +

niTe

neTi

[

1 +
ω − ω∗i

|k‖|vi
Z

(

ω

|k‖|vi

)

Γ0(bi)

]

+
nzZ

2Te

neTz

[

1 +
ω − ω∗z

|k‖|vz
Z

(

ω

|k‖|vz

)

Γ0(bz)

]

+
nz2Z

2
2Te

neTz2

[

1 +
ω − ω∗z2

|k‖|vz2
Z

(

ω

|k‖|vz2

)

Γ0(bz2)

]

(4.104)

where

ω∗s =
kycTs

esB

d lnns

dr
(4.105)

vs =

√

2Ts

ms

(4.106)

bs = k2
⊥ρ

2
s (4.107)

with ρ2s = msTs/e
2B2. Here we use the “iδk” model of Terry-Horton to simplify

the non-adiabatic electron response. For the collisional drift waves or the

trapped electron instability, the full electron response χe(k, ω) can be restored

when required. Similarly, the ion response can be generalized to include the

ηs = d lnTs/d lnns parameter when the ITG mode is strong.
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4.8 Turbulent Particle Transport

4.8.1 Quasilinear Flux

Due to fluctuations, particle fluxes in the x (radial) direction are

Γi = < vxδni >= Re

[

∑

k

ikycΦ
∗
k

B
δni

]

= −
∑

k

kyρscsni

∣

∣

∣

∣

eΦ

Te

∣

∣

∣

∣

2

ImX2 (4.108)

Γz = < vxδnz >= Re

[

∑

k

ikycΦ
∗
k

B
δnz

]

= −
∑

k

kyρscsnz

∣

∣

∣

∣

eΦ

Te

∣

∣

∣

∣

2

ImX3 (4.109)

where

X =





X1

X2

X3



 =





1
δni

ni

/ eΦ
T

δnz

nz
/ eΦ

T



 . (4.110)

4.8.2 Impurity Transport in the Slab Geometry

From the linear analysis above, we have

δnz/nz

eφ/Te
=

−iZω∗z − iωA
Z
k2
⊥ρ

2
s

iω
. (4.111)

The impurity particle flux in the x direction is

Γz/nz = −cs
∑

k

kyρsIm

[

δnz/nz

eφ/Te

] ∣

∣

∣

∣

eφk

Te

∣

∣

∣

∣

2

(4.112)

= −cs
∑

k

kyρs
Zγω∗z

ω2
r + γ2

∣

∣

∣

∣

eφk

Te

∣

∣

∣

∣

2

(4.113)

≈ −cs
∑

k

kyρs
Zk2

⊥ρ
2
s

(1 + k2
⊥ρ

2
s)ν‖e

ω∗z

∣

∣

∣

∣

eφk

Te

∣

∣

∣

∣

2

(4.114)
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where we make use of Eq. (4.47) and Eq. (4.48) in the case of γ ≪ ωr. Phe-

nomenological models for particle flux are usually expressed as

Γz = −Dz
∂nz

∂x
+ Vznz (4.115)

or

Γz/nz = Dz/Lnz + Vz. (4.116)

Therefore

Dz = c2s
∑

k

k2
yρ

2
sk

2
⊥ρ

2
s

(1 + k2
⊥ρ

2
s)ν‖e

∣

∣

∣

∣

eφk

Te

∣

∣

∣

∣

2

(4.117)

Vz = 0, (4.118)

from Eq. (4.114). Note there is no pinch velocity in slab geometry and the

temperature gradient is not involved in the transport.

4.8.3 Impurity Transport in the Toroidal Geometry

In toroidal geometry, due to the effect of curvature, the pinch velocity

is no longer zero. Linearizing Eq. (4.67) gives:

−iωñz − iω∗zφ̃− iωDeφ̃+ iωDzp̃z − iω
A

Z
k2
⊥ρ

2
sφ̃

−
k2
‖v

2
z

iω

Te

Tz
(φ̃+ p̃z) = 0 (4.119)

For the evolution of the impurity pressure, we can use dpz/dt ≈ 0 and get

δpz
pz

= −ω∗z

ω
(1 + ηz)

eφ

Te
. (4.120)
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Therefore

δnz/nz

eφ/Te
=

1

ω

[

−ω∗z − ωDe −
ωDzω∗z

ω
(1 + ηz)

]

+
k2
‖v

2
z

ω2

Te

Tz

[1− ω∗z

ω
(1 + ηz)]−

A

Z
k2
⊥ρ

2
s. (4.121)

In the limit of no parallel motion, we find that the impurity particle flux is

proportional to (assuming γ ≪ ωr)

−Im

(

δnz/nz

eφ/Te

)

=
γ

ω2
r

[

cTe

eB

ky
Lnz

(1 +
2

ωr

kyvDz) +
cTe

eB

ky
LTz

2

ωr

kyvDz − kyvDe

]

(4.122)

and the transport coefficients are

Dz = c2s
∑

k

(kyρs)
2 γ

ω2
r

(1 +
2

ωr
kyvDz)

∣

∣

∣
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Te
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2

, (4.123)

Vz = cs
∑

k

(kyρs)
γ

ω2
r

[

cTe

eB

ky
LTz

2

ωr

kyvDz − kyvDe

] ∣

∣

∣

∣

eφk

Te

∣

∣

∣

∣

2

. (4.124)

The curvature pinch term and the thermal pinch term (related to 1/LTz)

compete to determine the direction of pinch when ωr < 0. For large ωDe, the

pinch changes from inward to outward if

R

Z

Ti

Ti + Te
> LT i. (4.125)

4.8.4 Fluctuation Spectrum

Now we need a model for the fluctuation level eΦk

Te
, an example of which

is
∣

∣

∣

∣

eΦk

Te

∣

∣

∣

∣

=
Φ0

(1 + k2
⊥ρ

2
s)

m/2
. (4.126)
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We call this the 1-parameter spectral model with the parameterm = 3−5. The

constant Φ0 can be determined by experiments or simulations if we integrate

over all k:

∫
∣

∣

∣

∣

eΦk

Te

∣

∣

∣

∣

2

dk =

∫ ∞

0

∫ ∞

0

(

Φ0

(1 + k2
⊥ρ

2
s)

3/2

)2

dkxdky (4.127)

=
π

2

∫ ∞

0

(

Φ0

(1 + k2
⊥ρ

2
s)

3/2

)2

k⊥dk⊥ =
πΦ2

0

8
(4.128)

≈
N
∑

m=1

N
∑

n=1

(

Φ0

(1 + k2
⊥ρ

2
s)

3/2

)2

∆kx∆ky (4.129)

where k⊥ =
√

k2
x + k2

y , kx = m∆kx, ky = n∆ky, ∆kx = ∆ky = kmax/N . For

kmaxρs = 5 and N = 400, the above summation yields 0.385Φ2
0. Typical values

for Φ0 are 0.01-0.1.

Another model is a 2-parameter fluctuation model with a roll-over wave

number kc
∣

∣

∣

∣

eφ

Te

∣

∣

∣

∣

=
Φ0

(1 + k2
⊥/k

2
c )

m/2
. (4.130)

When k2
cρ

2
s ≪ 1, the spectrum is close to a power law distribution.

4.9 Ion Temperature Gradient

Now let us consider a simplified ITG model with impurities, but without

ion parallel motion:

δni

ni

ni

ne

+ Z
δnz

nz

nz

ne

=
δne

ne

=
eφ

Te

(4.131)
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Assuming Ti ≈ Tz, the linearized equations are:
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


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−1 ni
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(4.132)

By eliminating δnz/nz, one gets
(−iω)AΦ = CΦ (4.133)

where

A =




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⊥ρ

2
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and

C =





iω∗i + iωDe iωDeτi iωDeτi
iZω∗z + iωDe(1 +

τz
Z2nz/ne

) −iωDe
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3
ωDe i2

3
ωDeτi i7

3
ωDeτi
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 . (4.135)
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The dispersion relation for ITG modes is shown in Fig. 4.4.

4.10 Trapped Electron Mode

Without δTe, the trapped electron mode with one impurity is given by
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Figure 4.4: The frequencies and growth rates versus kyρ for the three modes
for the ITG model (same parameters as in Fig. 4.2).
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(4.136)

In order to get the eigenvalues and eigenvectors, we eliminate δnt/ne and get the following equations in
matrix form:

(−iω)AΦ = CΦ (4.137)

where

A =





−fp
ni

ne
Z nz

ne
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2
s 1 0
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2
s 0 1
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 (4.138)

and

C =





fp(νeff + iωDe)− (iω∗e + iωDe)ft −(νeff + iωDe)
ni

ne
−(νeff + iωDe)Z

nz

ne
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s iωDeτi 0
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A
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s 0 iωDeτz/Z
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 (4.139)
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Table 4.2: Parameters for C-Mod experiments
Te ne nz R/LTe R/Lne R/Lnz

keV 1020m−3 1018m−3

r/a = 0.3
H-mode 1.4 2.5 0.97 3.5 0.076 -6.9
ITB 1.4 3.3 2.9 3.4 2.1 3.8
I-mode 3.1 2.1 0.33 4.4 0.53 0.57
r/a = 0.7
H-mode 0.76 2.4 1.9 7.7 0.65 4.2
ITB 0.78 2.5 2.8 7.9 2.1 -4.1
I-mode 1.5 1.8 0.24 7.8 2.0 3.3

The dispersion relation of the trapped electron mode (TEM) is

(−iω)3(−fp − k2
⊥ρ

2
s,τ ) + (−iω)2[−fp(iω∗e + iωDe + νeff)

−(µik
4
⊥ρ

2
s,i + Z2µzk

4
⊥ρ

2
s,z)− (iωDe + νeff)k

2
⊥ρ

2
s,τ ] +

(−iω)(iωDe + νeff)
[

−iω∗e − µik
4
⊥ρ

2
s,i − Z2µzk

4
⊥ρ

2
s,z

]

= 0 (4.140)

To illustrate the applicability of our model, we select three discharges

in the high confinement regimes: the EDA H-mode, ITB, and I-mode, typi-

cal for C-Mod [21]. Electron density and temperature profiles used here are

measured by Thomson Scattering diagnostics [42]. The boron density profiles

are measured by the core-CXRS system [59]. The rest of the local parameters

were extracted from the C-Mod database. The ion temperature Ti is assumed

to be equal to the electron temperature Te, since the collisionality is high and

there is no direct measurement of Ti. The confinement regimes are character-

ized by the plasma gradient parameters as follows. (1) For the H-mode, the
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Figure 4.5: Main ion turbulent flux and impurity flux versus impurity density
gradients (R/Lnz) for a set of typical C-Mod parameters, for the ITG mode.
From the slope and the intercept of the curve we can extract the transport
coefficients D and V . The negative values of R/Lnz correspond to hollow
impurity profiles with inward impurity particle fluxes.
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Figure 4.6: C-Mod shot #1070831028 H-mode (a) plasma density, electron
temperature, and boron density profiles, (b) calculated diffusion coefficients
(black curves) and convection velocity (blue curves), (c) comparison of neo-
classical V/D with experimental results (= −1/Lnz) and (d) neoclassical and
turbulent particle fluxes for impurities (“DW” means impurity drift wave,
“ITG” means the ITG mode, “NEO” means neoclassical results, and “EXP”
means experimental results).
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Figure 4.7: C-Mod shot #1070831028 ITB regime (a) plasma density, electron
temperature, and boron density profiles, (b) calculated diffusion coefficient
and convection velocity, (c) comparison of neoclassical V/D with experimental
results and (d) neoclassical and turbulent particle fluxes for impurities (same
notation as in Fig. 4.6).
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Figure 4.8: C-Mod shot #1101209010 I-mode (a) plasma density, electron
temperature, and boron density profiles, (b) calculated diffusion coefficient
and convection velocity, (c) comparison of neoclassical V/D with experimental
results and (d) neoclassical and turbulent particle fluxes for impurities (same
notation as in Fig. 4.6).
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electron density profile is flat and the low Z impurity profile is often hollow

as shown in Fig. 4.6(a). We take R/Lne ≈ 0, and R/Lnz = −7 at r/a = 0.3.

(2) The ITB profiles have three radial subintervals: inside the barrier, in the

barrier (ρ ≈ 0.5) and outside the barrier. Inside the ITB, both the electron

density and the impurity density are strongly peaked with R/Lne = 3.3 and

R/Lnz = 3.8 and outside the ITB we take R/Lne = 2.5 and R/Lnz = −4.1,

as shown in Fig. 4.7(a). (3) The I-mode, which is a regime of operation re-

cently discovered on C-Mod [41], has an edge thermal transport barrier, but

not a particle transport barrier. The I-mode is characterized by H-mode like

temperature profiles and L-mode like density profiles. The density gradients

are quite flat in the core with R/Lne = R/Lnz = 0.5 and steep near the edge,

as shown in Fig. 4.8(a). The parameter differences between these regimes are

listed in Table 4.2.

Figure 4.6(a) shows the profiles of electron density, electron tempera-

ture and boron density profiles for the H-mode. Based on these profiles, we

estimate the particle diffusivity and the pinch velocity in Fig. 4.6(b). For the

neoclassical calculation, we use the NCLASS [39] and NEO codes [7]. The

NCLASS code is based on analytic formulae, which do not accurately include

plasma shaping or self-consistent interspecies coupling over all collisionality

regimes. The NEO code is fully numerical and may provide a more accurate

solution for the impurity flux. The results show that at r/a = 0.6, the ITG

turbulent diffusivity DITG ≈ 4m2/s is significantly larger than the neoclassical

diffusivity DNEO ≈ 0.2m2/s and the impurity drift wave diffusivity DDW. The
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ITG pinch velocity (V ITG ≈ −2m/s) is also larger, and in the opposite direc-

tion of the neoclassical and impurity drift wave pinch velocities. The ratio of

the pinch velocity to the diffusivity (also called “peaking factor”) V/D from

all models are compared to −1/Lnz extracted from the profile in Fig. 4.6(c).

Note, one can get the ratio V/D = −1/Lnz by assuming zero impurity particle

flux. The ITG mode gives a negative V/D, while the impurity drift wave gives

a positive V/D, closer to the ratio inferred from the experiment. Although

the impurity fluxes due to the impurity drift wave are smaller than ITG, as

shown in Fig. 4.6(d), the impurity drift wave predicts a better peaking fac-

tor than ITG. Figure 4.7 shows results for an ITB regime. Similar to the

H-mode, the turbulent D’s are significantly larger than neoclassical D. But

in this case, impurity drift wave dominates over ITG for the turbulent flux.

Inside ITB r/a < 0.35, the ITG mode is suppressed, but the impurity drift

wave is very strong. The quantity V/D from the impurity drift wave matches

the experiment at about r/a = 0.5. In Fig. 4.8, we analyze an I-mode shot.

The impurity drift wave and the ITG turbulences are now comparable. The

ITG turbulence gives a negative V/D ratio, which is closer to the experiment,

as shown in Fig. 4.8(c). This suggest that in the I-mode, ITG may be the

dominant mode responsible for the anomalous transport.

Many authors (e.g.[1]) discuss the effect of different modes on the di-

rection of the pinch velocity. We also see in our calculations that, in some

regimes, the impurity drift wave model predicts a pinch velocity in the op-

posite direction to the ITG pinch velocity. However the contributions from
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different modes are determined by their fluctuation levels, which cannot be

determined by quasilinear theory. And, the coupling between different modes

needs to be addressed by constructing a complex model including all possible

modes.

Recent impurity transport experiments on LHD [69] show that when

strong ion heating is applied to the plasma, carbon impurity is pushed outward

and a hollow carbon profile forms. The change of the peaking factor can be

understood from the transport coefficients for the impurity given by

Dz = c2s
∑

k

(kyρs)
2 γ

ω2
r

(1 +
2

ωr
kyvDz)

∣

∣

∣

∣

eφk

Te

∣

∣

∣

∣

2

(4.141)

Vz = cs
∑

k

(kyρs)
γ

ω2
r

[

cTe

eB

ky
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2

ωr

kyvDz − kyvDe

] ∣

∣

∣
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eφk

Te

∣

∣

∣

∣

2

, (4.142)

where γ(k) ≪ ωr(k) is used. The two terms in Eq. (4.142) are competing to

determine the direction of pinch velocity. If we take ωr from Eq. (4.74), the

pinch Vz changes for inward to outward when

R

LT i

>
ZTe

Ti

(

1 +
Ti

Te

− R

2Lne

)

, (4.143)

assuming Tz ≈ Ti. However the parameters for C-Mod and LHD are different,

as listed in Table 4.3. Further studies of LHD data are ongoing.

4.11 Conclusions

We have developed codes for solving systems of drift wave turbulence

equations for multi-component fusion plasmas and for calculating quasilinear
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Table 4.3: Comparison of C-Mod and LHD parameters
C-Mod LHD

Major Radius R 0.67m 3.6m
Minor Radius a 0.22m 0.4m
Magnetic field B 5T 2T
Electron Temperature Te 3 keV 1 keV
Plasma Density ne 1020m−3 1019m−3

Impurity B5+ C6+

Zeff 1.1 1.6

particle fluxes. The calculations are much faster than nonlinear simulations

and may be suitable for real-time analysis and feedback control of tokamak

plasmas.

We used an analytic model (motivated by nonlinear simulations) of the

potential spectrum along with the polarization eigenvectors from the linear

eigenmodes to compute the diffusivities and convection velocities as a func-

tion of plasma parameters. Our calculations for the C-Mod H-mode, I-mode,

and ITB regime shots show that turbulent impurity diffusivity Dz from im-

purity drift wave and ITG mode are a order of magnitude larger than the

neoclassical results. The pinch velocity Vz predicted by two turbulent models

shows different character in different confinement regimes. For the hollow pro-

files in H-mode plasmas and the outer region of the ITB regime, the impurity

drift wave gives a better prediction of the V/D ratio, while in the I-mode,

the ITG mode works better. We also find for all regimes, when turbulent flux

drops, the V/D from experiments gets closer to the neoclassical V/D.

In the current work, we considered mainly the density gradient driven
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mode and the ITG mode for impurity transport. However, the code can be

extended to include more modes and couple them together to get a more com-

plete description of the turbulence in the plasma. There is also an intrinsic

rotation for ICRF heated plasmas that generates a radial electric field, as

shown in Ref. [18]. The strong Er-shear can suppress the turbulent trans-

port (see Chapter 3). The effect of Er-shear will be included in the future.

Measurement of impurity profiles with high time resolution will help better

understand the impurity transport and enable direct comparison between ex-

periment and theory. Lastly, the validity of our quasilinear models can be also

checked by nonlinear simulations.
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Chapter 5

Electrostatic Electron Temperature Gradient

Mode

The standard model for universal turbulent electron transport across

various magnetic confinement geometries is the electron temperature gradient

(ETG) form of drift wave turbulence. The driving mechanism for this turbu-

lence is the electron temperature gradient and the physical mechanism can be

understood in terms of a Carnot cycle made up from the E×B convection of

the plasma in drift wave vortices [37]. The ETG instability involves convec-

tion of the thermal electron distribution and does not require a magnetically

trapped electron distribution. The electron temperature gradient is expressed

by dTe/dr = −Te/LTe where LTe is the local electron temperature gradient

scale length. The instability is robust with a fast growth rate on the order of a

few tenths of vte/LTe (when k⊥λDe << 1), where vte is the electron thermal ve-

locity. The resulting turbulence has been used to explain electron transport in

many tokamak confinement systems including NSTX[34, 43], Tore-Supra[30],

and TCV[3]. However, the fluctuations in these experiments were not directly

measured. Recently, Mazzucato et al. [52] used reflectometry in NSTX to

measure part of the k-spectrum for ETG.
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5.1 Kinetic theory for the ETG mode

The ETG mode can be derived from reduced fluid equations, drift ki-

netic equations, and gyrokinetic equations. There are both electrostatic and

electromagnetic version of ETG modes, and the geometry of the background

magnetic field lines also plays an important role in determining the properties

of the modes (e.g. the threshold for instability). In this section, we will derive

a simple drift-kinetic model for the slab ETG.

The drift-kinetic equation for electrons reads

∂fe
∂t

+ vE · ∇fe + vz
∂fe
∂z

− e

me
Ez

∂fe
∂vz

= 0 (5.1)

Assuming a Maxwellian distribution for electrons, fe0 = ne0

(

m
2πTe0

)3/2

e
− m

2Te0
(v2⊥+v2z),

with inhomogeneity in x-direction

dfe0
dx

= fe0

[

dne0

dx

1

ne0
+

(

me(v
2
⊥ + v2z)

2Te0
− 3

2

)

dTe0

dx

1

Te0

]

, (5.2)

and integration of the distribution function over v⊥ gives

∫∫

fe02πv⊥dv⊥dvz =

∫∫

fe0

(

mev
2
⊥

Te0

)

2πv⊥dv⊥dvz =

∫

Fe0dvz, (5.3)

where the 1-D Maxwellian distribution is

Fe0 = ne0

(

me

2πTe0

)1/2

e−mev2z/2Te0 . (5.4)

Using

∂fe0
∂vz

= −fe0
mevz
Te0

, (5.5)
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we obtain the linear response of electron density induced by the electrostatic

potential φ,

δne =
eφ

Te

∫

1−
ω − kyv∗e

[

1 + ηe

(

mev2z
Te0

− 1
2

)]

ω − kzvz
Fe0dvz. (5.6)

The integral over the singular point can be represented by the plasma

dispersion function

∫ +∞

−∞

Fe0dvz
ω − kzvz

= − ne0

|kz|vte
Z

(

ω

|kz|vte

)

, (5.7)

where vte =
√

2Te0/me, and

∫ +∞
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2
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2
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√
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2
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[

ω +
ω2
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(

ω

|kz|vte
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. (5.8)

Therefore the electron response is given by

δne =
eφne0

Te0

[

1 +
ω − ω∗e(1− ηe/2)

|kz|vte
Z

(

ω

|kz|vte

)

− ηeω∗e

|kz|vte

(

ω

|kz|vte
+

ω2

k2
zv

2
te

Z

(

ω

kzvte

))]

. (5.9)

We can obtain similar results for ions from the drift-kinetic equation,

except that ion finite Larmor radius effects should be kept for modes with

k⊥ρi & 1. Any field f averaged over an ion gyro-orbit is reduced by a factor

of J0:

〈f〉 =
∑

k

fkJ0(k⊥ρi)e
ik·xgc . (5.10)
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Since both the distribution function of ions fi and the electric potential φ are

reduced, the ion response (without ion temperature gradient effect) is given

by

δni = −eφni0

Te0

[

τ +
τω + ω∗e

|kz|vti
Z

(

ω

|kz|vti

)

I0(bi)e
−bi

]

, (5.11)

where bi = k2
⊥ρ

2
i /2, and τ = Te0/Ti0.

The dispersion relation is then

D(k, ω) = 1 + k2λ2
De +

ω − ω∗e(1− ηe/2)

|kz|vte
Z

(

ω

|kz|vte

)

− ηeω∗e

|kz|vte

[

ω

|kz|vte
+

ω2

k2
zv

2
te

Z

(

ω

|kz|vte

)]

+τ +
τω + ω∗e

|kz|vti
Z

(

ω

|kz|vti

)

I0(bi)e
−bi = 0. (5.12)

Similar dispersion relations for ETG with electron finite Larmor radius effects

and adiabatic ions can be found in [45].

Now let us consider some limits. First, when |ω| ≫ |kz|vte ≫ |kz|vti,

with the asymptotic property of Z-function Z(ζ) ≈ −1/ζ(1 + 1/2ζ2 + . . . )

when |ζ | ≫ 1, we find the dispersion relation

−k2
zv

2
te

2ω2

[

1− ω∗e

ω
(1− ηe/2)

]

+
ω∗e

ω
+ τ = 0 (5.13)

or

τω3 + ω2ω∗e −
k2
zv

2
te

2
ω =

k2
zv

2
te

2
ω∗e(

ηe
2
− 1). (5.14)

The three roots of this dispersion relation as a function of ηe are plotted in

Fig. 5.1 with frequencies normalized to vte/Lne. Notice that only the solution
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Figure 5.1: The frequency and growth rate of ETG as a function of ηe using
Eq. (5.14). The parameters are kyρe = 0.5, kzρe = 0.01, ρe/Lne = 0.1. The
dashed lines in the upper and lower panels show |ωr| = kzvte and |γ| = kzvte,
respectively.
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with |ω| ≫ |kz|vte is consistent with the high frequency assumption. In the

limit of kz = 0, we get basic drift waves with ω = −ω∗e/τ = ω∗i.

Next, we examine the usual drift wave with |kz|vte ≫ |ω| ≫ |kz|vti. To

the first order approximation for both ion and electron response, we find the

dispersion relation

1 + k2λ2
De + i

√
π
ω − ω∗e(1− ηe/2)

|kz|vte
− ω∗e

ω
− k2

zc
2
s

ω2
= 0 (5.15)

where we also assume τ ≫ 1 and ω ≈ ω∗e. A similar result is given in [24] chap

26.4. The ion acoustic wave ω2 = k2
zc

2
s/(1 + k2λ2

De) can be easily recovered by

setting ω∗e = 0.

5.2 ETG modes in the CLM experiments

Basic steady-state university-scale hydrogen plasma experiments on the

Columbia linear machine (CLM) have been carried out. These experiments

directly measure fluctuations with specially designed low capacitance probes

that allow the measurement of plasma potentials up to MHz frequencies. The

conditions for the ETG instability are created uses a new kind of plasma source

that has a two-part acceleration/heating mesh with a higher and variable volt-

age on the inner disk mesh r < r1 and lower voltage on the outer ring mesh

r1 < r < a. This arrangement allows the formation of electron temperature

profiles with a continuous range of temperature gradient scale lengths LTe. The

plasma density profile can be maintained as flat in the CLM, which simplifies

the theory of the ETG instability. Using high speed data acquisition equip-
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Machine Length L = 150 cm
Minor radius a = 3.3 cm
Electron Temperature (on axis) Te0 = 16.5 eV
Ion Temperature Ti = 3.1 eV
Electron Density ne = 3.2× 109 cm−3

Magnetic Field B = 1000 G
Electron Temperature Scale Length (r=1.8 cm) LTe = 0.33 cm
Parallel Wave Number kz = 0.003 cm−1

Electron Gyro-frequency ωce = 1.76× 1010 rad/s
Plasma Frequency ωpe = 3.09× 109 rad/s
Electron Thermal Velocity (on axis) vte0 = 1.70× 108 cm/s
Ion Sound Speed cs = 3.97× 106 cm/s
Electron Gyro-radius (on axis) ρe0 = 0.0097 cm
Ion Gyro-radius ρi = 0.18 cm
Debye Length (on axis) λDe0 = 0.055 cm

Table 5.1: Machine and plasma parameters for a typical ETG experiment in
the Columbia Linear Machine.

ment, Wei et al. [65] obtain steady-state fluctuation data and report that the

spectrum is consistent with the ETG instability. In Table 5.1 we summarize

the parameters of the CLM hydrogen plasma used in these experiments.

As we will show, the fluctuations in the rest frame of the plasma are in

the range of 100-500 kHz and the wavenumbers are high, ranging up to kyρe ∼

0.5 for the fastest growing modes in the case of sharp electron temperature

gradients. However, the probe data show that fluctuations with much longer

wavelengths dominate the spectrum; thus, there is clearly a need for nonlinear

simulations of the system to understand the experimental data.

The CLM is a cylindrical linear machine that is capable of producing

steady-state collisionless hydrogen plasmas confined by an external magnetic
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field. The plasma is produced by a DC discharge in the source region. To heat

the electrons a tungsten mesh is biased in the transition region with a suitably

positive potential to accelerate the plasma electrons. These electrons then

thermalize on the neutrals to create a higher temperature in the center (∼ 15

eV) relative to the edge (< 1 eV) and create a sharp electron temperature

gradient. The resulting low density hydrogen plasma (∼ 109/cm3) flows into

the experiment (central) cell which is about 1.5 m long and 3 cm in radius and

immersed in a 0.1 T homogeneous magnetic field. Ion temperature remains

low (∼ 2 eV). The relevant parameters are summarized in Table 5.1 and the

radial profiles of plasma density ne(r), electron temperature Te(r) and ion

temperature Ti(r) obtained are shown in Fig. 5.2(a). The density profile is

almost flat in the region of turbulence.

Specially designed high-resolution twin Langmuir probes are placed in-

side the plasma to measure the electric potential. The power spectrum of

signals from the twin probes is shown in Fig. 5.2(b). When the electron

temperature gradient is above a threshold (LTe
< 0.428 cm), strong signals

are found around 2.2 MHz. After subtracting the E×B rotational frequency

due to the bias potential, the frequency of the mode in the plasma rest frame

is about 0.3 MHz. The radial profiles of potential fluctuation are measured

and show that the maximum fluctuation is located close to the point of the

sharpest electron temperature gradient (smallest LTe), as in Fig. 5.3. Detailed

analysis of the signals shows that three azimuthal modes m = 14, 15, 16 are

dominant in the steady-state fluctuation signal [65].
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(a) (b)

Figure 5.2: (a) Radial profiles of electron temperature Te, ion temperature Ti

and plasma density ne measured in the CLM. Two sets of data with two differ-
ent bias voltages (thus different temperature gradients) are shown. A strong
electron temperature gradient is produced between r = 1.5 cm and r = 2.2 cm.
Note that the density in the region of 1.5 cm < r < 2.2 cm is nearly flat. The
electron velocity distribution is close to a local Maxwell-Boltzmann distribu-
tion with the temperature Te(r) and a constant electron density ne. The ion
temperature is also constant and less than 1/5 the electron temperature. (b)
The power spectra of the signals picked up by a high frequency probe are
recorded for various temperature gradients (a/LTe

). For strong enough tem-
perature gradient, LTe

< 0.428 cm, signals are found to be peak around 2.4
MHz in the laboratory frame. Reprinted with permission from Wei et al. [65].
Copyright 2010 American Institute of Physics.
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Figure 5.3: The radial profile of the electric potential fluctuation measured in
the CLM, peaking around r = 1.7 cm. Reprinted with permission from Ref.
[65]. Copyright 2010 American Institute of Physics.

5.3 Linear Properties of ETG Modes in a Cylinder

In this section we will report on the linear properties of ETG modes

for the CLM plasma. The linear properties of ETG modes have been studied

throughly and the dispersion relation of the slab ETG mode in the fluid limit

with no density gradient is given by [45]:

[
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2
e

2
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(k‖ρe)
2 = 0. (5.16)

This slab model is equivalent to the toroidal ETG mode (e.g. [33]) in the

limit of large toroidal curvature R/LTe
and large safety factor q = rBt/RBp.

We use these limits in simulating the cylindrical CLM plasma by the toroidal

99



GTC code.

We solved the cubic dispersion relation of Eq. (5.16) for eigenmodes

for CLM parameters and plot the results in Fig. 5.4. Three modes (roots)

exist and the unstable Mode 2 is the source of turbulence. The remaining

modes are damped and may absorb wave energy received by the nonlinear

transfer from the unstable mode. In the plasma rest frame the frequency of

the most unstable mode is ω ≈ 1.5 × 2πMHz with wave number kyρe ≈ 0.3,

or the poloidal wave number m ≈ 70. In the laboratory frame the plasma is

rotating so the corresponding laboratory frequency is ωlab = mΩ+ω(k), where

Ω ≡ Er/(rB) ∼ 2π × 130 kHz for nearly rigid-body rotation.

5.4 Gyrokinetic Simulations using GTC code

Gyrokinetic Toroidal Code (GTC) [31] is a sophisticated massively-

parallel gyrokinetic particle simulation code, which has been successful in sim-

ulating toroidal ITG, CTEM, toroidal ETG, Alfvén eigenmodes, and other

plasma phenomena[47, 68, 48, 15]. We adapt the toroidal GTC code to study

the cylindrical plasmas by taking the limit of infinite constant q and setting

the equivalent major radius R0 & 1/k‖. In this section, we will first focus on

results for the set of parameters listed in Table 5.1, and later do a parametric

scan of the Te gradient and parallel wave number k‖ [22].
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Figure 5.4: The dispersion relation of the slab ETG mode without density
gradient, given by Eq. (5.16). There are three modes: mode 1 is purely
damping; mode 2 and mode 3 are complex conjugates. We are interested in
the unstable mode 2, whose growth rate is larger than the frequency. The
growth rates obtained from linear simulations are shown as blue crosses.
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5.4.1 Numerical Results

Based on the parameters in Table 5.1, the time and space units in the

code are normalized as

t → tcs,e/R0, l → l/R0, (5.17)

where R0 = 300 cm and cs,e =
√

Ti/me ≈ 7.27 × 107 cm/s. The time step

t0 = 0.0025 × cs,e/R0 ≈ 10−8 s. For a typical run, we employ approximately

150 × 600 × 32 (in the radial, poloidal, and toroidal direction, respectively)

cells and 1000 electrons per cell. This corresponds to a perpendicular spatial

resolution of ∼ 0.35ρe0. It takes about ten hours to run on NERSC Hopper or

TACC Ranger with 2048 nodes for simulating 8000 time steps.

In our simulation model, electrons are advanced by the electrostatic

gyrokinetic equation using the δf algorithm [31]

dwe

dt
= (1− we)

[

−vE · ∇f0e
f0e

− (eb · ∇φ)
1

me

1

f0e

∂f0e
∂v‖

]

, (5.18)

where we ≡ δfe/f0e and f0e is the background electron distribution function.

Ions are treated as adiabatic

δfi
fi

= −eφ

Ti
. (5.19)

which is valid when k⊥ρi ≫ 1. The boundary condition in the z direction

(along B field) is periodic, and the electric potential φ vanishes at the inner

(r/a = 0.2) and outer (r/a = 0.8) radii.
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Figure 5.5: The electron temperature profile for GTC simulations. The exper-
imental results are shown as the dotted curve with plus signs. The analytic
model is depicted by the solid curve, and the dash curve is its inverse scale
length 1/LTe. The triangle marks the radial position of the maximum gradient
of the model.
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5.4.1.1 Modeling electron temperature and density profiles

As shown in Fig. 5.5, the background temperature profile used in the

simulations are modeled by the analytic formula

Te = Te0

(

1 + c1

[

tanh

(

c2 − r2/a2

c3

)

− 1

])

, (5.20)

with [c1, c2, c3] = [0.44, 0.36, 0.14], where c2 controls the position of the steep-

est gradient, c3 controls the width of the temperature drop, and c1 controls

the temperature at the edge (with the core temperature Te0 fixed). This back-

ground profile is fixed during the simulation. For the density, we use a flat

profile, i.e. ne(r) = const. The maximum temperature gradient is located at

r = 1.8 cm, but L−1
Te

peaks at r = 2.1 cm with a minimum LTe
≈ 0.3 cm, where

the linear growth rate is largest. The drift frequency at this peak is

ω∗Te = kyρevte/LTe = m× 2π × 0.193 MHz. (5.21)

5.4.1.2 Time history of the simulation

Figure 5.6 shows the time history of the averaged electric potential fluc-

tuation and electron energy flux. It is clear that during 0 < t < 2200t0, both

quantities grow exponentially, corresponding to a linear stage. The growth

rates for a few modes obtained from the simulations are shown in Fig. 5.4 as

blue crosses. Thereafter, the ETG modes saturate and when t > 4000t0 they

enter a quasi-steady state.

Two contours of the electric potential at t = 2000t0 and t = 4000t0 are

shown in Fig. 5.7 representing a typical linear and nonlinear case respectively.
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Figure 5.6: The time evolution of the root-mean-square of the electric po-
tential 〈φ〉 =

∫

V

√

φ2d3r/
∫

V
d3r, and the radial electron energy flux qe =

∫ ∫

cEθ

2B
me(v

2 − v20)δfd
3vd3r/

∫

V
d3r.

Strong nonlinear effects cause inverse cascading, with energy transfer from

short poloidal wave length (large m number) modes to long wave length modes

(small m number). The power spectra of signals measured at r = 1.88 cm for

t = 2000t0, t = 2400t0, t = 3200t0, and t = 4000t0 are shown in Fig. 5.8.

5.4.1.3 Time history of two modes

The time history of two modes m = 15 and m = 60 are shown in Fig.

5.9. The mode with m = 60 is the fastest growing mode at the late linear

stage and m = 15 is the dominant mode in the nonlinear stage. The frequency

of the m = 15 mode in the plasma frame is about 0.24 MHz, close to the
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(a) (b)

Figure 5.7: Contours of the electric-potential fluctuation in the poloidal plane
at a) linear stage t = 2000t0, and b) nonlinear stage t = 4000t0. In the linear
stage, the fastest growing mode with m ≈ 70, n = 2 (m,n are the poloidal
and the parallel mode number, respectively) dominates, while in the nonlinear
stage, m ≈ 12, n = 1 mode dominates.
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Figure 5.8: The poloidal power spectra of the electric potential fluctuation at
r = 1.88 cm. The strong nonlinear coupling causes inverse cascading, and the
peaking mode shifts from m = 55 down to m = 12.
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Figure 5.9: The time history of the electric potential of m = 15 mode and
m = 60 mode. The solid line is the real part and the dotted line is the
imaginary part. The frequency of m = 15 mode is about 0.24 MHz in the
nonlinear stage.

experimental measurements (0.3− 0.5 MHz).

5.4.1.4 Radial profile of the electric potential fluctuations

The radial profile of root-mean-square values of the potential fluctu-

ations φrms(r) at different stages (t = 2000t0, 3000t0, 4000t0) are shown in

Fig. 5.10. The fluctuation of eφ/Te0 can go as high as 2%, and the peak of the

fluctuation moves radially inward. This value is lower than that of experimen-
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tal results which yield eφ/Te ∼ 5%. There are also small outward extending

vortex structures or “fingers” in this nonlinear state. The inward and outward

extensions may be caused by the density fluctuation. In this work we used

the δf algorithm with a fixed background temperature profile while letting

the density fluctuation evolve freely. Consequently, in the nonlinear stage the

density profile is no longer flat but has gradients away from the maximum

temperature gradient. These trigger ηe-modes causing fluctuations to spread

inward and outward.

5.4.1.5 Heat flux

The evolution of the radial profile of electron energy flux, given by the

correlation function of 〈vrδTe〉, is shown in Fig. 5.11. The nonlinear thermal

flux extends over a broad radial region. The electron thermal conductivity can

be estimated by

χe = −qe/ne∇Te. (5.22)

At t = 4000t0 and r = 1.9 cm, χe/DgB ≈ 0.43, where DgB = ρe
a

cTe

eB
.

5.4.2 Parametric Variations of Measured Signal and those from

Simulations

5.4.2.1 Variation of fluctuations with the temperature gradient

In order to study the dependence of the electron heat flux on the tem-

perature gradient, we compare three cases with the maximum LTe
= 0.33 cm,

LTe
= 0.45 cm, and LTe

= 0.66 cm. The profiles are shown in Fig. 5.12(a), and

the comparison of the maximum potential fluctuation, the maximum electron
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Figure 5.10: The evolution of the radial profile of the electric potential fluctua-
tion averaged over an r = constant surface, with the green curve corresponding
to t = 2000t0, the blue curve to t = 3000t0, and the black curve to t = 4000t0.
The background electron temperature profile is fixed with the maximum gra-
dient at r = 1.8 cm and maximum 1/LTe at r = 2.1 cm. Due to nonlinear
effects, the peak of the fluctuation profile moves inward in time.
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Figure 5.11: The evolution of the radial profile of the electron energy flux, with
the green curve corresponding to t = 2000t0, the blue curve to t = 3000t0, and
the black curve to t = 4000t0.
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(a) (b)

Figure 5.12: (a) Various background electron temperature profiles for simula-
tions, with the minimum LTe

= 0.33 cm, 0.45 cm, and 0.66 cm. (b) Comparison
of the maximum potential fluctuation, the maximum electron heat flux, the
averaged potential fluctuation, and the averaged electron heat flux between
these simulations.

heat flux, the averaged potential fluctuation, and the averaged electron heat

flux are shown in Fig. 5.12(b). The turbulence amplitude changes slower than

the thermal flux, which indicates the turbulent transport may rely more on

the correlation length and the temperature-fluctuation-to-potential phase than

the turbulence intensity.

5.4.2.2 Variation of the fluctuations with parallel wavenumber or

axial Length

We also study the dependence of ETG modes on the parallel wavenum-

ber by changing the major radius (or equivalently the machine length) from

R0 = 300 cm to R0 = 100 cm. The case with R0 = 100 cm shows very similar
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features as R0 = 300 cm except that in the linear stage the fastest growing

mode has n = 1 rather than n = 2 and the final quasi-steady-state is domi-

nated by the m = 15 mode (cf. m = 12 in Fig. 5.7).

5.4.3 Nonlinear Saturation of ETG modes

As shown in the previous section, the inverse cascading of ETG energy

from high-m mode to low-m mode indicates strong nonlinear coupling. The

nonlinear theory for the saturation of toroidal ETG/ITG modes can be found

in [33, 38]. A nonlinear saturation mechanism for slab ITG can be found in

[55, 62]. In order to study the power spectrum, a higher spatial resolution

simulation with 200 × 1000× 32 grid and t0 = 0.005 × cs,e/R0 is carried out.

The log-log plot of the nonlinear power spectrum of the electric potential φ

fluctuations is shown in Fig. 5.13 where a power law decay with |φm|2 pro-

portional to m−p, with p = 1 for 10 < m < 100, and p = 3 for m > 100 is

seen. This double-power-law spectrum agrees with the prediction of renormal-

ization theory in Horton Jr et al. [38], which involved a three-wave interaction

and non-resonant mode coupling under the quasi-normal approximation for

the fourth order correlation function. The argument is based on the fact that

the energy 〈v2E〉 should be finite, which leads to a decay rate of I(k) faster

than k−3 for high k modes. The turning point in present work (m ∼ 100) is,

however, higher than that in Ref [38] (m ∼ 60) due to the absence of toroidal

effects.

113



Figure 5.13: The power spectrum of electric potential fluctuation in the non-
linear stage. Shown is a power-law decay with the intensity proportional to
k−1 for 10 < m < 100 modes, and k−3 for m > 100 modes.
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5.5 A Hamiltonian Model for ETG

In this section, we will present a Hamiltonian model for two-dimensional

ETG. First a brief review of finite and infinite dimensional Hamiltonian sys-

tems is given and then we construct an infinite-dimensional Hamiltonian ETG

model.

5.5.1 Finite-dimensional Hamiltonian System

We have learned in classical mechanics that a finite-dimensional Hamil-

tonian system can be written in the canonical form

Ż = J∇H = [Z,H ] (5.23)

where the Poisson bracket is defined with the operator J as

[f, g] =
∂f

∂zi
J ij ∂g

∂zj
. (5.24)

For example, an N-dimensional system with Z = (q1, q2, . . . , qN , p1, p2, . . . , pN)

and

J =

[

0N IN
−IN 0N

]

(5.25)

is described by Hamiltonian equations:

q̇i =
∂H

∂pi
(5.26)

ṗi = −∂H

∂qi
. (5.27)

It turns out that because ∂2f/∂zi∂zj = ∂2f/∂zj∂zi and operator J is anti-

symmetric, the Jacobi identity

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 (5.28)
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is satisfied.

5.5.2 Hamiltonian for Infinite-Dimensional System

5.5.2.1 Functional Derivatives

In order to extend finite-dimensional Hamiltonian to infinite dimen-

sional, functionals (or integrals) and their derivatives need to be introduced

since the Hamiltonian (or energy) of the system is usually the integral of en-

ergy density over the whole domain. A functional F maps a function f(x) to

a value, e.g. in R. And its first functional derivative δF/δf is defined by

d

dǫ
F [f + ǫδf ]

∣

∣

∣

∣

ǫ=0

=

〈

δF

δf

∣

∣

∣

∣

δf

〉

≡
∫

δF

δf
δfdx; (5.29)

therefore

δF

δf
=

∂F

∂f
− d

dx

∂F

∂fx
+

d2

dx2

∂F

∂fxx
− · · · (5.30)

if F =
∫

F(f, fx, fxx, . . . )dx.

5.5.2.2 Generalized Hamiltonian Field Theory

Following [54], we define Hamiltonian systems in more general way. A

system of equations

∂uk(t,x)

∂t
= F k(u,x), k = 1, 2, . . . , N (5.31)

is Hamiltonian if it can be cast into the form

∂uk

∂t
=
{

uk, H
}

, (5.32)
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where the bracket makes the functional space a Lie Algebra, namely, it is a

vector space equipped with a bilinear bracket

{F,G} =

〈

δF

δui

∣

∣

∣

∣

Oij δG

δuj

〉

(5.33)

that satisfies Jacobi identity (cf Eq. (5.28))

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0 (5.34)

5.5.2.3 Jacobi Identity

It can be proved [54] that ifOij is independent of u and anti-self-adjoint,

then the above Jacobi identity is satisfied.

Then the next question is given F k as in Eq. (5.31), how to obtain the

Hamiltonian H and the operator O. A systematic way of doing this, based on

Hamilton’s principle for many fluid and plasma models can be found in [53].

5.5.3 Electrostatic ETG Turbulence

Now we will “Hamiltonianize” the electrostatic ETG model.

5.5.3.1 Model Equations

In this model, the plasma is described by a distribution function f(x,v, t)

and we consider only the electrostatic field (the magnetic field still exists but

is treated as constant, so the full Maxwell equations are reduced to Poisson’s

equation only). Poisson’s equation reads

∆φ = 4πe(δne − δni) (5.35)
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where φ = φ(x, t) is the electric potential and δne, δni are density fluctuations

for electrons and ions, respectively. We assume the ion response to electric

field is adiabatic, i. e.

δni ≈ −nieφ

Ti
. (5.36)

And the electron density fluctuation can be calculated from the distribution

function

δne =

∫

δf dv. (5.37)

In order to further simplify the model, we make guiding-center assumptions:

1. The electrons gyrate very fast about a strong B field, and the major

motion across the field is E×B drift

2. The electron gyroradius is much smaller than the spatial scale of E-field

variation

Therefore for the time scale of interest (much slower than electron gyrofre-

quency), the motion of electrons can be approximated by the guiding center

motion. The Vlasov equation for electrons is then written as

∂f

∂t
+ vz

∂f

∂z
+ vE · ∂f

∂x⊥
+

e

me

∂φ

∂z

∂f

∂vz
= 0, (5.38)

where x⊥ = (x, y), vE = ẑ × c∇φ
B

and f = f(x, y, z, vz, t) is the distribution

function for guiding centers (not electrons). Note, here we assume the distribu-

tion function is independent of v⊥, i.e. the velocity distribution perpendicular

118



to B field is always Maxwellian. And Poisson’s equation becomes

∆φ = 4πe

(
∫

δf dvz +
nieφ

Ti

)

. (5.39)

Equation (5.38) can be written as

∂f

∂t
− [f,E] = 0 (5.40)

with E = −eφ +mev
2
z/2 and Poisson bracket

[f, g] =
c

eB

(

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)

+
1

me

(

∂f

∂z

∂g

∂vz
− ∂f

∂vz

∂g

∂z

)

. (5.41)

Defining a new operator

∆∗ ≡ ∇2 − 1

λ2
De

Te

Ti
(5.42)

where λDe is the Debye length, Eq. (5.39) becomes

∆∗φ = 4πe

∫

δf dvz. (5.43)

5.5.3.2 Noncanonical Poisson Bracket

We can find an noncanonical Poisson bracket

{F,G} =

∫
[

δF

δf
,
δG

δf

]

dxdydvzdz (5.44)

and Hamiltonian

H [f ] =
1

2

∫

(fmev
2
z − eφ∆∗φ)dxdydzdvz (5.45)

such that

∂f

∂t
= {f,H} = −[f,E] (5.46)
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5.5.4 Conservation Laws

Obviously, the Hamiltonian (energy) H is conserved. The system also

has Casimir invariants

C[f ] =

∫

dxdydzdvzC(f) (5.47)

where C(f) is an arbitrary function of f ; e.g.,

M =

∫

f dxdydzdvz. (5.48)

There are also other conserved quantities like momentum and angular momen-

tum

P = êz

∫

vzf dxdydzdvz, (5.49)

L =

∫

(yvzêx − xvz êy)f dxdydzdvz (5.50)

5.6 Conclusions

The ETG mode is a universal mechanism for turbulent electron ther-

mal transport across various magnetic confinement geometries. The variable

electron temperature gradient driven high frequency drift wave turbulence

produced in the CLM experiment is well interpreted by the GTC gyrokinetic

code. In the terminology of simulation modeling, the agreement allows one to

state the GTC code is verified by the data from the CLM experiment. The

amplitude of the saturation level is set principally by the nonlinear cascade

from the fastest linearly growing modes with m ∼ 70, as given by the linear
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kinetic dispersion relation, to the nonlinear spectrum that peaked at m ∼ 15.

These results can be explained by the early nonlinear model of the inverse

cascade given in Horton et al. [33]. Thus, the verification of the strong inverse

cascade in the CLM data using the GTC gyrokinetic equation simulations is

an important confirmation of early turbulence theory models for drift wave

systems.

Future work is planned to extend the simulations to low-m modes (m <

10) where the plasma response functions are those of the usual ion drift waves

and acoustic modes. This involves coupling the simulations to the conventional

ion scale simulations and theories and it may further lower the rms amplitude

of the high-m modes in the spectrum.

121



Chapter 6

Summary

In this thesis, particle and thermal transport in a magnetized plasmas

driven by drift wave turbulence were studied. Background material of the

research and simple pictures of drift waves were introduced in Chapter 1.

In Chapter 2, physical models of various type of the drift waves were

derived and summarized. Equations for density-gradient driven drift waves,

ion temperature gradient (ITG) modes, trapped electron modes (TEM) and

electron temperature gradient (ETG) modes were given.

In Chapter 3, passive particle transport by given electric and magnetic

fields in the Gamma-10 tandem mirror machine were presented. The total

given field consists of a background field produced externally and a fluctuat-

ing part driven by drift wave instabilities. By assuming an infinite coherent

spectrum of drift waves, the motion of charge particles was reduced to maps

with a general momentum and general coordinate. It was observed that par-

ticle transport was reduced when the background electric potential is changed

from a monotonic profile to one with reversed Er.

In Chapter 4, impurity particle transport in Alcator C-Mod was studied

by a quasilinear theory. Eigensystems of various unstable modes in the C-
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Mod plasma was solved and quasilinear particle fluxes were calculated with

models for the fluctuation level. Transport coefficients, the diffusivity D and

the pinch velocity V were derived. With CXRS, boron density profiles were

measured in C-Mod for confinement modes, including the H-mode, ITB and

the I-mode. The ratio of V/D was extracted from the profiles. V/D driven by

the ordinary drift wave and the ITG mode were calculated and compared to

the experiments.

In Chapter 5, the electron thermal transport by the ETG mode was in-

vestigated. The ETG mode was produced and verified in the Columbia Linear

Machine. Large scale gyrokinetic simulations using the GTC code were seen

to reproduce results from the experiment. The early growth stage of the sim-

ulations was verified by comparison with linear theory, and nonlinear results

showed good agreement in the dominant mode number, the wave frequency,

and the radial structure. Some nonlinear processes, such as the inverse cascad-

ing of the poloidal wave spectrum and the radial spreading of the fluctuation

profile were also analyzed using the code.
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Appendix A

Plasma Dispersion Function

A.1 Plasma Dispersion Function

In plasma physics, to study wave particle interactions, we often en-

counter the integral over Maxwellian velocity distribution with a singular res-

onant point. In the case of 1D Landau damping, the dispersion relation is

given by

D(ω, k) = 1 +
e2

mek2ǫ0

∫ ∞

−∞

∂f0/∂v

ω/k − v
dv (A.1)

where

f0(v) = n0

√

me

2πTe
exp

(

−mev
2

2Te

)

(A.2)

∂f0
∂v

= − n0√
π

2v

v3th
exp

(

− v2

v2th

)

(A.3)

and vth =
√

2Te/me. The integral can be evaluated as

∫ ∞

−∞

∂f0/∂v

ω/k − v
dv = − n0√

π

2

v3th

∫ ∞

−∞

v exp(−v2/v2th)

ω/k − v
dv (A.4)

=
2n0√
πv3th

∫ ∞

−∞

(

1 +
ω/k

v − ω/k

)

e−v2/v2
thdv (A.5)

=
2n0√
πv3th

√
πvth

(

1 +
ω

kvth
√
π

∫ ∞

−∞

e−t2

t− ω/kvth
dt

)

(A.6)

=
2n0

v2th
[1 + ζZ(ζ)] , (A.7)

125



where t = v/vth, ζ = ω/kvth and Z(ζ) is the plasma dispersion function or Z

function

Z(ζ) = π−1/2

∫ ∞

−∞

exp(−t2)

t− ζ
dt (A.8)

There are two limits of the Z function useful for analytic analysis,[20]

i.e. the power series (|ζ | ≪ 1)

Z(ζ) = i
√
πe−ζ2 − 2ζ(1− 2ζ2/3 + 4ζ4/15− 8ζ6/105 + . . . ) (A.9)

and the asymptotic series (|ζ | ≫ 1)

Z(ζ) = i
√
πσe−ζ2 − ζ−1(1 + 1/2ζ2 + 3/4ζ4 + 15/8ζ6 + . . . ) (A.10)

where

σ =







0 y > 0
1 y = 0
2 y < 0

. (A.11)

A.2 Computational Method

To evaluate the plasma dispersion function numerically, there are two

methods.

A.2.1 Direct Method

According to Landau’s prescription, the integral path needs to be de-

formed properly to make Z(ζ) analytic when ζ moves across the real axis. This

requires that the singular point of the v-integral be always on the same side of

integration path (say left). For Im(ζ) > 0, there is no problem. However, for
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Im(ζ) = 0, we need to deformed the path a little bit to include a semi-circle

under the singular point. The integral over this semi-circle gives iπ times the

residue. Similarly, for Im(ζ) < 0, the integral over an extra circle around the

singular point is needed and gives 2iπ times the residue. Therefore,

Z(ζ) = π−1/2

∫ ∞

−∞

exp(−t2)

t− ζ
dt (A.12)

= π−1/2

(

Pr

∫ ∞

−∞

exp(−t2)

t− ζ
dt+ Iex

)

(A.13)

Iex =







0 Im(ζ) > 0
iπ exp(−ζ2) Im(ζ) = 0
2iπ exp(−ζ2) Im(ζ) < 0

(A.14)

If ζ = x+ iy, then

Pr

∫ ∞

−∞

exp(−t2)

t− ζ
dt = Pr

∫ ∞

−∞

(t− x)e−t2

(t− x)2 + y2
dt+ iPr

∫ ∞

−∞

ye−t2

(t− x)2 + y2
dt.

(A.15)

This method will encounter difficulty when evaluating the principal-value in-

tegrals for y = 0.

A.2.2 Integral Transform

The plasma dispersion function can be transformed into a form that’s

valid for any ζ [20]. Taking the derivative with respect to ζ , and integrating

by parts over t, we have

Z ′(ζ) = −2[ζZ(ζ) + 1], (A.16)
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which is a first-order linear ODE that can be solved analytically. Multiplying

the equation by an unknown function α(ζ) gives

α
dZ

dζ
+ 2αζZ + 2α = 0, (A.17)

which can then be transformed to

d(αZ)

dζ
= −2α (A.18)

if dα
dζ

= 2αζ . Finally, we solve for Z

Z(ζ) = −
∫

2αdζ

α
= −

∫

2eζ
2

dζ

eζ2
= −

[

e−ζ2
∫ ζ

0

2eζ
2

dζ

]

+ Z(0). (A.19)

We want the analytic continuation of Z(ζ) from the upper complex plane

across the real axis to the lower plane, so

Z(0) = π−1/2(Pr

∫ ∞

−∞

e−t2

t
dt+ iπ) = i

√
π; (A.20)

therefore, let t = iζ , and notice

∫ 0

−∞

e−t2dt =
√
π/2. (A.21)

Thus, we obtain a second form of plasma dispersion function

Z(ζ) = 2ie−ζ2
∫ iζ

−∞

dt e−t2 . (A.22)

If ζ = x+ iy, then ζ2 = (x2 − y2) + 2ixy, and

Z(x+ iy) = 2ie−x2+y2e−2ixy

∫ −y+ix

−∞

dt e−t2 (A.23)
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Figure A.1: Plasma dispersion function Z(ζ) and its derivative with real ar-
gument ζ = x.

The integral is carried out as

∫ −y+ix

−∞

dt e−t2 (A.24)

=

∫ −y

−∞

dt e−t2 +

∫ −y+ix

−y

dt e−t2 (A.25)

=

∫ ∞

y

dt′ e−t′2 + i

∫ x

0

dt′ e−(it′−y)2 (A.26)

(t′ = −t for fist part, and t′ = −i(t + y) for the second part)

=

∫ ∞

y

dt e−t2 + ie−y2
∫ x

0

dt et
2

[cos(2yt) + i sin(2yt)] (A.27)

=

√
π

2
[1− erf(y)] + e−y2

∫ x

0

dt et
2

[i cos(2yt)− sin(2yt)] (A.28)

By rearranging terms, we get

Z(x+iy) = 2ie−2ixy

{√
π

2
[1− erf(y)]e−x2+y2 +

∫ x

0

dt et
2−x2

[i cos(2yt)− sin(2yt)]

}

.

(A.29)

suitable for numerical evaluation.
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Figure A.2: The general behavior of the plasma dispersion function Z(x+ iy).

130



The following is a table of the Z-function with real argument. It has

been tested against the analytic formula.

x+iy Z Z’

-------- --------------------------- ---------------------------

0.0+0.0i +0.000000e+00+1.772454e+00i -2.000000e+00+0.000000e+00i

0.5+0.0i -8.488728e-01+1.380388e+00i -1.151127e+00-1.380388e+00i

1.0+0.0i -1.076159e+00+6.520493e-01i +1.523180e-01-1.304099e+00i

1.5+0.0i -8.564981e-01+1.868153e-01i +5.694944e-01-5.604458e-01i

2.0+0.0i -6.026808e-01+3.246362e-02i +4.107231e-01-1.298545e-01i

2.5+0.0i -4.461674e-01+3.421641e-03i +2.308372e-01-1.710820e-02i

3.0+0.0i -3.565421e-01+2.187382e-04i +1.392524e-01-1.312429e-03i

3.5+0.0i -2.992432e-01+8.481400e-06i +9.470230e-02-5.936980e-05i

4.0+0.0i -2.586960e-01+1.994634e-07i +6.956802e-02-1.595707e-06i

4.5+0.0i -2.281772e-01+2.845193e-09i +5.359498e-02-2.560673e-08i

5.0+0.0i -2.042681e-01+2.461574e-11i +4.268149e-02-2.461574e-10i

5.5+0.0i -1.849865e-01+1.291715e-13i +3.485111e-02-1.420887e-12i

6.0+0.0i -1.690854e-01+4.111247e-16i +2.902454e-02-4.933497e-15i

6.5+0.0i -1.557356e-01+7.936574e-19i +2.456329e-02-1.031755e-17i

7.0+0.0i -1.443619e-01+9.292773e-22i +2.106729e-02-1.300988e-20i

7.5+0.0i -1.345516e-01+6.599489e-25i +1.827435e-02-9.899234e-24i

8.0+0.0i -1.260004e-01+2.842681e-28i +1.600636e-02-4.548289e-27i

8.5+0.0i -1.184787e-01+7.426747e-32i +1.413864e-02-1.262547e-30i

9.0+0.0i -1.118101e-01+1.176852e-35i +1.258168e-02-2.118334e-34i
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9.5+0.0i -1.058563e-01+1.131092e-39i +1.126980e-02-2.149075e-38i
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Appendix B

Useful Expressions

vE · ∇⊥f =
c

B
[φ, f ]PB , (B.1)

where vE = cb×∇⊥φ
B

.

∇⊥ · vpi =
c

ωciB0

(

− ∂

∂t
∇2

⊥φ− c

B0

[

φ,∇2
⊥φ
]

PB

)

, (B.2)

where ωci = eB0/mic, and vpi =
c2mi

qiB2

dE
dt
.

∇⊥ · vpe =
c

ωceB0

(

∂

∂t
∇2

⊥φ+
c

B0

[

φ,∇2
⊥φ
]

PB

)

, (B.3)

where ωce = eB0/mec.

v∗ne =
cTe

eB

1

Lne

, (B.4)

v∗Te =
cTe

eB

1

LTe

, (B.5)

cTe

eB
= ρscs = ρevte = Lnev∗ne = LTev∗Te, (B.6)

where cs =
√

Te/mi, ρs = cs/ωci, vte =
√

Te/me, ρe = vte/ωce.

Poisson’s equation

∇2φ = 4πe(−Zδni + δne) (B.7)

133



is equivalent to

∇2

(

eφ

Te

)

=
ω2
pe

ω2
ce

(−Z
δni

ne
+

δne

ne
) (B.8)

The thermal balance equation for species a is [29]:

3

2
na

dTa

dt
+ p∇ ·Va = −∇ · qa − πa : ∇Va +Qa, (B.9)

where

p ≡ nm
〈

v′2
〉

f
/3 = nT, (B.10)

πjk ≡ nm
〈

v′jv
′
k

〉

f
− pδjk, (B.11)

q ≡ n

〈

mv′2

2
v′

〉

f

, (B.12)

Q ≡
∫

mv′2

2
C(f)d3v. (B.13)
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Appendix C

Index of Notation

C.1 General notation

Italic character like f is a scalar.

Boldface character like v is a vector.

Character with left-right arrow overhead like
↔

T is a tensor.

Directional derivative

∂f

∂x
≡ ∂f

∂x
êx +

∂f

∂y
êy +

∂f

∂z
êz.

Vectors in both the numerator and the denominator is a tensor

∇v ≡ ∂v

∂x
,

(

∂v

∂x

)

ij

≡ ∂vi
∂xj

.
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C.2 Special notations

a Minor radius
A Atomic mass number
B Magnetic field strength
B Magnetic field vector
c Speed of light
E Electric field strength
E Electric field vector
e Charge of electron
k Wave number vector
m mass
n number density
R Major radius
R0 Major radius at the center of plasma
t time
v Velocity vector
v∗ diamagnetic drift velocity (with density gradient only)
vd diamagnetic drift velocity
vD curvature drift velocity
vE E ×B drift velocity
vp polarization drift velocity
Z Charge number
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