
Copyright

by

Eric D’Avignon

2015



The Dissertation Committee for Eric D’Avignon
certifies that this is the approved version of the following dissertation:

Aspects of Relativistic Hamiltonian Physics

Committee:

Philip J. Morrison, Supervisor

Wolfgang Rindler

Lawrence Shepley

Swadesh Mahajan

Richard Hazeltine

Gennady Shvets



Aspects of Relativistic Hamiltonian Physics

by

Eric D’Avignon, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2015



Dedicated to my grandmother, Ann D’Avignon, and my father, William

Richardson.

If I had graduated a year earlier, they would have been there to see it.



Aspects of Relativistic Hamiltonian Physics

Publication No.

Eric D’Avignon, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Philip J. Morrison

This dissertation presents various new results in relativistic Hamilto-

nian plasma physics. It begins with an overview of Hamiltonian physics, with

an emphasis on noncanonical brackets, and presents various nonrelativistic

systems to be generalized later on. There then follows an exposition on ac-

tion principles for Hall and Extended MHD, which allow the derivation of the

noncanonical Hamiltonian brackets for those systems. I next discuss the tran-

sition to relativistic Hamiltonian systems, and the special difficulties that arise

in this step. A detailed exploration of relativistic Hamiltonian MHD follows,

using a novel bracket formulation. This chapter also investigates alternative

brackets, gauge degeneracies, and Casimir invariants. Next I lay out the con-

nection between Lagrangian and Eulerian MHD (both in Hamiltonian forms),

and present some early work on a bracket-based formulation of the relativistic

Navier-Stokes equation. The next chapters develop various results using an

antisymmetric relativistic spin tensor, and several unexpected and intriguing

v



physical consequences of the Jacobi identity. I conclude with a program of

future research and several useful appendices.
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Chapter 1

Introduction and Acknowledgments

Physics pushes towards ever greater generalization and abstraction;

even as its theories and models grow more complex and rich in consequences,

new formalisms and insights allow us to express these theories in more com-

pact and elegant forms. I see this dissertation as a small advance in that push

towards abstraction, repeatedly taking systems of multiple, fairly complex

equations of motion and recasting them in the compact form {f, S} = 0 (the

meanings of the various parts of this equation will be explained later). I do not

think I am alone in a sense of niggling dissatisfaction, appearing irregularly as

I learn the results of existing physics: a sense that, even when correct, there

is something missing from the common explanations. I regard this dissatisfac-

tion as an important motivation behind the push towards greater abstraction

and elegance. I am happy and proud to say that I have been able to satisfy

this sense of dissatisfaction, though only in a few, very narrow cases, and I

hope that some measure of this joy comes through in my exposition.

Among those who have helped me find these moments of joy, I must

single out Philip Morrison, my advisor. Toward his students, he is support-

ive, kind, patient and engaged; toward his field, he is passionate, resourceful,
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thoroughly read, and inventive. We have shared many fun (and often even

productive!) discussions about the topics to be found in the chapters to come,

and his opinions in plasma physics have shaped not only the topics but the

methods, approaches and guiding insights that shaped my research. Our con-

versations have ranged far beyond the relatively complete research found here,

into topics too speculative and embryonic to put into print yet, and I will con-

sider him a vital resource in my research to come. I hope that I will someday

live up to the confidence he has shown in me. I also thank Gennady Shvets,

my previous advisor, for being patient with my fickleness; Larry Shepley, for

many enriching conversations and impish questions that have helped me shore

up the relativity in this relativistic plasma physics; Wolfgang Rindler, for more

such conversations, offering helpful perspective and unexpected connections;

Swadesh Mahajan and Richard Hazeltine, with whom I should have conversed

more, but who were invariably helpful when I did.

I thank the members of Dr. Morrison’s Friday group, for raising many

interesting questions and concerns on my research, and for helping me to

develop my still-amateurish public speaking skills. Manasvi Lingam has been

particularly helpful, and I admire his sterling qualities as a physicist-to-be;

Ioannis Keramidas and George Miloshevich have also been particularly helpful.

Cathy Rapinett, of the Institute of Fusion Physics, has been invariable helpful,

cheerful and friendly. Among the friends who have provided good company

and warm support through my many years in graduate school, I will single

out Josef Rickets, Jacob Williamson, Mark Roy, and Rick Niess, but there
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have been many more who lended me strength during this period. I thank my

father, Bill, and my grandmother, Ann, who supported an endeavour whose

end they would not see; my mother, MT, who was always up for a weekend visit

and respite; and my uncle, Chuck, who provided a few fun adventures I could

not have afforded myself. I also owe gratitude to Francesco Pegoraro, Michel

Vittot, and Yohei Kawazura, fruitful collaborators and collaborators-to-be.

Most of the material in this dissertation is original, albeit incomplete.

The exceptions are Chapters 2, an overview of nonrelativistic Hamiltonian

physics, and 4, about the transition to relativity, plus a few labelled overview

sections in other chapters. Chapter 5, on Hamiltonian relativistic MHD, rep-

resents the most complete portion, and it has been published in Phys. Rev.

D [8]. Chapter 8, on physical consequences of the Jacobi Identity, has, in a

somewhat different form, been submitted. Chapters 3, on the derivation of the

Hall and Extended MHD brackets, and 6, on the relation between Lagrangian

and Eulerian relativistic MHD, represent the current states of papers still in

the draft stage – the former chapter, developed only this last semester, belies

the title of this dissertation, but I do hope to make it relativistic at a future

stage. The latter portions of Chapters 2, 4 and 5 provide early, speculative

work that I hope to develop in much greater detail in the future. Chapter 7,

on relativistic Hamiltonian (and classical) spin, summarizes some foundered

research from an earlier stage in my time with Dr. Morrison, and it is, sadly,

not likely be developed beyond what I have provided here. Chapter 9 presents

the further research I hope to soon accomplish, and it is followed by a few
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appendices containing useful mathematics.

There are a few idiosyncratic conventions I use in this dissertation.

Brackets play a central role, so I use different typographical ones to denote

specific kinds of bracket: square brackets [f, g] for finite-dimensional brackets,

{f, g} for either infinite-dimensional brackets or the combination of Poisson

and metriplectic brackets, and (f, g) for the symmetric metriplectic bracket.

As for the term itself, sometimes “Poisson bracket” refers to any bracket use-

able in a Hamiltonian formalism, and sometimes it refers specifically to the

canonical bracket. For this reason, and to foster concision, I will simply call

these “brackets”, without modification. Hopefully Poisson won’t mind.

I hope that you will find something of use in the words to come.
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Chapter 2

Overview of non-relativistic Hamiltonian

systems

My long journey begins with a single step:

df

dt
= [f,H] . (2.1)

Let us discuss this equation.

2.1 General structure (finite- and
infinite-dimensional)

Hamilton’s equations (2.1) are the culmination of the Hamiltonian for-

malism, but this formalism requires a great deal of preparation before use. I’ll

start by enumerating their ingredients, beginning with the arbitrary function

f of the dynamical variables. Said variables introduce one major distinction

between Hamiltonian systems, that between finite-dimensional and infinite-

dimensional systems. In the former case, I have a finite-dimensional vector

space called the phase space, typified by a system of N particles with 6N vari-

ables (x(i),p(i)); in the latter case, I have a number of field variables, which

themselves might be scalars, vectors or any other tensorial object, defined at

each point of my domain. A basic example of an infinite-dimensional system
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would be Euler’s fluid equations using two scalar fields, density n and specific

entropy s, and one vector field, the fluid velocity v.

Moreover, nothing stops the two types of systems from mixing: for in-

stance, the same unified Hamiltonian formalism can describe both the 6N vari-

ables of a collection of particles, and at the same time the infinite-dimensional

vector fields representing the electric and magnetic fields governing the parti-

cles’ motion. To evolve a system, you need equations of motion for each of its

basic dynamical variables, and in practice you may need equations of motion

for quite a few more; here, Hamilton’s equations (2.1) show one of their chief

advantages, for every single one of those equations of motions are contained in

that little package. The function or functional f can be whatever you please,

provided it is a differentiable function of the dynamical variables alone.

Typically the Hamiltonian H is the energy of the system, but there are

sufficient exceptions to be wary of this rule. In most of the examples found

in this dissertation, there are in fact infinitely many quantities that can take

the role of H, due to the existence of special invariants called Casimirs. I

do, however, require that the Hamiltonian be a scalar, thus invariant under

rotations and translations; in this dissertation, I will also require that it be

a true scalar rather than a pseudoscalar, and thus invariant under inversions

of the coordinate system. Similarly, I require that it be invariant under time

reversals, although this particular symmetry is more for illustration than for

practical purposes. Having said all this, what is the Hamiltonian H, exactly?

Well, (2.1) shows that it is the generator of time derivatives – and since this
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“generation” of derivatives is done by the bracket [f, g], I had better explain

that object.

Let f , g and h be any functions of the dynamical variables; usually,

they are scalar or vector functions, but they may be of any tensorial rank. Let

α and β be mere real numbers. The bracket is antisymmetric:

[f, g] = −[g, f ] (2.2)

It is also linear:

[αf + βg, h] = α[f, h] + β[g, h] (2.3)

It is in fact bilinear, for using (2.2) and (2.3) together shows that the linearity

property holds on both sides of the bracket. Next up we have the Jacobi

identity:

[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0 (2.4)

The bracket also possesses the Leibniz property:

[fg, h] = f [g, h] + [f, h]g (2.5)

The next, seldom-mentioned property I call “preservation of type”, for

lack of a better term. Note that (2.1) does not specify what type of object

(i.e. scalar, vector, tensorial) the function f is – but whatever type it is, df/dt

is the same type, so [f,H] must be that type as well. This fact is a special

case of a broader property, which may be stated thus: if f is a tensor of rank

r1, and g is a tensor of rank r2, then [f, g] is a tensor of rank r1 + r2. Thus
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H has rank zero, since df/dt must have the same rank as f . This property

becomes even stronger in relativity: if f is a tensor of covariant rank r1 and

contravariant rank s1, and g is a tensor of covariant rank r2 and contravariant

rank s2, then [f, g] is a tensor of covariant rank r1 + r2 and contravariant rank

s1 + s2. As a specific example from relativity, early on in Chapter 8 I produce

a bracket containing two terms of a particle’s 4-velocity Uµ:

[Uµ, Uν ] = F µν

where F µν is the electromagnetic field tensor. From examples like this I also

think of the property as a “preservation of indices”.

The final, also seldom-mentioned property concerns the behavior of

a bracket under coordinate transformations. Let Ψ denote some coordinate

transformation, and fΨ the new value of f when subjected to that transforma-

tion. For instance, if f is a field variable and Ψ is a translation by displacement

∆x, then fΨ(x) = f(x−∆x), and if Ψ is an inversion of the coordinate system

(i.e. a parity transformation) then fΨ(x) = f(−x). My final property states

that, under such a transformation, the bracket transforms in a homomorphic

manner:

([f, g])Ψ = [fΨ, gΨ]Ψ (2.6)

Under a transformation, the bracket [ , ] will change to a new form [ , ]Ψ. Equa-

tion (2.6) states how this transformation occurs. In the typical case where the

bracket is defined in terms of derivatives of the dynamical variables, you can
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also insert the transformed derivatives into the bracket to obtain the new one,

an easier procedure overall.

As I’ve already mentioned, one can interpret the bracket as a generator

of derivatives – in a more sophisticated text, it might be called a derivation.

When a function is placed in one side of the bracket, with the other left

unspecified (making the overall object an operator), the bracket becomes some

kind of derivative. To offer a concrete example of this interpretation, consider

the archetypal bracket, namely the canonical bracket for a single particle:

[f, g] =
∂f

∂xi
∂g

∂pi
− ∂g

∂xi
∂f

∂pi
(2.7)

It is a simple matter to generate partial derivatives over the phase space:

[xi, · ] =
∂ ·
∂pi

[pi, · ] = − ∂ ·
∂xi

Perhaps this does not impress you. In that case, change the plane

coordinates from (x, y, px, py) to r =
√
x2 + y2, φ = tan−1(y/x), lz = xpy−ypx,

and pr = (xpx + ypy)/
√
x2 + y2. The polar bracket [ , ]p is still canonical, and

I can now generate the following useful derivatives:

[φ, · ]p =
∂ ·
∂lz

[lz, · ]p = − ∂ ·
∂φ

[r, · ]p =
∂ ·
∂pr

[pr, · ]p = −∂ ·
∂r

It would be remiss of me not to mention the most important generator of all,

an expression which holds for either bracket:

[H, · ] = −d ·
dt
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This expression is my preferred answer to the question of what H is.

In quantum mechanics, one says that p (now an operator) generates

space translations, L generates rotations, and H generates time translations.

The generation of derivatives shown above is not a quirk of finite-dimensional

canonical brackets, but happens for any bracket, though the specific expres-

sions will change. For another example, see Ref.[26], which gives generators

for translations, rotations, and center-of-mass motion using the nonrelativistic

MHD bracket.

The bracket generalizes the derivative, and so its properties may be

interpreted as generalizations of the properties of derivatives. The linearity

property (2.3) echoes the linearity property of derivatives (full or partial), and

similarly for the Leibniz property (2.5). The Jacobi identity (2.4) generalizes

the commutation of partial derivatives, e.g. ∂2f/∂x∂y = ∂2f/∂y∂x; indeed,

for the canonical bracket, proving the Jacobi identity only requires said com-

mutation.

The antisymmetry property proves more difficult to interpret. However,

assuming a cooperative Hamiltonian, Hamilton’s equations are time-reversible,

so I will apply a time reversal transformation to (2.1) (with f a scalar) and

use (2.6):(
df

dt

)
T

= −dfT
dt

= −[fT , H] = ([f,H])T = [fT , HT ]T = [fT , H]T

From this expression I infer that

[f, g]T = −[f, g] = [g, f ]

10



The bracket’s antisymmetry expresses its behavior under time reversal. Take

this to be a property of a broader class of brackets, so that you could have

other objects with (f, g)T = (g, f). Then, if you want to build an irreversible

system, you can divide the equations of motion into reversible and irreversible

parts; under a time reversal transformation, the irreversible parts will change

by a sign. Looking at the derivation above, if a separate bracket generates

this irreversible motion, it would obey (f, g)T = (f, g); using the hypothetical

time-reversal property, this would imply (f, g) = (g, f), giving a symmetric

bracket. This idea is at the core of the metriplectic formalism developed by Dr.

Morrison[27], which will be investigated at several points in this dissertation.

I note that, for every bracket presented in this dissertation, whether purely

Hamiltonian or mixed, the hypothetical property (f, g)T = (g, f) does indeed

hold.

I conclude this section by discussing two important distinctions be-

tween broad classes of Hamiltonian systems; that between finite- and infinite-

dimensional ones, and that between canonical and noncanonical ones. Finite-

dimensional systems have already been encountered, and describe particle or

other motion involving discrete elements, whereas infinite-dimensional ones de-

scribe field theories. The latter will have brackets over functions of functions

(called functionals), and functional (or Frechet) derivatives instead of partial

ones. Some of the subtleties of this change, as well as a demonstration of the

chain rule for functional derivatives, are presented in Appendix 1.1. However,

the distinction between canonical and noncanonical systems is the more salient
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one, because almost every example presented in this text will be the latter.

While most physicists are well-versed in the former, far fewer take the

latter seriously. Indeed, in the finite-dimensional case, the Darboux theorem

guarantees that a Hamiltonian system can be reduced into quasi-canonical

form: if one writes its bracket as

[f, g] = Jij(z)
∂f

∂zi
∂g

∂zj
(2.8)

then a suitable coordinate change will transform the matrix Jij(z), of rank 2m

and dimension N = 2m+ n, into the form 0m Im 0m×n
−Im 0m 0m×n
0n×m 0n×m 0n


with I and 0 denoting the identity and zero matrices. (The rank 2m must

be even because Jij is antisymmetric.) This new matrix is constant except

for places where its rank changes. Comparison to (2.7) shows that J has a

canonical part, and a degenerate part. However, transferring to the Darboux

coordinates may obscure the underlying physics. More, there is no equivalent

of the Darboux theorem for infinite-dimensional systems, where noncanonical

brackets are the norm rather than the exception. Rather than taking this to

be unfortunate, I tend to regard the richer structure of noncanonical systems

as a part of their allure, that structure having physical consequences in its

own right; see, for example, Chapter 8 for physical consequences of the Jacobi

identity for noncanonical systems, an identity which is automatically satisfied

for canonical systems.
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2.2 Examples of non-canonical Hamiltonian systems

Now I will look at various ways of arriving at noncanonical Hamiltonian

systems. One can, for example, notice that the properties (2.2) - (2.4) are

also defining features of the well-studied Lie algebras. The most important

Lie algebras are those corresponding to the Lie groups of transformations of

vector spaces. These are linear algebras, in the sense that if the si, with

i ∈ {i, 2, ..., n}, are the infinitesimal generators of transformations, then their

algebra will be [si, sj] = Cij
ks
k for some “structure constants” Cij

k.

Not surprisingly, there are many noncanonical brackets corresponding

to Lie algebras. For example, suppose a neutral particle has an intrinsic mag-

netic moment s, which couples to a magnetic field via an interaction energy

s · B. Then the Hamiltonian H = p2/2m + U(x) + s · B, along with the

noncanonical bracket

[f, g] =
∂f

∂xi
∂g

∂pi
− ∂g

∂xi
∂f

∂pi
− s ·

(
∂f

∂s
× ∂g

∂s

)
will give the correct equations of motion

dx

dt
=

p

2m
dp

dt
= −∇U −∇ (m ·B)

ds

dt
= s×B

In this case the structure constants are the Levi-Civita symbols εijk, given that

one can raise and lower indices freely, and they correspond to the Lie group

SO(3).
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This bracket also demonstrates the existence of Casimir invariants,

which are special constants C such that [f, C] = 0 for all functions f . In

particular, [C,H] = 0, so they are constants of motion. For the spin bracket,

any function of the squared magnitude of the spin
∑

i s
2
i is a Casimir invariant.

The existence of Casimirs is a trait common to noncanonical brackets; in the

finite-dimensional case, the number of algebraically independent Casimirs is

equal to the nullity of the matrix Jij in (2.8).

The Lie algebra for SO(3) comes into play in any other problem in-

volving rotations in three dimensions. For example, if you have a rigid body

with moments of inertia Ii and angular momenta li, then the Hamiltonian and

bracket

H =
∑
i

l2i
2Ii

[f, g] = −l ·
(
∂f

∂l
× ∂g

∂l

)
will produce the equations

dl1
dt

= l2l3

(
1

I3

− 1

I2

)
dl2
dt

= l3l1

(
1

I3

− 1

I1

)
dl3
dt

= l1l2

(
1

I1

− 1

I2

)
When written in terms of ωi = li/Ii, these are Euler’s equations for rigid body

motion. By adding back the canonical bracket (2.7) and introducing a suitable

potential energy function, one can also account for translational degrees of
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freedom and some kinds of external torque. Other kinds of Lie algebras also

have physical applications; for example, every one of the three-dimensional Lie

algebras corresponds to a specific type of anisotropic, homogeneous cosmology

[13]. I will investigate the relativistic equivalents of the above spin systems in

Chapter 7, finding that they pose some new difficulties.

Another way to come across noncanonical Hamiltonian systems is to

simply attempt to invent such systems from thin air, in an attempt to match

some already-known physical system. While this process can be unsatisfying,

my experience is that one tends to first find brackets this way, and only later

discover how to derive them from more fundamental brackets. For example,

for a charged particle in special relativity, one has the position Xµ, and the

4-velocity Uµ, under the influence of a Lorentz force F µνUν , where F µν is the

electromagnetic field tensor. Trying to construct a Hamiltonian and bracket

using only these quantities (plus the mass m and charge e of the particle), one

arrives at a Hamiltonian H = (1/2)mUµUµ and a noncanonical bracket

[f, g] =
gµν

m

(
∂f

∂Xµ

∂g

∂U ν
− ∂g

∂Xµ

∂f

∂U ν

)
+

e

m2
F µν ∂f

∂Uµ

∂g

∂U ν
(2.9)

Similarly, if one were only trying to account for the geodesic law of mo-

tion using the same variables, one would find the same Hamiltonian H =

(1/2)mgµνU
µUν and a different noncanonical bracket

[f, g] =
gµν

m

(
∂f

∂Xµ

∂g

∂U ν
− ∂g

∂Xµ

∂f

∂U ν

)
+

1

m

(
gµσ ,αg

ανUσ − gνσ ,αgαµUσ
) ∂f

∂Uµ

∂g

∂U ν
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This approach may seem frivolous, but I show in Chapter 8 that it can produce

some interesting insights.

For finite-dimensional systems, Darboux’s theorem limits how inter-

esting noncanonical systems can be. In effect, Hamiltonian systems are only

distinguished by their rank and the global properties of their canonical parts.

However, things do become more interesting when you move to infinite-dimensional

systems, because then their rank and nullity can change in unexpected ways.

For example, finite-dimensional brackets will, when subjected to a differen-

tiable coordinate change, preserve the number of Casimir invariants they have;

by contrast, an infinite-dimensional bracket with no Casimirs can obtain an

infinite number of Casimirs under such a change.

The typical infinite-dimensional system is a limit of a finite-dimensional

system (usually a particle one) as its number of degrees of freedom approaches

infinity. A canonical bracket for N particles will be a sum of N copies of (2.7),

so it’s natural to posit that it will acquire the form

{f, g} =

∫ (
δf

δqi
δg

δpi
− δg

δqi
δf

δpi

)
d3x (2.10)

Note that functional derivatives must now be used, because functions will

depend on the basic variables via an integral expression. Fluid brackets (in-

cluding those for various plasma models) often start from this canonical point,

with the bracket describing the structure of the Lagrangian (or material, as op-

posed to Eulerian, or spatial) variables. One then applies a coordinate change

to get to the more convenient Eulerian variables, in the process typically in-
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troducing new infinite classes of Casimirs. More detail on the Euler-Lagrange

map can be found in the next two sections. This procedure will also be used,

in Section 6.1, to get the noncanonical bracket for relativistic MHD, and in

Chapter 3 to obtain brackets for Hall and Extended MHD.

Equation (2.10) can be taken to express a weighted sum over canonical

brackets, with the weighting given by d3x. More weighted sums occur in

kinetic theory, where the state of a fluid is described by a distribution function

f(x, p, t) over both position and momentum. In this case, one can write the

weighted canonical bracket as

{F,G}c =

∫
f

(
∂Ff
∂xi

∂Gf

∂pi
− ∂Gf

∂xi
∂Ff
∂pi

)
d6z (2.11)

where z = (x, p) and Ff ≡ δF/δf . This so-called Lie-Poisson bracket is, one

can argue, the simplest noncanonical bracket. This bracket describes a single

species of a fluid, but introducing more species is as simple as duplicating the

bracket.

The electric and magnetic fields provide, sensibly enough, an infinite-

dimensional field theory. They also have their own noncanonical bracket

{F,G}f = 4πc

∫
δF

δE
·
(
∇× δG

δB

)
− δG

δE
·
(
∇× δF

δB

)
d3x (2.12)

which will, given the Hamiltonian H =
∫

(E2/2 + B2/2)d3x, produce the two

vectorial Maxwell equations without sources. The bracket (2.12) is actually a

canonical one in disguise. Switching to A from B = ∇×A will, via a chain

rule calculation covered in the Appendix 1.1, give δF/δA = ∇ × (δF/δB).
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Thus (2.12) can be rewritten

{F,G}f = 4πc

∫ (
δF

δE
· δG
δA
− δG

δE
· δF
δA

)
d3x (2.13)

showing that A and E are canonically conjugate to each other, an idea also

used in the ADM formalism of Hamiltonian gravity. However, owing to the

noninvertibility of the transformation between A and B, the bracket (2.13) is

less general than the bracket (2.12), applying only to gauges in which ∇φ = 0.

The interaction terms between matter and EM fields appear in two

additional bracket components. The first, magnetic one, is:

{F,G}B =

∫
− eB

m2c
·
(
∂Ff
∂v
× ∂Gf

∂v

)
d6z (2.14)

The magnetic bracket (2.14) has a similar origin as the particle one (2.9); that

is, it comes from using v instead of a canonical momentum p = mv − eA.

The second interaction term involves the electric field:

{F,G}E =
4πe

m

∫ (
δF

δE
· ∂Gf

∂v
− δG

δE
· ∂Ff
∂v

)
d6z (2.15)

This one also results from the use of v, as the switch from p and A to v and

A will alter δF/δA in (2.13).

Combining all four brackets (2.11) - (2.15) and using the straightfor-

ward Hamiltonian

H =

∫
fm

v2

2
d6z +

1

4π

∫ (
B2

2
+
E2

2

)
d3x
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will produce the following equations of motion, together constituting the Vlasov

equation with the dynamical Maxwell equations:

∂f

∂t
= −v · ∂f

∂x
+

e

m

(
E +

1

c
v ×B

)
· ∂f
∂v

∂E

∂t
= c∇×B + 4πe

∫
fv d3v

∂B

∂t
= −c∇× E

Unfortunately, the relativistic equivalent poses some new difficulties, so far

only partially solved. These will be covered in Section 4.4.

2.3 Hamiltonian fluids

2.3.1 Euler’s equations, fluid action

My aim in this section is to demonstrate how one important noncanon-

ical Hamiltonian system, that of Eulerian fluids, can be obtained as a reduc-

tion of an infinite-dimensional canonical system. To do so I must introduce

the distinction between Lagrangian and Eulerian coordinates. In Eulerian co-

ordinates, one chooses a fixed point and watches various quantities (density

and velocity being most pertinent) as they develop and change at that point.

By contrast, in Lagrangian coordinates one gives each distinct element of fluid

its own label, subject only to continuity (in the sense of being homeomorphic

with R3), and that label remains fixed as the fluid element moves about. In

Eulerian coordinates (denoted by x and t), with a fluid described by density

ρ, pressure p and velocity v, I have Euler’s equation

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p
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This form disguises its origin as a transformation of Newton’s Second Law. In

Lagrangian coordinates, a fluid element labelled by a three-dimensional label

space a will have a position q(a, t), under the condition that this function be

1-1 at fixed t – that is, two distinct elements of fluid do not end up in the

same place at once. With dot denoting time derivative, its equation of motion

will be

ρq̈ = −∇p

Apparently the Lagrangian coordinates are an easier place to start, and their

Hamiltonian structure will reflect this fact.

I also need to know what equations other quantities, such as mass

density and specific entropy, will obey. Broadly speaking, one will derive

these equations of motion from expressions which show how a quantity is

“carried along” by a fluid, conserving some quantity. For example, there is

no dissipation introduced yet, so specific entropy (entropy per unit mass) will

simply be conserved: s(a, t) = s(a, 0) ≡ s0. The mass of a given fluid element

must also be conserved, and expressing this mass as the product of density

times an infinitesimal volume gives

ρ d3x = ρ0 d
3a

with ρ0 = ρ(a, 0) as before. I can write d3x = J d3a, where J ≡ |∂q/∂a| is the

Jacobian of the transformation from a to q, as defined in Appendix 1.2. This

Jacobian must be nonzero, from the earlier condition that the transformation

be injective.
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Using that quantity, I can write ρ = ρ0/J . The Euler-Lagrange map

for ρ is thus

ρ(x, t) =

∫
ρ(q) δ(x− q) d3q =

∫
ρ0(a) δ(x− q(a, t)) d3a (2.16)

From here I can derive the continuity equation

∂ρ

∂t
=

∫
ρ0(a) q̇i δ

′

i(x− q(a, t))d3a =

∫
ρ q̇i δ

′

i(x− q) d3q = −∇ · (ρv)

where I have used the chain rule in the first step, a coordinate change from a to

q in the second, and an integration by parts in the third. An advective equation

of motion for s may also be derived; in fact, if one changes to the entropy

density σ = sρ, one acquires another version of the continuity equation.

To write down an action principle for the Lagrangian fluid, I need an

analogy of the particle action S =
∫

(T − V )dt. Thus I define an internal

energy function U(ρ, s) which obeys the thermodynamic relations

T =
∂U

∂s

∣∣∣∣
ρ

p = ρ2∂U

∂ρ

∣∣∣∣
s

(2.17)

as may easily be checked. The fluid action is then

S =

∫
L dt =

∫ ∫ (
1

2
ρq̇2 − ρU(ρ, s)

)
d3q dt

=

∫ ∫ (
1

2
ρ0q̇

2 − ρ0U(
ρ0

J
, s0)

)
d3a dt ≡

∫ ∫
L d3a dt (2.18)

The variational principle on the Lagrangian L(q, q̇, ∂q/∂a) is

d

dt

(
∂L
∂q̇i

)
+

∂

∂aj

(
∂L
∂qi,j

)
− ∂L
∂qi
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provided the surface integral vanishes. As it happens, there is no contribution

from the third term, because all spatial dependence has been incorporated

into the Jacobian |∂qi/∂aj|. For that matter, the only contribution from the

second term comes from the factor of J in the energy function of (2.18). Using

∂J /∂qi,j = Aji and ∂Aji/∂a
j = 0 from Appendix 1.2, the variational principle

yields

ρ0q̈
i + Aij

∂

∂aj

(
ρ2

0

J 2

∂U

∂ρ

)
= 0

Dividing by J , then using both the definition of pressure (2.17) and the expres-

sion ∂/∂qi = (Aij/J )∂/∂ai from the Appendix, I get the desired expression

ρq̈ +∇p = 0

One can devise an action principle using Eulerian variables ρ and v,

but at the cost of introducing the “Clebsch potentials” as extra variables. On

the other hand, the Hamiltonian formulation of Eulerian fluid physics follows

directly from the Lagrangian Hamiltonian description, and requires no extra

variables to be introduced, so I turn to that now.

2.3.2 The Euler-Lagrange map and the fluid bracket

The Lagrangian action (2.18) has canonical momentum π = ∂L/∂q̇ =

ρ0q̇ and Hamiltonian density

H = πiq̇
i − L =

πiπ
i

2ρ0

+ ρ0U(
ρ0

J
, s0)
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which is, of course, the fluid energy. Accompanying it is a canonical (albeit

infinite-dimensional) bracket

{f, g} =

∫ (
δf

δqi
δg

δπi
− δg

δqi
δf

δπi

)
d3a (2.19)

From the Hamiltonian H =
∫
H d3a I can derive Hamilton’s equations

∂f

∂t
= {f,H}

which work out to be q̇i = πi/ρ0 and π̇i = −∇ip. My next goal is to convert the

canonical bracket (2.19) into a noncanonical one using Eulerian variables. To

do so I need the following Euler-Lagrange transformations, written in analogy

with (2.16):

ρ(x, t) =

∫
ρ0(a) δ(x− q(a, t)) d3a

σ(x, t) =

∫
ρ0(a) s0(a) δ(x− q(a, t)) d3a (2.20)

mi(x, t) =

∫
πi δ(x− q(a, t)) d3a

I can use variations in q and π to induce variations in ρ, σ and m, using

a procedure outlined in the Appendix. These induced variations are

δρ =−
∫
ρ0 δ

′

i(x− q) δqi d3a

δσ =−
∫
ρ0 s0 δ

′

i(x− q) δqi d3a (2.21)

δmi =

∫
δπi δ(x− q)− πi δ′j(x− q) δqj d3a
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The variation in an arbitrary functional δf will be the same whether expressed

in terms of the Lagrangian or the Eulerian variables, which is to say

δf =

∫ (
δf

δqi
δqi +

δf

δπi
δπi
)
d3x =

∫ (
δf

δρ
δρ+

δf

δσ
δσ +

δf

δmi
δmi

)
d3a

Inserting the variations (2.21) into the right hand side gives

δf =

∫ ∫
−
(
ρ0
δf

δρ
+ ρ0s0

δf

δσ
+ πj

δf

δmj

)
δ
′

i(x− q) δqi

+
δf

δmi
δπi δ(x− q) d3a d3x

=

∫ ∫ (
ρ0

∂

∂xi
δf

δρ
+ ρ0s0

∂

∂xi
δf

δσ
+ πj

∂

∂xi
δf

δmj

)
δqi δ(x− q)

+
δf

δmi
δπi δ(x− q) d3a d3x

Thus the Lagrangian functional derivatives can be rewritten as

δf

δqi
=

∫ (
ρ0

∂

∂xi
δf

δρ
+ ρ0s0

∂

∂xi
δf

δσ
+ πj

∂

∂xi
δf

δmj

)
δ(x− q) d3a

δf

δπi
=

∫
δf

δmi
δ(x− q) d3a =

δf

δmi

∣∣∣∣
x=q(a,t)

These can be inserted into the canonical bracket (2.19) to produce (after

the remaining delta function eliminates the a integration) the noncanonical

Eulerian fluid bracket

{f, g} =

∫ [
ρ
∂

∂xi

(
δf

δρ

)
δg

δmi

− ρ ∂

∂xi

(
δg

δρ

)
δf

δmi

]
+

[
σ
∂

∂xi

(
δf

δσ

)
δg

δmi

− σ ∂

∂xi

(
δg

δσ

)
δf

δmi

]
+

[
mj

∂

∂xi

(
δf

δmj

)
δg

δmi

−mj
∂

∂xi

(
δg

δmj

)
δf

δmi

]
d3x
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This is the simplest example of a procedure which can be used to generate

a wide class of Hamiltonian, Eulerian matter models. For instance, adding a

Lie-dragged two-form (the magnetic field) produces MHD, and the resulting

conversion of the canonical bracket proceeds identically in relativistic MHD.

This calculation is covered in Section 6.1. Introducing two such dragged forms

allows one to generate brackets for Hall MHD, Extended MHD, and inertial

MHD, as covered in Chapter 3.

2.4 Hamiltonian MHD

2.4.1 Overview of MHD

First I give the equations of ideal nonrelativisitic ideal MHD, with the

force law and Faraday’s law expressed in two alternative ways:

∂v

∂t
+ (v · ∇) v = −∇p

ρ
+

1

4πρ

[
(∇×B)×B

]
(2.22)

= −∇p
ρ

+
1

4πρ
∇ ·
(
I B2/2−B⊗B

)
(2.23)

∂B

∂t
= ∇× (v ×B) (2.24)

= −B∇ · v + B · ∇v − v · ∇B (2.25)

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.26)

∂s

∂t
+ v · ∇s = 0 . (2.27)

Here ρ is the fluid density, p its pressure, s its specific entropy, v the

velocity field, and B the magnetic field. In (2.23) the symbol I represents the
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identity tensor. The current j and electric field E have been eliminated from

these equations, but they can be recovered from the ideal conductor Ohm’s

Law, E + (v/c)×B = 0, and Ampére’s Law, j = (c/4π)∇×B.

Observe the alternative versions of (2.22) and (2.24) given in (2.23) and

(2.25), respectively. These equations differ by terms involving ∇·B, and both

Eqs. (2.24) and (2.25) preserve the initial condition ∇ ·B = 0, which can be

seen by rewriting (2.25):

∂B

∂t
= −B∇ · v + B · ∇v − v · ∇B = ∇× (v ×B)− v∇ ·B . (2.28)

Upon taking the divergence,

∂∇ ·B
∂t

= −∇ · (v∇ ·B) . (2.29)

Consequently, if∇·B is initially identically zero it remains so as well. Equation

(2.28) shows that forms (2.24) and (2.25) are equivalent when the magnetic

field is divergenceless, although the former reveals its Faraday law origin, while

the latter show an advected magnetic flux pointing to the MHD frozen-in

constraint. Geometrically (2.25) is ∂B/∂t + £vB = 0, where £vB is the Lie

derivative of B, a vector density dual to a 2-form. Similarly, Eqs. (2.22) and

(2.23) differ by a ∇·B term, with the former revealing its Lorentz force origin

via a clearly identified current, while the latter takes the form of a conservation

law, which Gudunov [10] showed to be superior for numerical computation.

I have distinguished these two forms because they possess different

Hamiltonian structures. In Ref. [30] a Poisson bracket was given for the form
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with (2.22) and (2.24), but this structure required building in the initial con-

dition ∇ · B = 0. However, an alternative and more natural form was first

given in Refs. [31, 26], which is entirely free from ∇ · B = 0, it being only a

possible choice for an initial condition. Later in the paper I will demonstrate

relativistic equivalents of both structures, and the two will also differ by the

divergence of a 4-vectorial quantity; to be equivalent, said divergence must

vanish, which will motivate my use of the new magnetic quantity hµ.

Should one wish to add displacement current back into MHD, as is done

in the most prevalent version of relativistic MHD, the momentum equation

would have to be altered as follows:

∂v

∂t
+ (v · ∇) v = −∇p

ρ
+

1

4πρ

[(
∇×B +

∂

∂t

( v

c2
×B

))
×B

]
. (2.30)

However, the new term, when compared to ∂v/∂t, scales as

B2

4πρc2
=
(vA
c

)2

,

where vA is the Alfvén velocity. In the nonrelativistic limit, waves involving

disturbances of the matter must also travel much slower than the speed of light,

allowing one to drop the displacement current. This also means that relativistic

MHD is free to add said displacement current back in (albeit constrained by

Ohm’s Law), while still reducing to conventional MHD in the nonrelativistic

limit: one simply needs to keep in mind that said limit goes beyond just setting

v/c→ 0.
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2.4.2 Hamiltonian and bracket

Now I cast nonrelativistic MHD into Hamiltonian form. As usual, the

two ingredients will be a Hamiltonian and a bracket, with all equations of

motion given by

∂ξ

∂t
= [ξ,H] (2.31)

for any ξ that is a function of the field variables. Because this is a field theory,

both the Hamiltonian and the bracket [ , ] will involve an integration over the

whole space, and instead of partial derivatives the bracket will use functional

derivatives, which I describe in Appendix 1.1. As is typical, the Hamiltonian

is simply the energy:

H =

∫
d3x

(
1

2
ρv2 + ρU(ρ, s) +

1

8π
B2

)
The scalar field U(ρ, s) is an internal energy function, from which one can

derive a temperature T = ∂U/∂s and a pressure p = ρ2∂U/∂ρ. The gradient

of pressure is particularly important:

∇p = 2ρ
∂U

∂ρ
∇ρ+ ρ2∂

2U

∂ρ2
∇ρ+ ρ2 ∂

2U

∂s∂ρ
∇s (2.32)

The Hamiltonian’s various functional derivatives are:

δH

δρ
=

1

2
v · v + U +

p

ρ

δH

δs
= ρ

∂U

∂s

δH

δv
= ρv

δH

δB
= B
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Now for the bracket, which (in standard variables) is quite a beast:

[F,G] =−
∫
d3x

([
δF

δρ
∇ · δG

δv
− δG

δρ
∇ · δF

δv

]
+

[
δF

δv
·
(

(∇× v)

ρ
× δG

δv

)]
+

[
∇s
ρ
·
(
δF

δs

δG

δv
− δG

δs

δF

δv

)]
(2.33)

+

[
B ·
(

1

ρ

δF

δv
· ∇δG

δB
− 1

ρ

δG

δv
· ∇δF

δB

)
+ B ·

((
∇1

ρ

δF

δv

)
· δG
δB
−
(
∇1

ρ

δG

δv

)
· δF
δB

)])

The bracket’s linearity and antisymmetry are apparent, and its Jacobi identity

follows from the proof given in Appendix 1.3. While the proof is conducted in

four dimensions and uses momentum and entropy density rather than velocity

and specific entropy, neither alteration affects the identity.

I will take some care in deriving the equations of motion from the

bracket; later in the dissertation, more steps will be skimmed over. To derive

the continuity equation at a specific location x0, use the test function

ξ =

∫
d3x ρ δ(x− x0) .

The delta function eliminates the integral on both sides of (2.31), and (since

δF/δρ appears only once in (2.33)), I have

∂ρ

∂t
= −∇ · (ρv)

evaluated implicitly at x0; this point is arbitrary, so the continuity equation

(2.26) holds over the whole space. Every equation of motion requires such
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delta test functions, but they are all eliminated in identical fashions, so going

forward I will not mention that nicety.

The entropy equation follows a very similar procedure, with only one

term and no integrations by part to worry about:

∂s

∂t
= −∇s · v

reproducing (2.27).

The magnetic equation will pull down two terms from (2.33), the first

of which will require an integration by parts:

B ·
(

1

ρ

δG

δv
· ∇δF

δB

)
= Bi

1

ρ

δG

δvj
∇j

δF

δBi

⇒ − δF
δBi

∇j

(
Bi

1

ρ

δG

δvj

)
= −δF

δB
·
(

1

ρ

δG

δv
· ∇
)

B−
(
δF

δB
·B
)
∇ ·
(

1

ρ

δG

δv

)
The other term does not require an integration by parts, but it does merit

some caution with indices:

B ·
((
∇1

ρ

δG

δv

)
· δF
δB

)
= Bi

((
∇i

1

ρ

δG

δvj

)
δF

δBj

)
So, using the functional derivative δH/δv = ρv, I have

∂B

∂t
=− v · ∇B−B∇ · v + B · ∇v

=− v · ∇B−B∇ · v + B · ∇v + v∇ ·B

= ∇× (v ×B)

recalling the discussion surrounding (2.25).
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The momentum equation is most complicated. First off, I’ll consider

the terms that give derivatives of the potential energy function U , from the

first and second lines of (2.33). Together they give

−
[
∇
(
U + ρ

∂U

∂ρ

)
− 1

ρ
∇s
(
ρ
∂U

∂s

)]
=−

[
∂U

∂ρ
∇ρ+

∂U

∂s
∇s+

∂U

∂ρ
∇ρ+ ρ

∂2U

∂ρ2
∇ρ+ ρ

∂2U

∂s∂ρ
∇s− ∂U

∂s
∇s
]

=− 1

ρ

[(
2ρ
∂U

∂ρ
+ ρ2∂

2U

∂ρ2

)
∇ρ+ ρ2 ∂

2U

∂s∂ρ
∇s
]

= −∇p
ρ

using (2.32). So far so good. Two terms involving v appear, both from the

first line of (2.33). They give

−∇
(
v2

2

)
+ v × (∇× v) = −v · ∇v

using a standard vector calculus identity. Finally, two terms, one each from

the third and fourth lines of (2.33), involve the magnetic field:

1

4πρ
∇i

(
BjBj

2
−BiBj

)
So, overall, I have the velocity equation in the form (2.23), as desired.

Note that the bracket (2.33) lends itself to expressing the velocity equa-

tion in conservation form, i.e. with most quantities written as the divergence

of some tensor. The magnetic parts are already in such a form, and the ve-

locity parts partially so. If one switches to momentum m = ρv and entropy

density σ = ρs, this form becomes even more pronounced, as now the mo-

mentum terms in the momentum equation are also in divergence form. More
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importantly, the bracket simplifies considerably:

[F,G] =−
∫
d3x

(
ρ

(
δF

δm
· ∇δG

δρ
− δG

δm
· ∇δF

δρ

)
(2.34)

+ σ

(
δF

δm
· ∇δG

δσ
− δG

δm
· ∇δF

δσ

)
+ m ·

(
δF

δm
· ∇ δG

δm
− δG

δm
· ∇ δF

δm

)
+ B ·

(
δF

δm
· ∇δG

δB
− δG

δm
· ∇δF

δB
+

(
∇ δF
δm

)
· δG
δB
−
(
∇ δG
δm

)
· δF
δB

))
The previous bracket’s many stray factors of ρ are now gone, and every

part of the bracket is in semidirect form, unlike (2.33) in which the velocity

portion was a bit odd. In fact, while the relativistic Hamiltonian MHD uses a

close equivalent of (2.34), it has no equivalent to (2.33), because of the more

complex coordinate change: there mµ = (ρ + p − hµhµ)uµ + αhµ rather than

just mµ = ρuµ.

2.4.3 Casimirs and alternative brackets

With an integration by parts on the last two magnetic terms of bracket

(2.33), one alters its magnetic portion to this form:

[F,G] =−
∫
d3x

(
B ·
(

1

ρ

δF

δv
· ∇δG

δB
− 1

ρ

δG

δv
· ∇δF

δB

)

+ B ·
((
∇δF
δB

)
· 1

ρ

δG

δv
−
(
∇δG
δB

)
· 1

ρ

δF

δv

))
or, in terms of momentum,

[F,G] =−
∫
d3x

(
B ·
(
δF

δm
· ∇δG

B
− δG

δm
· ∇δF

B

)

= + B ·
((
∇δF
δB

)
· δG
δm
−
(
∇δG
δB

)
· δF
δm

))
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These forms bring the advantage that the magnetic equation is immediately

in Maxwellian form, without having to add a term proportional to ∇ · B;

however, the momentum equation also changes by a term proportional to

the same. However, the Jacobi identity no longer holds unconditionally, but

now requires the initial condition ∇ · B. Thus, this bracket is considerably

less general: the previous ones (2.33) and (2.34) represent a larger class of

dynamical systems, only some of which (the divergenceless ones) correspond to

physical systems. This distinction between the two brackets will be discussed

further in the context of relativistic MHD.

Casimir invariants are functionals C such that [F,C] = 0 for all func-

tionals F of the field variables. One class are the entropy Casimirs:

C1 =

∫
ρf

(
σ

ρ

)
d3x

where f is an arbitrary function of one real number. Another important

Casimir is the cross-helicity:

C2 =

∫
m ·B
ρ

d3x

although in this case it is only a Casimir for functionals F not depending on

the entropy density σ. Finally, there is the magnetic helicity

C3 =

∫
A ·B d3x

The first two Casimirs C1 and C2 have natural equivalents in the relativistic

theory, but an equivalent to C3 remains undiscovered, since the calculation

that establishes [F,C3] = 0 relies on a vector identity that only holds in three

dimensions.
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2.5 Metriplectic systems

2.5.1 Overview, examples and properties

Like Hamiltonian systems, metriplectic systems derive all equations of

motion from a generating function and a bracket:

∂f

∂t
= {f,G}

The generator G and the bracket both divide cleanly into Hamiltonian and

dissipative parts, written

G = H + λS (2.35)

{f, g} = [f, g] + (f, g)

Here λ is a constant included to provide consistent units. Let f , g, and h be

functions of the dynamical or field variables, and α, β constants. The anti-

symmetric bracket has the following familiar properties, which were discussed

at length in Section 2.1:

[αf + βg, h] = α[f, h] + β[g, h]

[fg, h] = f [g, h] + [f, h]g

[f, g] = −[g, f ]

[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0

[f, S] = 0
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The last equation says that the function S in the generator, usually the

entropy, is a Casimir of the antisymmetric bracket. Meanwhile, the symmetric

bracket has a related set of properties:

(αf + βg, h) = α(f, h) + β(g, h)

(fg, h) = f(g, h) + (f, h)g

(f, g) = (g, f)

(f, f) ≥ 0 (2.36)

(f,H) = 0

There is a second derivative expression related to the Jacobi identity, which

will be discussed in a later section.

As my first example, I put the damped simple harmonic oscillator into

metriplectic form. To the normal phase space for a single particle, I add an

entropy variable s, and I suppose that the energy dissipated from the oscillating

particle goes to a reservoir with internal energy U(s). Then my equations of

motion are (using dS = dQ/T to get the second one)

ṗ = −kx− b

m
p

ṡ =
b

m2T
p2

The generating functions are

G = H + λS H =
p2

2m
+
kx2

2
+ U(s) S = s
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Any needed equations of motion are generated in the usual fashion by

∂f

∂t
= {f,G} = [f,H] + (f, S)

with brackets obeying [f, S] = (f,H) = 0 for all f . These brackets are

[f, g] =
∂f

∂xi
∂g

∂pi
− ∂g

∂xi
∂f

∂pi

(f, g) =
bT

λ

(
∂f

∂pi
− pi

mT

∂f

∂s

)(
∂g

∂pi
− pi

mT

∂g

∂s

)
(2.37)

This is about as trivial as metriplectic systems get, but it’s useful to have

another example in the bag.

The system can be generalized to nonisotropic, coupled oscillators with

differing masses, as well. The index i will now run over 3N indices, and the

mass m, spring constant k and dissipative coefficient b will all be replaced by

3N×3N -dimensional matrices M , K, and B. I require that M be positive

definite, to avoid negative or zero masses and to allow its invertibility. I also

require that K be positive semidefinite (only restoring forces are considered),

as well as B (energy is only dissipated, not added). The equations of motion

are now

ṗi = −Kijxj −BijM
−1
jk pk

ṡ =
1

T
Bij(M

−1
ik pk)(M

−1
jl pl)

These equations are simpler when written in terms of velocity, since momentum

only appears in the form vi = M−1
ij pk, but I’m keeping the form that gives me

a canonical antisymmetric bracket. The generating functions are

G = H + λS H =
1

2
M−1

ij pipj +
1

2
Kijxixj + U(s) S = s
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Finally, the brackets are

[f, g] =
∂f

∂xi
∂g

∂pi
− ∂g

∂xi
∂f

∂pi

(f, g) =
BijT

λ

(
∂f

∂pi
− M−1

il p
l

T

∂f

∂s

)(
∂g

∂pj
−
M−1

jk p
k

T

∂g

∂s

)
(2.38)

The positivity property (2.36) follows if the dissipation matrix B is positive

semidefinite.

As a slightly more sophisticated example, consider the rigid body sys-

tem detailed earlier in Section 2.2. It has Casimirs of the total angular mo-

mentum squared, C = ω2. I can create a symmetric bracket which leaves H

invariant by a direct method:

(f, g) = −
[(

∂H

∂ωi

∂H

∂ωj
− δij

∂H

∂ωl

∂H

∂ωl

)
∂f

∂ωi

∂g

∂ωj

]
(2.39)

The exact behavior of this system will depend on my choice of entropy S, but

I can outline some qualitative features of the dynamics. Because the system

is still conservative, the dynamics take place along the ellipsoid of constant

energy. If entropy increases monotonically with ω2, then the system will relax

to an orientation along the longest axis of the ellipsoid, which corresponds to

the smallest principal axis of inertia; if entropy decreases monotonically with

ω2, the system relaxes to the smallest axis of the ellipsoid, corresponding to

the largest axis. This echoes a result from textbook classical mechanics which

states that the middle axis will not be stable.
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2.5.2 Metriplectic Navier-Stokes

Next I look at dissipative fluids. This is a field theory, with the fields

being density ρ, specific entropy s (or, later on, entropy density σ = ρs),

and fluid velocity v or momentum density m = ρv. Additionally, I have the

derived quantities: pressure p, heat flux q, and stress tensor σij. The system

is governed by the Navier-Stokes equation plus the entropy and continuity

equations:

∂vi
∂t

= vk
∂vi
∂xk
− 1

ρ

∂p

∂xi
+

1

ρ

∂σik
∂xk

∂s

∂t
= −vk

∂s

∂xk
+
σik
ρT

∂vi
∂xk
− 1

ρT

∂qk
∂xk

∂ρ

∂t
= − ∂

∂xk
(ρvk)

To close the system there is an equation of state, for my purposes an internal

energy function U(ρ, s), plus the following constitutive relations:

qk = −κ ∂T
∂xk

σik = Λikmn
∂vm
∂xn

Λikmn = η

(
δimδkn + δinδkm −

2

3
δikδmn

)
+ ζδikδmn (2.40)

Now to put this in metriplectic form. The generator (2.35) has compo-

nents

H =

∫ (
m2

2ρ
+ ρU(ρ, s)

)
d3x S =

∫
n s d3x
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The antisymmetric bracket is

[f, g] =

∫
ρ

((
δg

δm
· ∇
)
δf

δρ
−
(
δf

δm
· ∇
)
δg

δρ

)
+ m ·

((
δg

δm
· ∇
)
δf

δm
−
(
δf

δm
· ∇
)
δg

δm

)
+σ

((
δg

δm
· ∇
)
δf

δσ
−
(
δf

δm
· ∇
)
δg

δσ

)
d3x

Meanwhile, the symmetric bracket is

(f, g) =
1

λ

∫
TΛikmn

[
∂

∂xi

δf

δmk

− 1

T

∂vi
∂xk

δf

δσ

] [
∂

∂xi

δg

δmk

− 1

T

∂vi
∂xk

δg

δσ

]
+κT 2 ∂

∂xk

[
1

T

δf

δσ

]
∂

∂xk

[
1

T

δg

δσ

]
d3x

(2.41)

In Section 6.4 these brackets will be generalized to the relativistic case.

This is highly nontrivial, as the relativistic equivalent of Γ involves adding

many projection operators.

2.5.3 General form of metriplectic brackets

Having presented a fair number of examples, I was able to observe a

pattern in the form of the symmetric brackets. To illustrate this form, let

me rewrite each such bracket in a more revealing manner. The anisotropic

damped oscillator bracket (2.38) can be rewritten

(f, g) =
Bij

λT

(
∂H

∂s

∂f

∂pi
− ∂f

∂s

∂H

∂pi

)(
∂H

∂s

∂g

∂pi
− ∂g

∂s

∂H

∂pi

)
The rigid body one (2.39) becomes

(f, g) =
1

2

(
∂H

∂ωi

∂f

∂ωj
− ∂f

∂ωi

∂H

∂ωj

)(
∂H

∂ωi

∂g

∂ωj
− ∂g

∂ωi

∂H

∂ωj

)
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Finally, the Navier-Stokes bracket (2.41) can be modified to read

(f, g) =
1

λT

∫
Λikmn

[
δH

δσ

∂

∂xi

δf

δmk

− δf

δσ

∂

∂xi

δH

δmk

] [
δH

δσ

∂

∂xm

δg

δmn

− δg

δσ

∂

∂xm

δH

δmn

]
+κ

[
1

T

δH

δσ

∂

∂xk

1

T

δf

δσ

] [
1

T

δH

δσ

∂

∂xk

1

T

δg

δσ

]
d3x

It should be clear that all the metriplectic brackets fall into a common

form, containing symmetric parts, antisymmetric ones, and two derivatives of

the Hamiltonian. Schematically, one can write

(f, g) = ([f,H]i, [g,H]i)o

with antisymmetric “inner” bracket and symmetric “outer” bracket. These

are not actual brackets, because the inner one will tend to add tensorial in-

dices while the outer one contracts them; however, they are bilinear and can

be expressed in terms of structure coefficients. Even better, these structure

coefficients tend to be constant, leaving the entire nonconstant portion of the

symmetric bracket a result of the derivatives of the Hamiltonian. This may be

related to Dr. Morrison’s discovery of “triple brackets” in [6].

2.5.4 Metriplectic speculations: QM, Dirac and Jacobi

In standard nonrelativistic quantum mechanics, imagine that you use

a more general operator in place of the Hamiltonian:

i}
∂

∂t
|Ψ >= G|Ψ >

where G has a Hermitian and anti-Hermitian part:

G = H + S H = H† S = −S†
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Then if you work through the equivalent of the proof of Ehrenfest’s theorem,

which can be found in many QM textbooks, you will now find

∂

∂t
< f >=

i

h
(< [f,H] > + < (f, S) >)

where square brackets denote the commutator and round brackets the anti-

commutator. This expression is pleasantly similar to the metriplectic equation

of motion

∂f

∂t
= [f,H] + (f, S)

However, the commutators and anticommutators do not factor as cleanly

as in the metriplectic case; for one thing, you must either have (H,S) 6= 0 or

[H,S] 6= 0, and the probability density will not be conserved. Perhaps a sort

of Dirac brackets for metriplectic systems is the way out of this problem; even

if not, it’s interesting in its own right. Let a quantity A not belong to the

nullspace of the symmetric bracket (f, g), so that (A,A) ≥ 0. Then the new

bracket

(f, g)D = (f, g)− (f, A)(A, g)

(A,A)

now satisfies (f, A) = 0 for all f . This bracket retains its bilinearity, symmetry,

and non-negativity properties. The last can be seen by working in the normal-

ized eigenbasis of the original bracket (guaranteed to exist by its symmetry),

then splitting ∇f into components parallel and orthogonal to ∇H, and notic-

ing that what remains of (f, f)D is the squared norm of the orthogonal part.

This “Dirac bracket” is much more convenient than its antisymmetric brother,
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because you can use an odd number of new invariants and you don’t have to

worry about the singularity of a matrix. To fix the problems with the quantum

mechanical speculation, imagine using H as one such invariant (making it now

a conserved quantity, since of course it commutes with itself), and the identity

operator I as another (so that now probability density is conserved). I’m still

looking for a concrete example to work with, though.

I’m also looking for an equivalent to the Jacobi identity

[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0

for finite-dimensional metriplectic systems. While I haven’t found anything so

far that would merit a new axiom for the symmetric brackets, I have found

that the Jacobi equivalent can be expressed in a compact form. In finite

dimensions, the brackets are written as bilinear forms with antisymmetric and

symmetric parts:

{f, g} = bµνf,µg,ν = [f, g] + (f, g) = jµνf,µg,ν + gµνf,µg,ν

Let’s start taking the “metric” part of metriplectic seriously, and see

what geometrical structures can tell us. If the bilinear form bµν has null

vectors, then restrict each form, and any gradients, to the subspace that’s

orthogonal to the nullspace of bµν . (Properly speaking I should stick a tilde

or something on all quantities to indicate projection, but I’ll omit them.) Use

the full bilinear form bµν , which is hopefully invertible on this subspace, to
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raise and lower indices. (I’ve tried this using gµν to raise and lower indices,

and it doesn’t seem to work.) Define the torsionless (symmetric) and torsional

(antisymmetric) parts of the affine connection as follows:

Sλµν =
1

2
(gµλ,ν + gλν,µ − gνµ,λ)

Tλµν =
1

2
(jµλ,ν + jλν,µ − jνµ,λ)

Γλµν = Sλµν + Tλµν =
1

2
(bµλ,ν + bλν,µ − bνµ,λ)

These expressions can be inverted:

gµν,λ = Sνµλ + Sµλν

jµν,λ = Tνµλ + Tµλν

bµν,λ = Γνµλ + Γµλν

Use that affine connection to define a covariant derivative in the standard

manner:

f;µ = f,µ

f;µν = Γαµνf;α + f;µ,ν = Γαµνf,α + f,µν

Now look at a term in the Jacobi expression.

{{f, g}, h} = {bµνf,µg,ν , h}

= bµν λb
λσf,µg,νh,σ + bµνbλσf,µλg,νh,σ + bµνbλσf,µg,νλh,σ

= bαβ,λb
αµbβνbλσf,µg,νh,σ + bµνbλσf,µλg,νh,σ + bµνbλσf,µg,νλh,σ
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= Γβαλb
αµbβνbλσf,µg,νh,σ+Γαλβb

αµbβνbλσf,µg,νh,σ+bµνbλσf,µλg,νh,σ+bµνbλσf,µg,νλh,σ

= Γαµλf,αb
λνbµσg,νh,σ +Γαµνg,αb

µλbνσf,λh,σ +bµνbλσf,µλg,νh,σ +bµνbλσf,µg,νλh,σ

= f;µλg;νh;σb
λνbµσ + g;µνfλhσb

µλbνσ

In all,

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}

= (f;µνg;λh;σ + g;µνh;λf;σ + h;µνf;λg;σ)
(
bµλbνσ + bµσbνλ

)
I’d still like to find something more restrictive than this, particularly if it lets

me raise/lower indices with gµν , instead.
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Chapter 3

Derivation of the Hall and Extended MHD

Brackets

This chapter will outline a derivation of the Hall MHD bracket, first

stated in Abdelhamid et al. [1]. In doing so, they will draw on recent work

by Lingam et al. [17] and Keramidas et al [7], along with seminal work by

Mahajan [20]. In particular, these lines of work have emphasized the fact

that various plasma models – ordinary MHD, Hall MHD, inertial MHD, and

extended MHD – are distinguished by their individual variants of the magnetic

flux conservation law.

All four models now have Hamiltonian form. The bracket for ordinary

MHD was derived in [26]; in fact, this bracket serves for inertial MHD as well

[19]. Abdelhamid et al [1] stated, but did not derive, a bracket that applies

to extended MHD and all three of its submodels. These Hamiltonian forms

use the standard Eulerian variables (ρ, s,m,B), with a modified B∗ replacing

B in extended and inertial MHD. In principle, all four Hamiltonian models

should from distinct descriptions using Lagrangian variables; while Keramidas

et al [7] recently derived action principles for each, starting from a two-fluid

model, these action principles mix Eulerian and Lagrangian variables.
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3.1 Flux Conservation Laws

The essential difference between the four models is the form of their

flux conservation laws, of which each has a different version. Mahajan [20]

pointed out that a composite fluid will have a number of conserved magnetic

helicities equal to the number of species in the fluid. This attribute persists

into the various MHD models, even though they are single-fluid models. The

archetypal flux conservation law is that of ordinary MHD, B ·d2q = B0 ·d2a.

The a variables denote a label space, whose continuous values identify fluid

elements at t = 0, while the coordinates q(a, t) describe the point to which

a specific element flows; thus, q(a, 0) = a. More explicitly, I write the flux

conservation law as

εijkB
i(q, t)dqjdqk = εijkB

i
0(a)dajdak (3.1)

This expression can be manipulated into a transformation rule for the magnetic

field:

Bi =
Bj

0

J
∂qi

∂aj
(3.2)

where J is the Jacobian determinant of the invertible transformation from a

to q.

There are two distinct ways one can modify the flux conservation law

(3.1). First, one can advect a flux different from that of B; with an appro-

priate choice of this flux, one gets inertial MHD. Second, the same flux can

be advected, but along a path distinct from that of the fluid. This second

approach gives Hall MHD. Specifically, while the fluid itself flows from a to a
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point q(a, t), the flux element moves from a to a distinct point qf (a, t), as illus-

trated by an illuminating figure which does not exist yet. Flux conservation

is now

εijkB
idqjfdq

k
f = εijkB

i
0 da

jdak

which gives rise to the transformation rule

Bi =
Bj

0

Jf
∂qif
∂aj

(3.3)

The flux Jacobian Jf is also invertible, and can be written

Jf = εijkε
lmn

∂qif
∂al

∂qjf
∂am

∂qkf
∂an

from which one can derive the expression dJf/dt = J ∂q̇if/∂qif .

Taking a full time derivative of B(qf , t) in equation (3.2) gives

dBi

dt
=
∂Bi

∂t
+ q̇jf

∂Bi

∂qj
=
Bj

0

Jf
∂q̇if
∂aj
− Bj

0

Jf
∂qif
∂aj

∂q̇kf
∂qkf

=
Bk

0

Jf
∂qlf
∂ak

∂am

∂qlf

∂q̇if
∂am

− Bj
0

Jf
∂qif
∂aj

∂q̇kf
∂qkf

= Bj
∂q̇if
∂qj
−Bi

∂q̇kf
∂qkf

This equation shows B advected along qf , as desired. Since B is divergenceless,

I can add a term proportional to (∇ ·B)q̇ and put the equation in the more

familiar Faraday form

∂B

∂t
= ∇q × (q̇f ×B)
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So far, so good. However, complications arise when you look for the

other equations of motion. Some fluid attributes (density, specific entropy)

are transported along the flow lines q(a, t), not qf : mass conservation is de-

scribed by n(q, t)d3q = n0(a)d3a, and entropy conservation (the system has no

dissipation) by s(q, t) = s0(a, t). As a result, the label corresponding to the

magnetic field will differ from the label on the other quantities. This situation

is shown in an even more illuminating figure, which also does not exist yet. In

this nonexistent figure, the fluid element labelled by a flows to q(a, t), while a

different label a′ shows the origin of the flux element that has been advected

to q(a, t) = qf (a
′, t). For future use I will need two additional quantities: the

point q(a′, t), to which the a′ element flows, and the difference qd(a
′, t) between

qf (a
′, t) and q(a′, t). All these quantities are related via

q(a, t) = qf (a
′, t) = q(a′, t) + qd(a

′, t)

More relations are available, for example a′(a, t) = q−1
f (q(a, t), t), and in prin-

ciple I could eliminate all but two of these quantities, but it is simpler to keep

the extras around.

3.2 Hall MHD Action

Every point corresponds to two labels; in Hall MHD, these turn out to

correspond to ion and electron quantities. Thus q, for example, will appear as

both q(a, t) and q(a′, t). To simply following expressions I write q′ ≡ q(a′, t),

q′d ≡ qd(a
′, t), (q′)i,j ≡ ∂(q′)i/∂(a′)j and (q′d)

i
,j ≡ ∂(q′d)

i/∂(a′)j, with unprimed
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expressions such as q denoting unprimed quantities like q(a, t). If I treat primed

and unprimed quantities separately, then the full Euler-Lagrange equations,

using Lagrangian density L, will be[
d

dt

(
∂L
∂q̇i

)
+
d

dt

(
∂L
∂(q̇′)i

)
+

∂

∂aj

(
∂L
∂qi,j

)
(3.4)

+
∂

∂(a′)j

(
∂L

∂(q′)i,j

)
− ∂L
∂qi
− ∂L
∂(q′)i

]
a′=q−1

f (q(a,t))

= 0

with a similar expression for qd. I think these Euler-Lagrange equations can

be obtained via Dirac delta function manipulations on a six-dimensional label

space, but I’m not sure how. Anyway, many of the terms in the Euler-Lagrange

equations are superfluous: only the first four terms will contribute in the q

variation, and only the second and fourth terms in the qd one.

If it were written in terms of ion and electron velocities qi and qe, the

Lagrangian density would be standard:

L =
1

2
min0q̇

2
i +

en0

c
q̇i ·A(q, t)− en0φ(q, t)− n0Ui

(
n0

J
, s0

)
(3.5)

+
1

2
min0q̇

2
e −

en0

c
q̇e ·A(q′ + q′d, t) + en0φ(q′ + q′d, t)− n0Ue

(
n0

Jf
, s0

)
In Hall MHD, I treat electron velocity as being different from ion velocity

(unlike in regular MHD), but nonetheless neglect terms of order me/mi. The

variables used will be center-of-mass velocity q̇, and the drift velocity of elec-

trons relative to ions, q̇d. In terms of ion and electron velocity I have

q̇ =
miq̇i +meq̇e
mi +me

q̇d = q̇e − q̇i
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Inverting these equations and neglecting terms of the order of the mass ratio,

I have

q̇i = q̇− me

mi +me

q̇d ≈ q̇

q̇e = q̇ +
mi

mi +me

q̇d ≈ q̇ + q̇d

Thus, rewriting (3.5), setting m = mi + me ≈ mi, and remembering the dis-

tinction between primed and unprimed labels, the Lagrangian density becomes

L =
1

2
mn0q̇

2 +
en0

c
[q̇ ·A(q, t)− q̇′ ·A(q′ + q′d, t)− q̇′d ·A(q′ + q′d, t)]

− en0 [φ(q, t)− φ(q′ + q′d, t)]− n0

[
Ui

(
n0

J
, s0

)
+ Ue

(
n0

Jf
, s0

)]

In the q equation of motion, the terms arising from φ(q, t)−φ(q′+q′d, t)

cancel, and most of the terms coming from q̇ ·A(q, t)− q̇′ ·A(q′+ q′d, t), cancel

in pairs after the q = q′ + q′d evaluation. The only surviving term comes from

the advective parts of dA/dt, which are different for the two terms. Setting

pe = n2∂Ue/∂n, pi = n2∂Ui/∂n, and p = pe + pi, I have, for the q equation of

motion,[
mn0q̈i −

en0

c
(q̇′d)

j
Ai,j(q

′ + q′d, t) +
en0

c
(q̇′d)

j
Aj,i(q

′ + q′d, t) + J∇p
]
a′=q−1

f (q(a,t))

which can, multiplying by 1/J and using j = −enqd, be simplified to

ρq̈ = −∇p+
1

c
j×B (3.6)
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In the qd equation of motion, the three final terms come from the full

derivative dA(q′ + q′d, t)/dt, and the pressure term comes from the q′d depen-

dence of Jf :

en0

c

(
(q̇′)

j
Aj,i(q

′ + q′d, t) + (q̇′d)
j
Aj,i(q

′ + q′d, t)
)
− en0φ,i(q

′ + q′d, t)

+J∇pe −
en0

c

(
(q′)jAi,j(q

′ + q′d, t)− (q′d)
jAi,j(q

′ + q′d, t)
)
− ∂Ai

∂t

with the whole thing evaluated at q(a, t) = q(a′, t) + qd(a
′, t) as usual. Re-

ordering and simplifying, one finds

E +
q̇×B

c
=

j×B

nec
− ∇pe

ne
(3.7)

which is Ohm’s Law for Hall MHD.

However, the theory is not yet complete, because I am left with no

way to find the evolution of q̇d. I can also not perform the usual Legendre

transform, because I have no expression q̇d(q, qd, π, πd). Nonetheless, one can

write down a phase space action whose four variations give all the needed

equations. The corresponding density is

π · q̇ + πd · q̇d −
1

2mn0

π2 +
e

mc
(π ·A(q, t)− π ·A(q′ + q′d, t))

− 1

2Jf

(
c

n0e

)2

(∇a × πd)i (∇a × πd)j
(
∂qk

∂ai
+
∂qkd
∂ai

)(
∂qk
∂ai

+
∂q(d)k

∂ai

)
(3.8)

+n0e (φ(q′ + q′d, t)− φ(q, t))− n0

[
Ui

(
n0

J
, s0

)
+ Ue

(
n0

Jf
, s0

)]
The middle term, note, is simply B2/2, expanded using (3.2) and πd =

−(en0/c)A(q, t).
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There are four phase space variations; as when using (3.4), one sets

q = q′+ q′d after taking variations. (And, once again, I hope to fill in this step

using a delta-function argument.) Thus the π variation gives

q̇ =
π

mn0

The πd variation involves an integration by parts on the middle term of the

density (3.8), giving (maybe add details later)

q̇d = − c

n0e
∇×B

i.e. j = c∇×B, the missing piece of the earlier tangent space action.

In the q variation, most of the terms once again vanish. The ∂q/∂a

terms in the middle term of (3.8) give two factors of (BiBj/2),i, and the Jf

in the same term gives a factor of (B2/2),i. The remaining terms proceed

similarly as in the tangent space calculation. The overall result is

−π̇i − Ck
j

∂

∂ak

[
BiBj − B2

2
δij
]

+ J∇ip = 0

which, given j = c∇ × B and the ε-ε identity, is the same as (5.10). Finally,

the qd variation gives

−π̇id −
e

mc
πj∇iAj + Ck

j

∂

∂ak

[
BiBj − B2

2
δij
]

+ n0e∇iφ+ J∇ipe = 0

Considering that πd = −(en0/c)A(q, t), and π̇d will thus have two terms, this

equation is identical to (3.7).
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3.3 The Hall MHD Euler-Lagrange map and bracket

The Eulerian quantities ρ, σ, and mi are defined via standard Euler-

Lagrange maps:

ρ(x, t) =

∫
ρ(a, t) δ(x− q(a, t)) d3q =

∫
ρ0(a) δ(x− q(a, t)) d3a

σ(x, t) =

∫
ρ0(a)s0(a) δ(x− q(a, t)) d3a (3.9)

mi(x, t) =

∫
πi(a, t) δ(x− q(a, t)) d3a

Apparently, when I induce variations later on, the first two quantities will

only have δq variations from the delta functions, while m will have a δq and

δπ variation. The odd one is the magnetic Euler-Lagrange map:

Bi(x, t) =

∫
Bj

0(a′)
∂qif
∂(a′)j

δ(x− qf (a′, t)) d3a′

=

∫
Bj

0(a′)

(
∂qi

∂(a′)j
+

∂qid
∂(a′)j

)
δ(x− q(a′, t)− qd(a′, t)) d3a′ (3.10)

This will have q and qd dependence via qf , and πd dependence via πd =

−(en0/c)A.

Because B is a Lie-dragged two-form, a suitable choice of gauge will

make the vector potential A a Lie-dragged one-form, so that Aidq
i
f = A(0)ida

i.

As a result,

Aj
∂qj

∂ai
= A(0) ⇒ Ai =

A(0)jC
j
i

Jf
(3.11)

where Cj
i is the cofactor matrix of the coordinate transformation ∂qjf/∂a

i.

Thus, something peculiar occurs when one tries to take phase space variations:

because it is related to a Lie-dragged quantity, πd(t) is determined by πd(0),
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its value at t = 0, i.e. on the label space. Inserting A = −(c/en0)πd into

(3.11), one finds the similar transformation rule

π̃i = π̃(0)j
Cj
i

Jf
(3.12)

which will be important later. Note that I will have to be more careful with

boundary conditions than before: I set δq and δqd to zero at t = 0, but δπd is

nonzero on the boundary.

I can now show how the Eulerian variables change under variations in

the Lagrangian phase-space ones, using (3.9) and (3.10):

δρ =

∫
ρ0(a) δ′i(x− q(a, t)) δqi d3a

δσ =

∫
σ0(a) δ′i(x− q(a, t)) δqi d3a (3.13)

δmi =

∫
πi δ′j(x− q(a, t)) δqj + δ(x− q) δπi d3a

δBi =

∫
Bj

0(a′)

(
∂qi

∂(a′)j
+

∂qid
∂(a′)j

)
δ′k(x− q(a′, t)− qd(a′, t))

(
δqk + δqkd

)
−Bj

0δ
′
k (x− q(a′, t)− qd(a′, t))

(
∂qk

∂(a′)j
+

∂qkd
∂(a′)j

)(
δqi + δqid

)
+
∂Bj

0

∂πkd
δπkd

(
∂qk

∂(a′)j
+

∂qkd
∂(a′)j

)
δ(x− q′ − q′d) d3a′

Note that the introduction of qd and πd, which do not appear in regular MHD,

nonetheless do not require me to add any new Eulerian variables.

The variation induced by an arbitrary function f , in both Lagrangian
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and Eulerian variables, is

δf =

∫
δf

δρ
δρ+

δf

δσ
δσ +

δf

δmi
δmi +

δf

δBi
δBi d3x

=

∫
δf

δqi
δqi +

δf

δπi
δπi +

δf

δqid
δqid +

δf

δπid
δπid d

3a (3.14)

Substituting the various (3.13), except for the one term involving δπd

(which will require more careful attention), into the left side of (3.14) gives

the expression∫ ∫ [(
δf

δρ
ρ0(a) +

δf

δσ
σ0(a) +

δf

δmi
πi
)
δ′j (x− q(a, t)) δqj

+
δf

δBi

(
Bj

0(a)
∂qif
∂aj

δqk −Bj
0(a)

∂qkf
∂aj

δqi

)
δ′k (x− q(a, t)− qd(a, t))

+
δf

δBi

(
Bj

0(a)
∂qif
∂aj

δqkd −B
j
0(a)

∂qkf
∂aj

δqid

)
δ′k (x− q(a, t)− qd(a, t))

+

(
δf

δmi
δ (x− q(a, t))

)
δπi

]
d3x d3a

In this expression, the disappearance of a′ is rather startling, but is still there

implicitly via the delta functions, for at a fixed x they will pick out values of

a for the magnetic terms distinct from those of the other terms.

Meanwhile, the term that I omitted is, using B0 = ∇a ×A0,

−
∫ ∫

δf

δBi
εjkl

∂

∂ak

(
c

n0e
δπ(d,0)l

)
∂qif
∂aj

δ(x− q − qd) d3a d3x

=

∫ ∫
c

n0e

δf

δBi
εjkl δπ(d,0)l

∂qif
∂aj

∂qmf
∂ak

δ
′

m(x− q − qd) d3a d3x

Here the ∂2qf/∂a∂a term in the integration by parts vanishes because it is

a symmetric object contracted with an antisymmetric one, and the second
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factor of ∂qf/∂a appears because I want the delta-function derivative to give

a derivative with respect to q (and thus x). These factors may be eliminated

in the following manner:

εjkl
∂qif
∂aj

∂qmf
∂ak

=
1

2
εjkl

(
∂qif
∂aj

∂qmf
∂ak
−
∂qif
∂ak

∂qmf
∂aj

)

=
1

2
εjkl

∂qaf
∂aj

∂qbf
∂ak

δimab =
1

2
εjkl

∂qaf
∂aj

∂qbf
∂ak

εnimεnab

=
1

2
C l
nε
nim

Thus, using (3.12), that portion of the δf variation becomes∫ ∫
c

2n0e

δf

δBi
Jf δπ(d)j ε

jikδ
′

k(x− q − qd) d3a d3x

Comparison of the expanded Eulerian δf with the right side of (3.14)

then gives expressions for the Lagrangian functional derivatives in terms of
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the Eulerian ones:

δf

δπi
=

∫
δf

δmi
δ (x− q(a, t)) d3x =

δf

δmj

∣∣∣∣
x=q(a,t)

δf

δqi
=

∫ (
δf

δρ
ρ0 +

δf

δσ
σ0 +

δf

δmi
π

)
δ′i (x− q)

+
δf

δBj
Bk

0

∂qjf
∂ak

δ′i (x− q − qd)−
δf

δBi
Bk

0

∂qjf
∂ak

δ′j (x− q − qd) d3x

= −
∫ [

ρ0
∂

∂xi

(
δf

δρ

)
+ σ0

∂

∂xi

(
δf

δσ

)
+ πj

∂

∂xi

(
δf

δmj

)]
δ(x− q)

+ Jf
[
Bj ∂

∂xi

(
δf

δBj

)
−Bj ∂

∂xj

(
δf

δBi

)]
δ(x− q − qd) d3x

δf

δqid
=

∫
δf

δBj
Bk

0

∂qjf
∂ak

δ′i (x− q − qd)−
δf

δBi
Bk

0

∂qjf
∂ak

δ′j (x− q − qd) d3x

=−
∫
Jf
[
Bj ∂

∂xi

(
δf

δBj

)
−Bj ∂

∂xj

(
δf

δBi

)]
δ(x− q − qd) d3x

δf

δπ(d)i

=

∫
δf

δBj

c

2n0e
Jf εijkδ

′

k(x− q − qd) d3x

=
c

2ne

∫ (
∇× δf

δB

)
i

δ(x− q − qd) d3x = − c

2ne

(
∇× δf

δB

)
i

∣∣∣∣
x=q(a,t)+qd(a,t)

Finally, I can use these functional derivatives to convert the canonical

Lagrangian bracket into a generalization of the noncanonical Hall MHD one,

where the delta function introduces a factor of J −1 or J −1
f , eliminates the a
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integral and converts the remaining Lagrangian quantities into Eulerian ones:

{f, g} =

∫ (
δf

δqi
δg

δπi
− δg

δqi
δf

δπi

)
+

(
δf

δqid

δg

δπid
− δg

δqid

δf

δπid

)
d3a

=

∫ (
ρ
δf

δmi

∂

∂xi

(
δg

δρ

)
− ρ δg

δmi

∂

∂xi

(
δf

δρ

))
+

(
σ
δf

δmi

∂

∂xi

(
δg

δσ

)
− σ δg

δmi

∂

∂xi

(
δf

δσ

))
+

(
mj

δf

δmi

∂

∂xi

(
δg

δmj

)
−mj

δg

δmi

∂

∂xi

(
δf

δmj

))
+

(
Bj δf

δmi

∂

∂xi

(
δg

δBj

)
−Bj δg

δmi

∂

∂xi

(
δf

δBj

))
+

(
Bj ∂

∂xj

(
δf

δBi

)
δg

δmi

−Bj ∂

∂xj

(
δg

δBi

)
δf

δmi

)
+

c

2ne

[
Bj

(
∇× δf

δB

)i
∂

∂xi

(
δg

δBj

)
−Bj

(
∇× δg

δB

)i
∂

∂xi

(
δf

δBj

)

+ Bj ∂

∂xj

(
δf

δBi

)(
∇× δg

δB

)i
−Bj ∂

∂xj

(
δg

δBi

)(
∇× δf

δB

)i]
d3x

≡ {f, g}MHD + {f, g}Hall

Here the {f, g}Hall terms are those in the square bracket, and the remaining

{f, g}MHD terms are familiar from ordinary MHD.

The Hall portion of the bracket can be greatly simplified. Take the two

terms involving the curl of δf/δB. They become

c

2ne

[
Bj

(
∇× δf

δB

)i
δklij

∂

∂xk

(
δg

δBl

)]

=
c

2ne

[
Bj

(
∇× δf

δB

)i
εmijε

mkl ∂

∂xk

(
δg

δBl

)]

= − c

2ne
B ·
[(
∇× δf

δB

)
×
(
∇× δg

δB

)]
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The other two terms give an identical expressions; together, they eliminate

the factor of 1/2 and reproduce the Abdelhamid bracket.

3.4 Extended MHD

I’ll move up to extended MHD using a brute-force method. The field

variable B∗ will be written as a linear combination of the two-forms B±, each

of which is advected along a linear combination of q and q̃. Thus (3.10) will

be rewritten as

B∗,i(x, t) =

∫
β+B

j
0,+(a)

(
∂qi

∂aj
+ α+

∂qid
∂aj

)
δ(x− q(a, t)− α+qd(a, t))

+ β−B
j
0,−(a)

(
∂qi

∂aj
+ α−

∂qid
∂aj

)
δ(x− q(a, t)− α−qd(a, t)) d3a

Presumably I could add two more coefficients, so that I’d have δ(x − γ+q −

α+qd) for instance, but then I’d end up with an underdetermined linear system,

with two superfluous variables. In addition, I assume that B0,± are both

identically affine to the canonical momentum π̃, so that δB0,± = −diδπd/ρ0 as

in the Hall case. Hopefully this assumption can be justified or amended later.

The following changes then appear in the previous calculation: (i) All

functional derivatives with respect to B are now done with respect to B∗; (ii) in

the magnetic portion of {f, g}MHD, B is replaced by β+B+ +β−B− = B∗; (iii)

in {f, g}Hall, B is replaced by (di/ρ)(β+α+B+ +β−α−B−). In the Abdelhamid

bracket, this last quantity works out to be (1/ρ)(B∗ − d2
e∇×V). According
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to [17], the advected quantities are

B± = B∗ + γ±∇×V (3.15)

where

1

γ±
= λ± =

−di ±
√
d2
i + 4d2

e

2d2
e

are the coefficients from [18]. So I can invert (3.15) to get

B∗ =
γ+B− − γ−B+

∆γ
∇×V =

B+ −B−
∆γ

where ∆γ = γ+ − γ−. The various coefficients then turn out to be

β+ = − γ−
∆γ

β− =
γ+

∆γ

α+ = −d
2
e

di
λ+ α− = −d

2
e

di
λ−

So far this is just done by brute force, but a couple of things are worth noticing.

First, the values β++β− = 1, and both are positive, so B∗ is a weighted average

of B+ and B−. In addition α+ + α− = 1. In future work I hope to show how

these, like their analogues in the Hall MHD bracket, originate in an action

principle for extended MHD.
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Chapter 4

The transition to relativistic Hamiltonian

systems

4.1 Systems with proper time

When trying to generalize Hamilton’s equations

∂f

∂t
= {f, h}

to relativity, two problems present themselves. The first problem is that

the bracket {f, g} is expressed in terms of 3-vectorial quantities, implicitly

assuming a choice of local reference frame. The second problem is the time

derivative occurring on the left hand side, also implying a favored choice of

reference frame. Most treatments, including the ADM formalism [25] and the

Hamiltonian theory developed in QFT [40], develop what is called a 3+1 split,

retaining the nonrelativistic form of Hamilton’s equations at the cost of losing

frame-indepedence. I will outline alternatives, in my opinion superior ones due

to their frame independence.

The first problem just mentioned turns out to be easily solved; in almost

all cases where the bracket uses a 3-vectorial quantity, one can instead use the

4-vectorial equivalent. In this dissertation, the only exception to this rule is the

metriplectic form of relativistic Navier-Stokes, which also requires a projection
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operator, but even in that case the Hamiltonian bracket only requires one to

swap in 4-vectors. However, the 4-vectorial equivalents used in the bracket

sometimes look much different than their 3-vectorial counterparts; for instance,

in relativistic MHD, the momentum is not simply ρvµ, but instead involves

both pressure and magnetic energy density.

The second problem, concerning the time derivative, poses a more sub-

tle challenge. In the case of particle motion, each particle has a well-defined

proper time τ , so one can use that derivative. For the particle subject only to

the Lorentz force, for instance, I have

df

dτ
= {f,H} (4.1)

where the Hamiltonian is

H =
(P µ − eAµ)(Pµ − eAµ)

2m

and the bracket is a canonical one,

{f, g} =
∂f

∂Xµ

∂g

∂Pµ
− ∂g

∂Xµ

∂f

∂Pµ
.

In this case the 4-velocity is Uµ = (P µ − eAµ)/m. Note a peculiarity of

this Hamiltonian system, in that both sides of Hamilton’s equations (4.1)

involve time derivatives, a proper time derivative on the LHS and a partial

time derivative on the RHS.

Most of the systems I deal with are infinite-dimensional, noncanonical

ones. However, in such cases one of the fields will often turn out to be a ve-

locity field. Using this field, one can define a proper time along streamlines by
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integrating the coordinate time of an observer moving with 4-velocity defined

by that field; for example, in fluids, proper time is the coordinate time mea-

sured by an observer moving with the fluid. In this case, one can define the

proper time derivative in Hamilton’s equations as the following, where Uµ is

the velocity field:

df

dτ
= Uµ ∂f

∂Xµ
= {f,H}

This is the form that the fluid and MHD equations take when using Lagrangian

(as opposed to Eulerian) coordinates, for example in Section 6.1.

However, in the general case one will not be able to extract a proper

time derivative. In this case the bracket takes on a new role, in a generalized

version of Hamilton’s Principle.

4.2 Systems without proper time; the phase space ac-
tion principle

In Lagrangian action principles the equations of motion are derived as

the extremization of

S =

∫
L dt

One switches to the Hamiltonian via

H = p · q̇− L (4.2)

with q̇ written in terms of q and p; then, one obtains Hamilton’s equations as

usual.
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What often goes unmentioned is that the original action principle δS =

0 can be restated in terms of the Hamiltonian and the phase space variables.

Reverse the Legendre transform and write

S =

∫
(p · q̇−H) dt

In this case, q̇ is not written in terms of q and p but is an explicit time

derivative. Whereas in the Lagrangian action principle there was only the δq

variation, this one (the “phase space action principle”) has two, the δq varia-

tion and the δp variation. The δp variation gives half of Hamilton’s equations,

dqi

dt
=
∂H

∂pi

and the δq variations gives, after an integration by parts, the other half:

dpi
dt

= −∂H
∂qi

The phase space action principle has three attributes which may make it

more advantageous than the Lagrangian (or “tangent space”) action principle.

First, constraints are sometimes more easily implemented in terms of phase

space variables than in terms of tangent space ones. Second, the Legendre

transform (4.2) may fail to be convex, leaving one able to write the Hamilto-

nian, but not the Lagrangian, explicitly. Third, the phase space variational

principle δS = 0 can also be written∫
[f, S] dt = 0
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for an arbitrary function f(q, p). Considering how I have emphasized the role

of the bracket in Hamiltonian physics, it is no wonder that I prefer the phase

space action principle, for then variations in terms of arbitrary coordinates

can be found by transforming the bracket. In addition, some transformations

will eliminate any explicit time derivative inside S, in which case the time

integration becomes vestigial, and can be dropped:

[f, S] = 0

This is a pleasingly compact way of both writing the variational principle

δS = 0 and instructing one how to perform this variation.

This is unimportant in the case of finite-dimensional systems, partic-

ularly those with brackets derived from canonical brackets, because in finite

dimensions all differentiable, bijective transformations preserve the number of

Casimirs. Thus, for a canonical-equivalent system with no Casimirs, δS al-

ways means ∂S/∂zi = 0 for all the degrees of freedom zi. However, for an

infinite-dimensional system, a well-behaved transformation may nonetheless

change the number of Casimirs at any point in the phase space; then, you

may have ∂S/∂zi = 0 in some coordinates but not others. For a more detailed

explanation of this phenomenon in the context of relativistic MHD, see [43].

Thankfully, it is a straightforward matter to recast the preceding work

into its infinite-dimensional equivalent. The action is now

S =

∫ ∫
L d3x dt
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The Legendre transform is now

H = p · q̇− L

and the phase space action is now

S =

∫ ∫
(p · q̇−H) d3x dt

The phase space action principle becomes∫
{f, S} dt = 0

Or, in cases where there is no explicit proper time derivative, or where the

phase space action was not derived from a tangent space action in the first

place,

{f, S} = 0

for f , an arbitrary function of the field variables. This is the archetypal action

principle for infinite-dimensional relativistic systems, singling out neither a

proper time derivative nor a partial one, and you will be seeing quite a bit

more of it in the coming pages.

4.3 Relativistic metriplectic systems

Relativistic metriplectic systems are very similar to the nonrelativistic

metriplectic ones covered in Section 2.5. As before, the generator of motion

and the bracket are now both composite objects. However, the positivity

attribute now depends on a sign convention used in the antisymmetric part,
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and there is now no time derivative singled out. Thus the equations of motion

are given by {f,G} = 0 for arbitrary f , with

G = S + λC

{f, g} = [f, g] + (f, g)

where λ is a constant used to ensure dimensional consistency. The antisym-

metric part of the bracket has the normal attributes defining a Poisson bracket,

with the additional condition that C is a Casimir invariant:

[αf + βg, h] = α[f, h] + β[g, h]

[fg, h] = f [g, h] + [f, h]g

[f, g] = −[g, f ]

[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0

[f, C] = 0

The symmetric bracket has the same properties as before, too:

(αf + βg, h) = α(f, h) + β(g, h)

(fg, h) = f(g, h) + (f, h)g

(f, g) = (g, f)

(f, f) ≥ 0 ∀f or (f, f) ≤ 0 ∀f

(f, S) = 0
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The difference in the positivity property comes about because one can

change the overall sign of {f,G} = 0 and still get the same equations of motion,

which would be the same as flipping each bracket by an overall sign. So the

positivity property concerns the sign of the symmetric bracket relative to the

sign of the antisymmetric part.

In a canonical bracket, one can perform what is called a (3 + 1) split to

pull out a time derivative. If V µ is a timelike vector defining an observer, then

the split is done by replacing gµν by its decomposition P µν +V µV ν , where P µν

projects 4-vectors onto the spacelike submanifold defined by V µ, and V µV ν is

an operator that projects out the part of a vector parallel to V µ. The part of

the bracket corresponding to P µν will now be, in essence, a three-dimensional

bracket, while the part corresponding to V µV ν will be a directional derivative;

a simple partial time derivative, in fact, for particles when the 4-velocity Uµ is

used for V µ. The sign of this time derivative determines which version of the

positivity axiom, above, that one uses. The (3 + 1) split is more complicated

for general brackets, and is one of my upcoming topics of research.

As it happens, the symmetric part of the bracket already comes “fac-

tored”; it has the three-dimensional part, but nothing corresponding to the

part produced by V µV ν , at least in the cases that I have investigated so far.
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4.4 Relativistic Hamiltonian Maxwell-Vlasov and its dif-
ficulties

The Maxwell-Vlasov description of Section 2.2 can be made relativistic,

although the field parts introduce some difficulties. In this situation, the distri-

bution function f(z) is defined on the eight-dimensional phase space z = (x, p),

with position xµ and momentum pµ both 4-vectors. The Lie-Poisson bracket

is a weighted canonical one:

{F,G}c =

∫
f

(
∂Ff
∂xµ

∂Gf

∂pµ
− ∂Gf

∂xµ
∂Ff
∂pµ

)
d8z (4.3)

where Ff = δF/δf .

Write the action S as

S =

∫ ∫
f
(m

2
uµu

µ
)
d4x d4p (4.4)

=

∫ ∫
f

1

2m

(
pµ −

e

c
Aµ

)(
pµ − e

c
Aµ
)
d4x d4p

Keeping in mind that pµ is the canonical, not kinetic, momentum, the action

principle {F (f), S} = 0 yields the Vlasov equation

uµ
∂f

∂xµ
+
e

c

∂Aµ

∂xν
uµ

∂f

∂pν
= 0

The difficulties start to arise when you try to take into account the

dynamics of the fields. In (2.13), the vector potential Aµ and the electric field

E are canonically conjugate to each other. However, in relativity the closest

such quantities are the 4-potential Aµ and the field tensor F µν , which are
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of a different type both tensorially (having different numbers of indices) and

geometrically (F µν is a closed two-form, while Aµ is a one-form). Marsden

and Morrison [22] solve this by introducing a constant 4-vector V µ, which

can be taken to represent an observer in a (3+1) split of the bracket. I have

some ideas for eliminating it, but as of this dissertation they are not well-

developed enough to include. Using the observer 4-vector, the quasi-canonical

field bracket is

{F,G}EM =

∫ (
δF

δAµ

δG

δF µν
− δG

δAµ

δF

δF µν

)
V ν d4x

By adding to the Vlasov action (4.4) the expression

1

4π

∫
1

2
F µν (Aµ,ν − Aν,µ)− 1

4
FµνF

µνd4x

one finds that the F µν and Aµ variations give, respectively,

0 = Fµν − (Aµ,ν − Aν,µ)

0 = F µν
,ν −

4πe

c

∫
fuµ d4p (4.5)

The next difficulty arises when trying to switch from xµ, pµ, Aµ and

F µν , to xµ, uµ, and F µν , in analogy with the brackets (2.11) - (2.15). The

magnetic interaction bracket (2.14) has a natural analogue

{F,G}B =

∫
F µν

(
∂Ff
∂uµ

∂Gf

∂uν
− ∂Gf

∂uµ
∂Ff
∂uν

)
d8z

while the electric interaction bracket, if you grant the use of V µ, has a natural

analogue

{F,G}E =

∫
V µ

(
δF

δF µν

∂

∂uν

(
δG

δf

)
− δG

δF µν

∂

∂uν

(
δF

δf

))
d8z
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Finally, the purely field part becomes

{F,G}EM =

∫
V ν

(
δF

δF µν

∂

∂xλ
δG

δFλµ
− δG

δF µν

∂

∂xλ
δF

δFλµ

)
d4x

Using these three brackets along with (4.3), the F µν variation once more gives

(4.5). However, the f variation gives the wrong equation

uµ
∂f

∂xµ
+
e

c
F µν (uν + Vν)

∂f

∂uν
= 0

Dropping {F,G}E fixes the Vlasov equation but breaks Maxwell’s equations.

One could also try dropping {F,G}B and setting V µ = uµ in the field brackets,

but that breaks the Jacobi identity for the set of brackets. Michel Vittot and

I are actively working on this problem.
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Chapter 5

Relativistic MHD

5.1 Overview of relativistic MHD

Turning now to the description of relativistic MHD, I use signature

and units such that 4-velocities have positive unit norms uµu
µ = gµνu

µuν = 1,

where the Minkowski metric gµν is given by dia(1,−1,−1,−1). The 4-vector

field uµ will denote the plasma’s 4-velocity at each point in spacetime; at each

such point, this quantity will define a reference frame with locally vanishing

3-velocity, helpful for some purposes. The fluid density is now ρ = mn(1 + ε),

where n is the baryon number density, m is the fluid rest mass per baryon

(including both proton and electron, for the typical case), and ε is the internal

energy per baryon, normalized to m. The specific entropy s is unchanged,

though later on it will prove more convenient to use the entropy density σ = ns.

I will suppose that the energy can be written ε(n, σ), hence ρ(n, σ), in which

case the pressure is given by

p = n
∂ρ

∂n
+ σ

∂ρ

∂σ
− ρ , (5.1)

which is just the first law of thermodynamics written in terms of these vari-

ables; see e.g. [25] pg. 560.
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In electromagnetism, having chosen a specific reference frame, one ex-

tracts the electric field 3-vector from the field tensor F µν by Ei = −F i0,

i = 1, 2, 3, while the magnetic field 3-vector Bi = Fi0, where Fµν = εµναβF
αβ/2

is the dual of F µν . Given uµ, one can also define the two 4-vectors Bµ ≡

Fµνuν = γ(v · B,B − v × E) and Eµ ≡ F µνuν = γ(v · E,E + v × B). Note

that Bi = Bi and Ei = Ei in the reference frame defined by uµ. In terms of

the 4-vectors Bµ and Eµ the field tensor has the decomposition

F µν = εµνλσBλuσ + (uµEν − uνEµ) , (5.2)

a form valid for any timelike 4-vector uµ. One can also reverse this process

by taking Bµ and Eµ to be fundamental, and then defining the field tensor

F µν via (5.2). In this case, different values of Bµ and Eµ can give the same

field tensor, for one can add any quantity proportional to uµ to either 4-

vector while leaving the field tensor unchanged; however, if the constraints

Eλuλ = Bλuλ = 0 are imposed, then this representation is unique. This

multiplicity of representations of the field tensor will prove important later.

In MHD ones eliminates the electric field from the theory, if necessary

using Ohm’s Law to express it in terms of the fluid velocity and magnetic field.

In a relativistic context, this is done by setting Eµ = F µλuλ = 0, which gives

E + v ×B = 0 (i.e. Ohm’s Law) and, in a specific reference frame,

Bµ = γ

(
v ·B, B

γ2
+ v (v ·B)

)
(5.3)

For convenience bµ ≡ Bµ/
√

4π will be used, in which case the MHD field
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tensor and its dual have the forms

F µν =
√

4π εµνλσbλuσ and Fµν =
√

4π (bµuν − uµbν) . (5.4)

Although (5.3) satisfies the restriction bλuλ = 0, I noted earlier that

this condition is not needed for a representation of the form of (5.2). One can,

in fact, construct a family of vectors

hµ = bµ + αuµ (5.5)

where α is an arbitrary scalar field and now, in general, hµuµ = α 6= 0. The

field tensor F µν and its dual Fµν are unchanged when written in terms of hµ,

i.e.

F µν/
√

4π = εµνλσbλuσ = εµνλσhλuσ (5.6)

Fµν/
√

4π = bµuν − uµbν = hµuν − uµhν .

Because bµ only appears in the equations of relativistic MHD via the form

(5.4), one can just as easily use the quantity hµ, choosing α in order to give it

some useful property. When constructing an Eulerian action principle (with

covariant Poisson bracket) for relativistic MHD it will prove fruitful to do so.

The quantity bµb
µ, which appears in the stress-energy tensor and will be seen

in a later section to appear in the action, evaluates to

bµb
µ =

1

4π

(
E2 −B2

)
= − 1

4π

(
B ·B
γ2

+ (v ·B)2

)
= − 1

4π
B2

rest

where ‘rest’ indicates a rest frame quantity. Thus the 4-vector bµ is spacelike.

However, since hµh
µ = bµb

µ+α2, the status of hµ will depend on α, remaining

spacelike for small α.
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Each equation of relativistic MHD can be written as the vanishing of a

divergence:

∂µ(nuµ) = 0 (5.7)

∂µ(σuµ) = 0 (5.8)

∂µFµν = 0 (5.9)

∂µ T
µν = 0 . (5.10)

Equations (5.7) and (5.8) express conservation of particles and entropy,

respectively. In addition, (5.9) provides the equivalent of the homogeneous

Maxwell’s equations; however, one cannot call them Maxwell’s equations with-

out qualification, as the constraint F µνuν = 0 is already built in when one

expresses F µν in terms of bµ or hµ:

∂ν(b
µuν − uµbν) = ∂ν(h

µuν − uµhν) = 0 .

This expression, of course, is the same whether bµ or hµ is used, as the quantity

α cancels out. Equation (5.10) gives conservation of stress-energy, where the

stress-energy tensor T µν is considerably more complex when written in terms

of hµ rather than bµ:

T µν = T µνfl + T µνEM , (5.11)
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where the fluid and field parts are

T µνfl = (ρ+ p)uµuν − p gµν , (5.12)

T µνEM =
1

4π

(
F µλF ν

λ +
1

4
gµνFλσF

λσ

)
= −bµbν −

(
bλb

λ
)
uµuν +

1

2
gµνbλb

λ (5.13)

= −hµhν −
(
hλh

λ
)
uµuν +

(
hλu

λ
)

(hµuν + uµhν)

+
1

2
gµν
(
hλh

λ −
(
hλu

λ
)2
)
, (5.14)

respectively. Equation (5.13) is obtained by substitution of the first of Eqs. (5.4)

and making use of the orthogonality condition bλuλ = 0, while (5.14) follows

from (5.6) without orthogonality. I emphasize that, despite appearances, T µνEM

does not depend on one’s choice of α. The field part T µνEM depends on bµ

or hµ only through the tensor Fµν , in which, as previously noted, α cancels

out. Lastly, I note it can be shown that this system preserves bµuµ = 0 and

uµuµ = 1. I next turn to the problem of devising an action principle for this

system.

5.2 Relativistic MHD in Hamiltonian form

The covariant Poisson bracket formalism of Ref. [22] requires two parts:

i) an action S that is a covariant functional of the field variables and ii) a

covariant Poisson bracket { , } defined on functionals of the fields. Instead the

usual extremization δS = 0, the theory arises from setting {F, S} = 0 for all

functionals F , which is in effect a constrained extremization.
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One writes the general Poisson bracket for fields Ψ in the form

{F,G} =

∫
dz

δF

δΨ
J δG
δΨ

,

where δF/δΨ is the functional derivative, dz is an appropriate spacetime mea-

sure, and J is a cosymplectic operator that provides {F,G} with the properties

of antisymmetry and the Jacobi identity. Thus

{F, S} = 0 ∀ F ⇒ J δS
δΨ

= 0 . (5.15)

If J is nondegenerate, i.e., has no null space, then (5.15) is equivalent to

δS/δΨ = 0 and the covariant Poisson bracket formalism reproduces the con-

ventional variational principle.

However, of interest here are matter models like MHD, which when

written in terms of Eulerian variables possess nonstandard or noncanonical

Poisson brackets (see e.g. Ref. [28]), for which J possess degeneracy that is

reflected in the existence of so-called Casimirs. For such systems the covariant

Poisson bracket naturally enforces constraints. For field theories that describe

matter, understanding the null space of J may be a formidable exercise[42],

and finding nondegenerate coordinates, which are expected to exist because of

the Jacobi identity, may only serve to obscure the structure of the theory. A

variation that preserves the constraints, referred to as a dynamically accessible

variation in Ref. [32] (see also [28]), can be represented as

δΨDA = {ψ,G} , (5.16)
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for some G, whence

δS =

∫
dz

δS

δΨ
δΨDA =

∫
dz

δS

δΨ
{ψ,G} =

∫
dz {S,G} = 0

which shows directly how the Poisson bracket effects the constraints without

them being explicitly known.

5.2.1 Action and functional derivatives

I construct the action S in a straightforward fashion:

S[n, σ, u, F ] =

∫
d4x

(
1

2

(
p+ ρ

)
uλu

λ +
1

2

(
p− ρ

)
− 1

16π
FλσF

λσ

)
(5.17)

S[n, σ, u, b] =
1

2

∫
d4x

((
p+ ρ− bλbλ

)
uλu

λ + p− ρ
)

(5.18)

S[n, σ, u, h] =
1

2

∫
d4x

((
p+ ρ− hσhσ

)
uλu

λ +
(
hλu

λ
)2

+ p− ρ
)
.(5.19)

Equation (5.17) is the sum of the fluid action of Ref. [22], where thermody-

namic variables p and ρ are considered to be functions of n and σ, together

with a standard expression for the electromagnetic action.

In (5.18) the MHD expression of (5.4) has been substituted into FλσF
λσ

and finally in (5.19) I obtain the desired form in terms of hµ. Observe that

the integrand of (5.18) when evaluated on the constraint uλu
λ = 1 is the total

pressure, fluid plus magnetic, p + |bλbλ|/2. This choice of action will be seen

to give the desired field equations when inserted into the covariant Poisson

bracket.

From the action of (5.19) one derives a momentum mµ by functional
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differentiation,

mµ =
δS

δuµ
= (p+ ρ− hσhσ)uµ +

(
hλu

λ
)
hµ ≡ µuµ + αhµ . (5.20)

The quantity

µ = p+ ρ− hλhλ (5.21)

is a modified enthalpy density. If αuµ is small compared to bµ, hµ will be

spacelike, leaving µ always positive.

Since uµ and bµ are independent of α, expressions for them solely in

terms of mµ and hµ can be obtained. Using α = hλu
λ, which follows from

(5.5), and uµ = (mµ − αhµ) /µ, which follows from (5.20), I have

α = hλu
λ =

1

µ

(
hλm

λ − αhλhλ
)
.

Then, solving for α gives

α =
hλm

λ

µ+ hσhσ
. (5.22)

Equation (5.22), incidentally, shows that α can be written entirely in terms

of the field variables mµ and hµ. Thus, one can also write the variables bµ and

uµ entirely in terms of the new ones:

uµ =
mµ

µ
− hλm

λ

µ(µ+ hσhσ)
hµ

bµ = hµ
(

1 +
(hλm

λ)2

µ(µ+ hσhσ)2

)
− hλm

λ

µ(µ+ hσhσ)
mµ .

(5.23)

Equations (5.23) are not invertible. This is made evident by considering

a frame in which v = 0, i.e., one where uµ = (1,0) and bµ = (0,B)/
√

4π. In
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this frame hµ = (α,B/
√

4π) and mµ = (p + ρ + B2/4π, αB/
√

4π). Given

any value of α these equations are compatible with (5.22), but produce the

same rest frame values of bµ and uµ. Thus, Eqs. (5.23) are not one-one. I will

explore this degeneracy, which is a kind of gauge condition, more fully in a

later section.

Now I am in a position to obtain an action functional in terms of the

variables mµ and hµ, which are the appropriate ones for the present covariant

action principle:

S[n, σ,m, h] =
1

2

∫
d4x

(
mλm

λ

µ
−

(
hλm

λ
)2

µ(µ+ hσhσ)
+ p− ρ

)
. (5.24)

Upon introducing the “mass” matrix

M≡
(
µ+ α2 α
α 1

)
, (5.25)

(5.24) can be written compactly as

S =
1

2

∫
d4x

(
Ψλ · M−1 ·Ψλ + hλh

λ − α2 + p− ρ
)

=
1

2

∫
d4x

(
uλmλ + bλhλ + hλh

λ − α2 + p− ρ
)

(5.26)

=
1

2

∫
d4x

(
Φλ · M· Φλ + bλb

λ + p− ρ
)

=
1

2

∫
d4x

(
uλmλ + bλhλ + bλb

λ + p− ρ
)

where Ψλ ≡ (mλ, hλ), Φλ ≡ (uλ, bλ) and · indicates summation over the 2× 2

matrix M. However, because the mass matrix (5.25) depends on the field

variables via µ and α, as given by (5.21) and (5.22), the expression (5.24)

is superior for calculations; in addition, the mass matrix is inconsistent in
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units, so it would have to be normalized before, say, eigenvalue and eigenvector

calculations could be done. One possible normalization is given in (5.54) below.

After taking variations of the action, one may impose the constraint

uλu
λ = 1. In terms of the momentum mµ, this constraint becomes

1 = uλu
λ =

1

µ2

(
mλm

λ − 2

(
hλm

λ
)2

µ+ hσhσ
+

(
hλm

λ
)2

(µ+ hσhσ)2 (hτh
τ )

)
. (5.27)

Thanks to the relations (5.23) and (5.27), all functional derivatives of the

action of (5.24) can be reduced to simple expressions, provided (5.27) is applied

only after functional differentiation. To start with,

δS

δn
=

(
−mλm

λ

2µ2
+

(
hλm

λ
)2

2µ2(µ+ hσhσ)
+

(
hλm

λ
)2

2µ (µ+ hσhσ)2

)
∂µ

∂n
+

1

2

∂p

∂n
− 1

2

∂ρ

∂n

= −∂ρ
∂n

. (5.28)

Similarly,

δS

δσ
= −∂ρ

∂σ
. (5.29)
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The remaining functional derivatives are

δS

δmν
=

mν

µ
− (hλm

λ)

µ(µ+ hτhτ )
hν = uν , (5.30)

δS

δhν
=

mλm
λ

µ2
hν −

(
hλm

λ
)2

µ2(µ+ hσhσ)
hν −

(hλm
λ)

µ(µ+ hσhσ)
mν

=

(
1 + 2

(
hλm

λ
)2

µ2(µ+ hσhσ)
−

(
hλm

λ
)2

µ2 (µ+ hσhσ)2 (hτh
τ )

)
hν

−
(
hλm

λ
)2

µ2(µ+ hσhσ)
hν −

(hλm
λ)

µ(µ+ hσhσ)
mν

=

(
1 +

(
hλm

λ
)2

µ(µ+ hσhσ)2

)
hν −

(hλm
λ)

µ(µ+ hσhσ)
mν

= bν . (5.31)

The compact result δS/δhν = bν gives a meaning to hν : it is a conjugate

momentum to bν , just as mν is to uν .

5.2.2 Bracket and field equations

The covariant Poisson bracket for relativistic MHD is obtained by ex-

tending the nonrelativistic bracket of Refs. [31, 26] to spacetime. This is done

by merely summing over the four spacetime indices instead of the three spa-

tial ones and altering a few signs. However, a difficulty arises in choosing an

appropriate equivalent of the nonrelativistic momentum and field, because the

4-vectorial equivalents of M = ρv and B will no longer produce the correct

equations. Instead, the 4-vectors mν and hν provide the appropriate replace-
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ments, giving the relativistic MHD bracket

{F,G} =

∫
d4x

(
n

(
δF

δmµ

∂µ
δG

δn
− δG

δmµ

∂µ
δF

δn

)
+ σ

(
δF

δmµ

∂µ
δG

δσ
− δG

δmµ

∂µ
δF

δσ

)
+mν

(
δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)
+ hν

(
δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν

)
+ hµ

[(
∂µ

δF

δmν

)
δG

δhν
−
(
∂µ

δG

δmν

)
δF

δhν

])
(5.32)

The bracket is complicated, but one can derive the equations of motion fairly

quickly, thanks to the simple functional derivatives, as obtained in Eqs. (5.28),

(5.29), (5.30), and (5.31), for the action of (5.24):

δS

δn
= −∂ρ

∂n
;

δS

δσ
= −∂ρ

∂σ
;

δS

δmν

= uν ;
δS

δhν
= bν ,

where uµ and bµ here are shorthands for their expressions in terms of the

fields mµ and hµ as given by (5.23).

Using F =
∫
d4xn(x)δ4(x−x0) in {F, S} = 0 gives, after an integration

by parts,

∂µ(nuµ) = 0

which is the continuity equation (5.7), evaluated implicitly at x0; however,

since that point is arbitrary, the result holds for the entire spacetime. Going

forward such niceties will be skimmed over. In the same manner one also finds

the adiabaticity equation (5.8) from a σ variation.

The hµ variation gives

∂ν(h
µuν)− hν∂νuµ = 0 . (5.33)
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The above equations are not Maxwell’s equations, although they are analogous

to the nonrelativistic equation (2.25), since they correspond to £uh
µ = 0, the

Lie-dragging of the four-dimensional vector density hµ by uµ. The theory

obtained from the variational principle can be viewed as a family of theories,

only some of which correspond to physical systems. However, if ∂µh
µ = 0, then

the usual form of relativistic MHD may be obtained. The situation is exactly

analogous to that in non-relativistic Hamiltonian MHD, which can describe

systems with ∇ · B 6= 0: in both cases, the physical systems are a subset of

the full class of systems described by the formalism. In the nonrelativistic

case the condition ∇ · B = 0 is maintained by the dynamics and the similar

situation that arises for hµ will be shown in a later section. There also exists

an alternative bracket that builds in ∂µh
µ = 0, given in a later section, where

the constraint is enforced by the bracket’s Jacobi identity. In any event, with

hµ thus specified, I can subtract a term uµ∂νh
ν from (5.33), giving the usual

equivalent of Maxwell’s equations

0 = ∂µ(hµuν − uµhν) .
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Finally, the mλ variation gives, after some work,

0 = −n∂µ
(
−∂p
∂n

)
− σ∂µ

(
−∂p
∂σ

)
+mν∂

µ (uν) + ∂ν (mµuν)

+ hν∂
µ (bν)− ∂ν (hνbµ) ,

= −∂µp+
(
µuν +

(
hλu

λ
)
hν
)
∂µuν + ∂ν

(
µuµuν +

(
hλu

λ
)
hµuν

)
+ hν∂

µ
(
hν −

(
hλu

λ
)
uν
)
− ∂ν

(
hνhµ −

(
hλu

λ
)
hνuµ

)
= ∂ν

((
ρ+ p−

(
hλh

λ
))
uµuν + gµν

[
− p+

1

2

(
hλh

λ −
(
hλu

λ
)2
) ]

− hµhν +
(
hλu

λ
)

(hµuν + uµhν)

)
,

which is the momentum equation (5.10). Having been derived, it can be

replaced with the much simpler, equivalent version involving bµ.

Now it is clear that the covariant Poisson bracket formalism produces

field equations compatible with the usual ones of relativistic MHD. Before

probing more deeply the correspondence between that two, which I do in

later sections, exploring in particular how one might use the field equations in

practice, I discuss some alternative Poisson brackets in the next section.

5.3 Alternative MHD brackets

In this section I present additional Poisson brackets, three of which

represent the content of the Poisson bracket of (5.32) with different represen-

tations of the magnetic field is represented, one of which possesses an arbitrary

metric that represents a background gravitational field.
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5.3.1 Constrained bracket

Consider the magnetic field part of the bracket of (5.32),

{F,G}h : =

∫
d4x

(
hν
(
δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν

)

+ hµ
[(
∂µ

δF

δmν

)
δG

δhν
−
(
∂µ

δG

δmν

)
δF

δhν

])
.(5.34)

Just as the nonrelativistic bracket of Ref. [31, 26] has a counterpart in Ref. [30]

the terms (5.34) have a relativistic counterpart analogous to Ref. [30] that

requires functionals be defined on divergencee-free magnetic fields, which here

would be hµs such that ∂µh
µ = 0. This relativistic counterpart is simply given

by an integration by parts of (5.34) and making use of ∂µh
µ = 0, i.e.,

{F,G}∂h=0 : =

∫
d4x

(
hν
(
δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν

)
(5.35)

+ hµ
[(
∂µ
δF

δhν

)
δG

δmν

−
(
∂µ
δG

δhν

)
δF

δmν

])
.

The bracket is identical to (5.32), but for the swapped functional derivatives

in the final line. The action (5.19) is unchanged, as are the n equation (5.7)

and the σ equation (5.8). The hµ gains an extra term, and may be written

directly as the Maxwell-like equation

∂ν(h
µuν − uµhν) = ∂νFµν = 0

without yet imposing a condition on hµ. Finally, the equation for mµ ends

up with a couple fewer terms than before, yielding

∂νT
µν +

(
hµ − (hσuσ)uµ

)
∂νh

ν = 0 (5.36)
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where T µν is the (unchanged) stress-energy tensor (5.11).

However, unlike the prior bracket (5.32), the bracket (5.35) fails to

satisfy the Jacobi identity unless the condition ∂νh
ν = 0 holds, as is shown

in the Appendix. On the plus side, the momentum equation (5.36) is now

reduced to its desired conservation form; on the minus side, the bracket is

defined on the constrained class of functionals. The original bracket (5.32)

always yields a momentum equation that is not only in conservation form,

but also independent of α; however, it will yield differing magnetic equations

depending on α, and only those corresponding to ∂νh
ν = 0 produce a Maxwell-

like equation.

I regard the first bracket (5.32) to be superior, for then relativistic mag-

netohydrodynamics may be regarded as a specific example of a broader class of

(mostly non-physical) dynamical systems, some of which may be of theoretical

interest. For instance, in the non-relativistic case the broader class have been

argued to be superior for computational algorithms (see, e.g., Ref. [10]), and

the relativistic versions may be as well. Moreover, they may correspond to

exotic theories, such as those including magnetic monopoles.

5.3.2 Bivector potential

The divergence-free condition can be made manifest by introducing an

antisymmetric bivector potential Aνµ such that

hµ = ∂νA
νµ . (5.37)
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Then, assuming F [h] = F̄ [A], i.e. functionals of the bivector potential obtain

their dependence through h, I obtain

δF =

∫
d4x

δF

δhµ
δhµ =

∫
d4x

δF̄

δAνµ
δAνµ = δF̄ . (5.38)

Upon relating δhµ to δAνµ via (5.37), inserting δhµ = ∂νδA
νµ into the second

equation of (5.38), and assuming δAνµ is arbitrary, I obtain the functional

chain rule relation

δF̄

δAµν
= ∂ν

δF

δhµ
(5.39)

Inserting (5.39) into (5.35) gives the compact expression

{F,G}A := 2

∫
d4x (∂αA

αν)

(
δF

δmµ

δG

δAνµ
− δG

δmµ

δF

δAνµ

)
(5.40)

I will use this form in Sec. 5.4.1, when discussing Casimir invariants.

5.3.3 3-Form bracket

In nonrelativistic MHD I observed in Sec. 2.4.1 that the magnetic equa-

tion may be written ∂B/∂t + £vB = 0, where £vB is the Lie derivative of

the vector density B dual to a 2-form. Thus one can write Bi = εijkωjk and

ωjk = Biεijk/2, where i, j, k = 1, 2, 3, and in terms of the 2-form the equation

becomes ∂ω/∂t + £vω = 0, with £v now being the appropriate expression

for the Lie derivative of a 2-form in three dimensions (e.g., Ref. [41]). In n-

dimensions, an (n − 1)-form has n independent components. This suggests I

can introduce the dual 3-form for relativistic MHD as follows:

ωαβγ = εαβγδ h
δ and hδ =

1

6
εαβγδωαβγ , (5.41)
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where it is seen that hµ is a vector density because it is the contraction of the

tensorial three-form with εαβγδ a relative tensor of unit weight. From the above

it follows that the 3-form equation of motion is given by ∂ω/∂t+£uω = 0. If I

denote by F µ
m the 4-vector given by δF/δmµ, then the magnetic portion of the

Poisson bracket in terms of the 3-form can be compactly written as follows:

{F,G}ω =

∫
d4x

(
δF

δωαβγ
(£Gm ω)αβγ −

δG

δωαβγ
(£Fm ω)αβγ

)
. (5.42)

Although similar forms in terms of Lie derivatives exist for all terms of all

brackets, I am concentrating on the magnetic terms which written out are

(£Gm ω)αβγ = Gµ
m∂µωαβγ + ωµβγ∂αG

µ
m + ωαµγ∂βG

µ
m + ωαβµ∂γG

µ
m .

The transformation from the bracket {F,G}h of (5.34) to that of (5.42) follows

from a chain rule calculation similar to that described in a different section.

Thus, it satisfies the Jacobi identity because {F,G}h does, as shown directly

in Appendix 1.3.

Relativistic MHD has a natural 3-form dual to bµ, viz. Fλσuν +Fσνuλ+

Fνλuσ, which follows from the definition bµ =
√

4πεµνλσFλσuν/2 with uµb
µ =

0 and Fµνu
ν = 0. The 3-form dual to hµ can similarly be represented as

ωλσν =
√

4π (Fλσwν + Fσνwλ + Fνλwσ) /6, where wµ ≡ (h2uµ − αhµ)/(bλb
λ) is

designed so that hµwµ = 0 and wµu
µ = 1 and evidently ωλσνh

µ = 0. Observe

wµ can be written in various ways using (5.23), (5.20), and other expressions.

The Jacobi identity for the bracket with (5.42) does not require closure

of the 3-form. However, if the 3-form ω is exact then it can be written as the
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exterior derivative of a 2-form A∗µν as follows:

ωαβγ = ∂αA
∗
βγ + ∂βA

∗
γα + ∂γA

∗
αβ

and one can rewrite the bracket in terms of Aµν . Instead of writing this out,

I observe the bivector potential is given by

Aνµ ≡ 1

2
ενµστA∗στ

and so the closed 3-form bracket is essentially given by (5.40).

When the 3-form ωαβγ is exact I have for any 3-surface, Ω, in the four-

dimensional Minkowski space-time, D, Stokes theorem∫
Ω

ω =

∫
Ω

dA∗ =

∫
∂Ω

A∗ , (5.43)

where in (5.43),
∫

Ω
ω contains the notion of ‘flux’ in this setting. If Ω contains

a time-like direction, one can write this as a conservation law, but such 3 + 1

splittings will not be considered here. Instead, I refer to Ref. [22].

5.3.4 Background gravity

Now consider the full formalism generalized to curved spacetimes. In

this context, the equations (5.7) - (5.10) are now divergences using the covari-

ant derivative:

(nuµ);µ = 0 (5.44)

(σuµ);µ = 0 (5.45)

Fµν ; ν = 0 (5.46)
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T µν ; ν = 0 , (5.47)

where I use ‘;’ to denote covariant derivative.

Three modifications to the previous action principle are required: (1)

because all integrations have tensorial integrands, the integrations must take

place over a proper volume
√
−g d4x; (2) hµ should be treated as a contravari-

ant vector, and mµ as a covariant one, befitting their definitions (note that

treating them any other way would introduce extra factors of gµν into the

bracket); (3) functional derivatives should be defined in a way that makes

them tensorial. Specifically, for a field variable v, one implicitly defines the

functional derivative via

d

dε

∣∣∣∣
ε=0

F (v + εδv) =

∫
d4x

δF

δv
δv
√
−g .

The action is now

S =
1

2

∫
d4x

(
gλσmλmσ

µ
−

(
hλmλ

)2

µ(µ+ gλσhλhσ)
+ p− ρ

)
√
−g

and its functional derivatives are

δS

δn
= −∂ρ

∂n
;

δS

δσ
= −∂ρ

∂σ
;

δS

δmµ

= uµ ;
δS

δhµ
= gµνb

ν .
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Finally, the bracket becomes

{F,G} =

∫
d4x
√
−g

(
n

(
δF

δmµ

∂µ
δG

δn
− δG

δmµ

∂µ
δF

δn

)
+ σ

(
δF

δmµ

∂µ
δG

δσ
− δG

δmµ

∂µ
δF

δσ

)
+mν

(
δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)
+ hν

(
δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν

)
+ hµ

[(
∂µ

δF

δmν

)
δG

δhν
−
(
∂µ

δG

δmν

)
δF

δhν

])
.

(5.48)

The ∂µ operators inside the bracket are still just partial derivatives, but the

presence of the metric will tend to convert them into covariant derivatives;

see e.g. Gravitation[25] Ch. 21. After an integration by parts, the variation

{F, S} = 0 of the test function F =
∫
d4xn(x) δ4(x− x0)

√
−g gives

∂µ
(
nuµ
√
−g
)

=
√
−g
(
∂µ (nuµ) + nuνΓµνµ

)
=
√
−g (nuµ);µ = 0 ,

with a similar result obtaining for the σ variation. The hµ variation once again

requires special attention, as it gives

∂ν
(
hµuν

√
−g
)
−hν (∂νu

µ)
√
−g =

√
−g
(
hµuνν + hµνu

ν − hνuµν + hµuλΓνλν
)

= 0 .

This time I choose α so that hµ;µ = ∂µh
µ + hνΓµνµ = 0. Similar con-

siderations apply to this choice as in the special relativistic case. Subtracting

this expression and combining like terms then gives, with Fµν = hµuν − hνuµ,

∂νFµν + FµλΓνλν + FνλΓµνλ = Fµν ;ν = 0 .

Note that the third term is zero by the antisymmetry of Fµν and the symmetry

of the covariant indices of Γµνλ.
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Finally, one obtains the momentum equation (5.47) by varying the test

function F =
∫
d4x gµνmνδ

4(x − x0)
√
−g. This derivation is lengthy, and

will only be summarized here: (1) the partial derivative terms appear, and

combine, exactly as in the special-relativistic case; (2) the T µλΓνλν terms come

from taking the partial derivatives of
√
−g; (3) the T νλΓµνλ terms come from

derivatives of extra factors of the metric gµν , some of which come from its

inclusion in the test function, others of which come from δS/δhµ = gµνb
ν .

I conclude with two important notes. First, while I constructed the

above formalism to handle curved spacetimes, it also applies to flat spacetimes

with arbitrary coordinate systems, such as cylindrical, spherical, or toroidal

coordinates. The nonrelativistic version may be generalized the same way

(altering volumes d3x to proper volumes
√
gd3x), thus solving the problem of

MHD coordinate changes in a pleasingly general way. Second, I emphasize that

this formulation requires a predetermined spacetime, as including a dynamic

gµν breaks the Jacobi identity for the bracket (5.48). I hope that such a

dynamic spacetime can be incorporated into future work.

5.4 Degeneracy, symmetry and gauge in Hamiltonian
MHD

Now I consider various issues pertaining to degeneracy. In the first

section I obtain Casimir invariants, showing that the action S is not unique.

Then I further explore the noninvertiblily of the transformations from (uµ, bµ)

to (mµ, hµ). Here we will see that there is a consequence of a one parameter
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symmetry, providing an analog of Goldstone’s theorem. Finally, in the last

section I discuss the how the condition divergence-free condition on hµ can be

constructed for any problem in terms of Φ.

5.4.1 Casimirs and degeneracy

As noted in a previous section, the covariant Poisson bracket possesses

degeneracy and associated Casimirs. A functional C is a Casimir if it satisfies

{F,C} = 0 ∀ F . (5.49)

Equation (5.49) should not be confused with the variational principle of (5.15),

{F, S} = 0 for all functionals F , for the former is an aspect of the bracket alone,

and provides no equations of motion. Because of the definition of C, the action

S is not unique and can be replaced by S + C for any Casimir C.

Turning to the task of finding Casimirs, I use (5.49) to provide func-

tional equations for the Casimirs. Although difficult to solve in general, some

explicit solutions can be found, facilitated by knowledge of Casimirs for non-

relativistic MHD[26, 2]. First, it is easy to obtain a family of what are called

the entropy Casimirs,

Cs =

∫
d4xnf(σ/n)

where f is an arbitrary function. In the nonrelativistic case this is a gener-

alization of the total entropy, for if f = σ/n and σ is the entropy per unit

volume then
∫
d3xnf(σ/n) =

∫
d3x σ is the total integrated entropy.

Next I seek a Casimir that is a relativistic version of the cross helicity
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∫
d3xv · B. For nonrelativistic MHD invariance of cross helicity requires a

barotropic equation of state and ∇ ·B = 0, so I make analogous assumptions

here. I assume ρ has no dependence on σ and the analog of ∇ ·B = 0 is made

manifest by introducing the the antisymmetric ‘potential’ defined by

hµ = ∂γA
γµ . (5.50)

ensuring that ∂µh
µ = 0. Using (5.50), the functional chain rule implies

δF

δAγµ
= −∂γ

δF

δhµ
(5.51)

as shown earlier in Sec. 5.3.2. With (5.51) the terms of the bracket of (5.32)

involving hµ take on a simplified form. For example, I have

hν
δF

δmµ

∂µ
δF

δβν
= −hν δF

δmµ

δF

δAµν
,

and similarly for the remaining terms. When written this way it is easy to

show that the following generalization of the cross helicity is a Casimir:

Cch =

∫
d4x

mµ

n
∂γA

γµ =

∫
d4x

mµh
µ

n
, (5.52)

This Casimir only exists for the case of divergence-free hµ. Observe that on the

constraint uλu
λ = 1, the integrand of (5.52) can be written as mµ ∂γA

γµ/n =

mµh
µ/n = α(p + ρ)/n, which follows from (5.20). Since α does not exist in

the original (uµ, bµ) theory, this Casimir is a quantity tied to the Covariant

bracket theory in terms of (mµ, hµ).

One also expects the existence of a magnetic helicity Casimir, but the

nature of linking in four dimensions makes the situation complicated. Rela-

tivistic generalizations of magnetic helicity have been found in Refs. [39, 14],
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but I have yet to demonstrate that a quantity like either of these is in fact a

Casimir. I also anticipate the existence of additional Casimirs that are general-

izations of the nonrelativistic ones found in Refs. [37, 36], but a full discussion

of Casimirs will await a future publication.

5.4.2 Gauge degeneracy

In an earlier section I gave an example that shows Eqs. (5.23) are not

invertible. This lack of invertibility, which arises from the gauge freedom

associated with α, can be understood in greater generality.

Because the degeneracy is not associated with the thermodynamic vari-

ables ρ and σ, I remove them by introducing the following scaled variables:

h = (
√
p+ ρ) h̄ , m = (p+ ρ) m̄ , b = (

√
p+ ρ) b̄ , u = ū , α = (

√
p+ ρ) ᾱ ,

In terms of these variables (5.23) becomes

Φ̄ = M̄−1 · Ψ̄ (5.53)

with

M̄−1 =
1

µ̄

[
1 −ᾱ
−ᾱ µ̄+ ᾱ2

]
, M̄ =

[
µ̄+ ᾱ2 ᾱ
ᾱ 1

]
, (5.54)

and Φ̄ = (ū, b̄) , Ψ̄ = (m̄, h̄). The quantity µ̄ ≡ 1− h̄2 is a normalized µ, and

the quantity ᾱ satisfies ᾱ = m̄ν h̄
ν = ūν h̄

ν . Varying (5.53) gives

δΦ̄ = M̄−1 · δΨ̄ +
∂M̄−1

∂ᾱ
· Ψ̄ δᾱ +

∂M̄−1

∂µ̄
· Ψ̄ δµ̄ .
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Degeneracy follows if I can find a nonzero δΨ̄ giving δΦ̄ = 0. Such would be

given by

δΨ̄ = −M̄ · ∂M̄
−1

∂ᾱ
· Ψ̄ δᾱ− M̄ · ∂M̄

−1

∂µ̄
· Ψ̄ δµ̄

= −M̄ · ∂M̄
−1

∂ᾱ
·M · Φ̄ δᾱ− M̄ · ∂M̄

−1

∂µ̄
·M · Φ̄ δµ̄

=
∂M̄

∂ᾱ
· Φ̄ δᾱ +

∂M̄

∂µ̄
· Φ̄ δµ̄

= δᾱ

[
2ᾱ 1
1 0

]
· Φ̄ + δµ̄

[
1 0
0 0

]
· Φ̄ . (5.55)

Thus from (5.55), δm̄ν = (2ᾱūν + b̄ν)δᾱ + ūνδµ̄ and δh̄ν = ūν δᾱ. Using

δµ̄ = −2h̄νδh̄ν = −2h̄ν ūν δᾱ = −2ᾱ δᾱ, the two conditions imposed by (5.55)

are

δh̄ν = ūν δᾱ and δm̄ν = b̄ν δᾱ , (5.56)

reiterating my earlier point that α can vary while leaving uµ and bµ unchanged.

In terms of the scaled variables the action becomes

S[n, σ, m̄, h̄] =
1

2

∫
d4x

(
p+ ρ

µ̄

(
m̄λm̄

λ −
(
h̄λm̄

λ
)2
)

+ p− ρ
)
. (5.57)

Now if I consider variation of the integrand of (5.57) with variations given

by (5.56), and restrict to the constraint uµu
µ = 1 as given by the scaled

version of (5.27), then the action is easily seen to be invariant. Using the

scaled action in the form of (5.26), the integrand becomes upon variation (p+

ρ)(ūλδm̄
λ+b̄λδh̄

λ)+h̄λδh̄
λ−ᾱδᾱ, which vanishes upon insertion of (5.56), with

the first two terms vanishing individually because ūλb
λ = 0. Thus, degeneracy
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appears as one transitions from (5.18) to (5.19). I add that in scaled variables

F ∼ ūµb̄ν − b̄µūν ∼ ūµh̄ν − h̄µūν ; thus, at fixed ūµ, δF ∼ ūµδh̄ν − δh̄µūν = 0.

As a consequence of this added degeneracy, the system now possesses

an additional symmetry, for one can add to α any solution α∗ of the continuity

equation (α∗uµ),µ = 0 while leaving the dynamics unchanged. I hope to explore

the consequences of this new symmetry in future work.

This degeneracy is related to an the adaptation of Goldstone’s theorem[35,

34, 33, 11] described in Ref. [29], where it was proven in the context of degener-

ate Poisson brackets with Casimir invariants that nonrelativistic Alfvén waves

are associated with degeneracy can be thought of as an analog of Goldstone

modes. A similar interpretation arises here in this covariant relativistic MHD

setting, but discussion is beyond the scope of the present work.

5.4.3 Setting the gauge

Given a relativistic MHD problem posed in terms of (uµ, bµ), I must

determine the associated problem in terms of (mµ, hµ), and this requires the

determination of α, which amounts to setting the gauge so that ∂µh
µ = 0.

Since this idea sits at the crux of the formalism, I will explain it is some

detail.

Posing a relativistic MHD problem requires one specify (uµ, bµ) as well

as n and σ on a space-like 3-volume, Ω ⊂ D, where is D is the four-dimensional

space-time. In addition, a physical problem will have the initial conditions sat-

isfy uλu
λ = 1 and uλb

λ = 0. Using uα∂α = ∂/∂τ where τ is the proper time,
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one can choose τ = 0 to correspond to the state specified on Ω and then prop-

agate values off of Ω by using the equations of motion to determine ∂bµ/∂τ ,

∂uµ/∂τ , ∂n/∂τ , and ∂σ/∂τ at τ = 0. This is, in essence, the standard scenario

for a Cauchy problem and many references for both MHD and relativistic flu-

ids (e.g., Refs. [16, 3]) describe this in detail. One can imagine an exotic flow

in which there exist spacetime points not connected to Ω by any flow lines;

however, a modest boundedness condition excludes such cases.

The present situation is complicated by the fact that given bµ on Ω at

τ = 0 I must also have that ∂µh
µ = 0 for all time, in order for the (mµ, hµ)

dynamics to coincide with the physical (uµ, bµ) dynamics. Fortunately, ∂µh
µ =

0 is maintained in time if it is initially true on Ω. To see this I act on (5.33)

with ∂µ and obtain ∂ν(u
ν∂µh

µ) = uν∂ν(∂µh
µ) + (∂νu

ν)(∂µh
µ) = 0 or

∂(∂µh
µ)

∂τ
+ (∂νu

ν)(∂µh
µ) = 0 , (5.58)

an equation that is analogous to (2.29) for nonrelativistic MHD. From (5.58),

one concludes that if ∂µh
µ = 0 on Ω at τ = 0, then ∂µh

µ remains zero for

all time. Thus, one can solve the (mµ, hµ) equations and uniquely obtain the

(uµ, bµ) via (5.23) – provided one can ‘set the gauge’, i.e., find an α such that

∂µh
µ = 0 on Ω at τ = 0 consistent with the (uµ, bµ, n, σ) of the posed problem.

I will first consider a special example of setting the gauge, corresponding

to the case described at the end of a prior section. We are given the MHD prob-

lem with initial conditions v(0,x) ≡ 0, i.e., uµ(0,x) = (1,0) and bµ(0,x) =

(0,B(0,x))/
√

4π on the space-like 3-volume Ω with coordinates x, and we wish
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to obtain an hµ(0,x) = (α,B/
√

4π) and mµ(0,x) = (p+ρ+B2/4π, αB/
√

4π)

such that ∂µh
µ(0,x) = 0. Denoting ∂0α = αt, etc., gives the condition

0 = ∂µh
µ(0,x) =

1√
4π

(
γtv ·B + γvt ·B + γv ·Bt + αt

√
4π
)

+∇·h , (5.59)

where h is the spatial part of hµ. Evaluating (5.59) on the initial condition

gives

0 = vt ·B(0,x) + αt(0,x)
√

4π +∇ ·B(0,x) ,

whence, with ∇ ·B(0,x) = 0, I conclude that

0 = vt ·B(0,x) + αt(0,x)
√

4π = −1

ρ
∇p ·B(0,x) + αt(0,x)

√
4π (5.60)

where in (5.60) the MHD equations have been used to make the time deriva-

tives consistent with the initial conditions on Ω, i.e., αt(0,x) = (
√

4πρ)−1∇p ·

B(0,x) will assure ∂µh
µ = 0 for all time. Observe, α(0,x) has not been

specified – I am free to chose it as we please, but in doing so I will obtain

different initial conditions mµ(0,x) and hµ(0,x) and these can be chosen for

convenience. One only needs to know that there exists an αt(0,x) that makes

∂µh
µ(0,x) = 0, for then it will remain so for all time. Finally, if I solve the

equations for mµ and hµ and obtain their values at any later time, insert

them into (5.23), then values of uµ and bµ thus obtained are solutions of the

relativistic MHD equations.

Now let us consider the general case, beginning with the expression

∂µh
µ = ∂µb

µ + ∂µ(αuµ) = ∂µb
µ + ∂µ(αnuµ/n) = ∂µb

µ + n
∂

∂τ

(α
n

)
(5.61)
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where the last equality follows from (5.7). Upon contracting ∂ν(b
µuν − uµbν) =

0 with uµ I obtain

∂νb
ν = uν

∂bν

∂τ
= −bν ∂uν

∂τ
. (5.62)

Consequently, (5.61) and (5.62) imply

∂α

∂τ
− α

n

∂n

∂τ
= bν

∂uµ
∂τ

. (5.63)

As stated above, a requisite condition for solving the Cauchy problem is that

∂n/∂τ and ∂uµ/∂τ be given in terms of all variables and their spatial deriva-

tives. Thus on Ω, (5.63) provides a constraint involving α and ∂α/∂τ and any

consistent choice for these quantities is sufficient to set the gauge. Different

choices for α will give different initial conditions for the (mµ, hµ) dynamics, in

agreement with (5.20), but the corresponding (uµ, bµ) at any time will be solu-

tions to the relativistic MHD equations. Also, if the initial conditions match,

then the (mµ, hµ) satisfy initially (5.27) and the counterpart that arises from

uµb
µ = 0, which from (5.23) with (5.20) is

0 = αmµm
µ + αhµh

µ(µ+ α2)−mµh
µ(µ+ 2α2)

which is automatically satisfied upon insertion of mµm
µ from (5.27).

I close this discussion by considering a point that may cause confusion.

Given (mµ, hµ) on Ω I can certainly calculate ∇ ·h, and ∂h0/∂τ will be deter-

mined by the equations of motion for (mµ, hµ). Thus, one may wonder how we

are free to chose α and ∂α/∂τ to make ∂µh
µ = 0. The answer lies in the fact

that the (mµ, hµ) system has a solution space that includes solutions that are
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not relativistic MHD solutions, and the procedure for picking the gauge selects

out those that do indeed correspond – for these the two ways of determining

∂µh
µ are equivalent.

102



Chapter 6

More on relativistic fluids and plasmas

This chapter covers further issues arising in relativistic fluids and plas-

mas. It begins by articulating the difference between Lagrangian and Eulerian

coordinates, the origin of the noncanonical bracket of the previous chapter. In

doing so it presents an action in Lagrangian coordinates, along the lines of the

nonrelativistic ones presented in Chapter 3. I then follow with a derivation of

the noncanonical bracket of relativistic MHD. Next follows an exposition of

(one version of) the relativistic Navier-Stokes equation, laying out a method

of putting such an equation into metriplectic form.

6.1 Lagrangian MHD action

The following two sections present my way of altering the approach

of Kawazura et al. [14] to be more closely related to the work I do in my

own MHD paper [8]. One big change in this approach is that I use a four-

dimensional label space, with proper time treated (until you’re done with the

variation) as a separate variable. One might object, since now I have two

time variables, proper time and one of the components of the label space.

However, using a three-dimensional label space (like KYF) implies a choice of
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reference frame for removing a time component. It may also involve assuming

a Minkowskian label space, which is unnecessary. The other change in this ap-

proach is that I derive the transformation behavior of the magnetic projection

vector, rather than defining it as KYF do a couple of equations before their

(24).

I will quickly argue that you need proper time as an independent vari-

able, even when the label space is four-dimensional. Imagine you have the

label space, and want to find a 4-velocity. To do so, you would need a limiting

process which takes the same fluid element at decreasingly small time inter-

vals. However, in the 4-label space, those two events you’re comparing have

different labels, so you need to figure out which events correspond to which

fluid elements. However, the way to figure out which events in label space

correspond to the same fluid elements is to use their 4-velocity. Since you

are unable to determine 4-velocities from the label space alone (you need its

tangent bundle, as is typical in variational problems), you can’t find proper

time from it alone, either. So I’m alright in treating it as independent.

I derive the transformation behavior of the magnetic projection vector

by assuming this form for the conservation of magnetic flux:

εµνλσb
µdqνdqλdqσ = εµνλσb

µ
0da

νdaλdaσ (6.1)

See, for example, the discussion Chap. 5 of bµ and hµ as duals of three-forms

in relativity. From this you can show, after some manipulation,

bµ =
bν0
J
∂qµ

∂aν
(6.2)
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However, just as in the Hamiltonian case, it appears that I need hµ to

get the correct Maxwell’s equation. For I have

(bµq̇ν − bν q̇µ),ν =
∂

∂qν

(
bλ0
J
∂qµ

∂aλ
q̇ν − bλ0

J
∂qν

∂aλ
q̇µ
)

=
Aσν
J

∂

∂aσ

(
bλ0
J
∂qµ

∂aλ
q̇ν − bλ0

J
∂qν

∂aλ
q̇µ
)

Partially expanded, this becomes

=

(
bλ0
J
∂qµ

∂aλ

)(
Aσν
J

∂q̇ν

∂aσ

)
−
(
bλ0
J
∂qµ

∂aλ

)(
Aσν
J 2

q̇ν
∂J
∂aσ

)
+
bλ0
J
Aσν q̇

ν

J
∂2qµ

∂aλ∂aσ
(6.3)

− bλ0
J
∂qν

∂aλ
Aσν
J

∂q̇µ

∂aσ
− q̇µA

σ
ν

J
∂

∂aσ

(
bλ0
J
∂qν

∂aλ

)
In the second term of (6.3), observe that(

Aσν
J
q̇ν
∂J
∂aσ

)
=
∂J
∂s

= J ∂q̇
ν

∂qν
= Aσν

∂q̇ν

∂aσ

Thus the first and the second terms cancel. Similarly, in the third term of

(6.3), note that

bλ0
J
Aσν q̇

ν

J
∂2qµ

∂aλ∂aσ
=
bλ0
J

∂2qµ

∂aλ∂s
=
bλ0
J
∂q̇µ

∂aλ

The fourth term of (6.3) is the opposite of this, due to the identity

∂qν

∂aλ
Aσν
J

= δσλ

So all terms except the fifth cancel; however, the fifth remains, and is propor-

tional to bµ,µ. In other words, I instead have the advective equation

(bµuν),ν − bνuµ,ν = 0 (6.4)
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Which, as noted in my MHD paper, represents the Lie dragging of a 3-form,

retrospectively justifying my flux conservation equation (6.1). Once again, this

advective equation can be converted into Maxwell’s equation by using a new

4-vector hµ with vanishing 4-divergence. The derivation previously undertaken

proceeds identically, except now the fifth term of (6.3) vanishes as well.

Now I have to use the action with hµ and double-check that it gives the

correct equation of motion... the result seems to be slightly simpler than what

is in KYF, and avoids mixing 3-vectors and 4-vectors in the same expressions.

To start, equations (6.1) and (6.2) are the same when expressed in terms of

hµ. In Lagrangian coordinates I write the dual of the EM field tensor as

Fµν = bµq̇ν − q̇µbν =
bλ0
J

(
∂qµ

∂aλ
q̇ν − q̇µ ∂q

ν

∂aλ

)
So the EM portion of the action is

SEM =

∫
− 1

16π
FµνFµν d4q =

∫
hλ0h

σ
0

4J

(
∂qα

∂aλ
q̇β − q̇α∂q

β

∂aλ

)(
∂qα

∂aλ
q̇β − q̇α∂q

β

∂aλ

)
d4a

=

∫
−h

λ
0h

σ
0

2J
∂qα

∂aλ
∂qα
∂aσ

q̇β q̇
β +

hλ0h
σ
0

2J
∂qα

∂aλ
∂qβ
∂aσ

q̇αq̇
β d4a (6.5)

There are the following new terms in the equation of motion:

∂

∂s

(
∂LEM
∂q̇µ

)
+

∂

∂aν

(
∂LEM
∂qµ,ν

)
− ∂LEM

∂qµ
(6.6)

=
∂

∂s

(
∂LEM
∂q̇µ

)
+

∂

∂aν

(
∂LEM
∂qµ,ν

)
− Aµν
J
∂LEM
∂aν

The portions that come from the first term in (6.5) are:

− ∂

∂s

(
hλ0h

σ
0

J
∂qα

∂aλ
∂qα
∂aσ

q̇µ
)
− ∂

∂aν

(
hν0h

σ
0

J
q̇β
∂qµ

∂aσ
q̇β

)
+
Aµν
J

∂

∂aν

(
−h

λ
0h

σ
0

2J
∂qα

∂aλ
∂qα
∂aσ

q̇β q̇
β

)
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After you Eulerianize, which involves dividing by a factor of J , these terms

are, keeping their order,(
−hλhλuµuν − hµhν +

1

2
gµνhλh

λ

)
,ν

(6.7)

as desired.

The second term of (6.5) gives, upon variation,

∂

∂s

(
hλ0h

σ
0

J
∂qµ

∂aλ
∂qβ
∂aσ

q̇β
)

+
∂

∂aν

(
hν0h

σ
0

J
∂qβ
∂aσ

q̇µq̇β
)
−A

µ
ν

J
∂

∂aν

(
hλ0h

σ
0

2J
∂qα

∂aλ
∂qβ
∂aσ

q̇αq̇
β

)
When you Eulerianize this, it becomes (keeping the order of the terms)(

(hλu
λ)hµuν + (hλu

λ)uµhν − 1

2
gµν(hλu

λ)2

)
,ν

Combined with (6.7) and set to zero, I have the correct equation: the stress

tensor in terms of hµ matches what I have in (5.14).

I’ve noticed that my way of doing the fluid action doesn’t show up

in any of the papers, so I’ll write it out too. I have energy density ρ =

n(m+ε), and I have conservation of particle number nd4q = nd4a, from which

I deduce n = n0/J . Unlike in the parametrization-independent version, ε has

no dependency on R =
√
q̇µq̇µ. This seems like a disadvantage, but it makes

the 4-velocity expressible in terms of the 4-momentum, enabling the Legendre

transform that gives a canonical bracket later. I have a pressure defined from

an internal energy ε via

p = n2 ∂ε

∂n
=

n2
0

J 2

∂ε

∂n

∣∣∣∣
n=n0/J

=
p0

J
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Note that p0, unlike n0, still depends on q. My fluid action is

Sfl =

∫
1

2
(n(m+ ε) + p) q̇µq̇

µ +
1

2
(p− n(m+ ε)) d4q

=

∫
1

2
(n0(m+ ε) + p0) q̇µq̇

µ +
1

2
(p0 − n0(m+ ε)) d4a

So the variation is

∂

∂s
(n0(m+ ε)q̇µ + p0q̇

µ)− Aµν
J

∂p0

∂aν
= 0

Using the usual tricks, this Eulerianizes to

((ρ+ p)uµuν − p gµν),ν = 0

So my total Lagrangian is

L = Lfl + LEM

=
1

2

[(
n0(m+ ε) + p0 −

hλ0h
σ
0

J
∂qα

∂aλ
∂qα
∂aσ

)
q̇β q̇

β +
(
p0 − n0(m+ ε)

)
+
hλ0h

σ
0

J
∂qα

∂aλ
∂qβ
∂aσ

q̇αq̇
β

]
It has a canonical momentum

πν =
∂L

∂q̇ν
=

(
n0(m+ ε) + p0 −

hλ0h
σ
0

J
∂qα

∂aλ
∂qα
∂aσ

)
q̇ν +

hλ0h
σ
0

J
∂qα

∂aλ
∂qν
∂aσ

q̇α

Define

µ =

(
n0(m+ ε) + p0 −

hλ0h
σ
0

J
∂qα

∂aλ
∂qα
∂aσ

)
α =

hλ0
J
∂qα

∂aλ
q̇α

Now µ is off from my definition (27) by a factor of J , but I’ll press on anyway.

I can now write the momentum and 4-velocity as

πν = µq̇ν + αhσ0
∂qν
∂aσ

q̇ν =
1

µ

(
πν − αhσ0

∂qν
∂aσ

)
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Contracting the second term with hµ, I have

α =
hλ0
J
∂qν

∂aλ
q̇ν =

1

µ

(
hλ0
J
∂qν

∂aλ
πν − α

hλ0h
σ
0

J
∂qν
∂aσ

∂qν

∂aλ

)
I can solve this equation for α:

α =
hλ0
J
∂qν

∂aλ
πν

/(
µ+

hλ0h
σ
0

J
∂qν
∂aσ

∂qν

∂aλ

)
=

1

µfl

hλ0
J
∂qν

∂aλ
πν (6.8)

where I write the fluid enthalphy as

µfl = µ+
hλ0h

σ
0

J
∂qν
∂aσ

∂qν

∂aλ
= n0(m+ ε) + p0

So, in a somewhat more self-contained fashion, I can write

q̇ν =
πν
µ
− (hλπ

λ)
J hν
µµfl

(Yes, I got tired of writing all the conversion factors, just pretend they’re still

there.) Since I have q̇µ and α in terms of momentum, I can convert the entire

Lagrangian:

L =
1

2

[
πλπ

λ

µ
− J (hλπ

λ)2

µµfl
+ (p0 − n0(m+ ε))

]
Except for a factor of J , this matches my expression (30).

Now use a Legendre transformation to attain the Hamiltonian:

H =

∫
H d4a =

∫
1

2

[
πλπ

λ

µ
− J (hλπ

λ)2

µµfl
− (p0 − n0(m+ ε))

]
d4a (6.9)

The equations of motion will require the use of a Poisson bracket

{f, g} =

∫ (
δf

δqµ
δg

δπµ
− δg

δqµ
δf

δπµ

)
d4a
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In particular, I will need to set g to H:

{f,H} =

∫ (
δf

δqµ
δH

δπµ
− δH

δqµ
δf

δπµ

)
d4a

=

∫ (
δf

δqµ
∂H
∂πµ
− ∂H
∂qµ

δf

δπµ

)
d4a

=

∫ (
δf

δqµ
∂H
∂πµ
− ∂H
∂qν,λ

∂qν,λ
∂qµ

δf

δπµ

)
d4a

=

∫ (
δf

δqµ
∂H
∂πµ

+
∂

∂aν
∂H
∂qµ,ν

δf

δπµ

)
d4a

The πµ functional derivative is easy:

δH

δπµ
=
∂H
∂πµ

=
πµ

µ
− J (hλπ

λ)hµ

µµfl
= q̇µ (6.10)

Further functional derivatives require the identity

1 = q̇ν q̇
ν =

1

µ2

(
πνπ

ν − 2J (hλπ
λ)2

µfl
+
J 2(hλπ

λ)2hνh
ν

µ2
fl

)
which can only be applied after taking variations. This expression can be

manipulated to give another useful identity,(
−πλπ

λ

2µ2
+ J (hλπ

λ)2

2µ2µfl
+ J (hλπ

λ)2

2µµ2
fl

)
= −1

2
(6.11)

I need to evaluate the quantity

∂

∂aν
∂H
∂qµ,ν

I will start by gathering together all the non-magnetic terms, i.e. those that

have no dependence on hµ, and gain their dependence on J . To simplify

things, I first calculate the following, using ∂J /∂qµ,ν = Aνµ,(
∂µ

∂qµ,ν

)
fl

=

(
∂µfl
∂qµ,ν

)
fl
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=

(
− n

2
0

J 2

∂ε

∂n
Aνµ −

n0s0

J 2

∂ε

∂s
Aνµ −

n0

J 2

∂p

∂n
Aνµ −

s0

J 2

∂p

∂s
Aνµ

)
Next up I have the quantity(

∂H
∂qµ,ν

)
fl

=

(
−πλπ

λ

2µ2
+ J (hλπ

λ)2

2µ2µfl
+ J (hλπ

λ)2

2µµ2
fl

)(
∂µ

∂qµ,ν

)
fl

+
1

2

(
n0

J 2

∂p

∂n
+

s0

J 2

∂p

∂s
− n2

0

J 2

∂ε

∂n
− n0s0

J 2

∂ε

∂s

)
Aνµ

=− 1

2

(
− n

2
0

J 2

∂ε

∂n
− n0s0

J 2

∂ε

∂s
− n0

J 2

∂p

∂n
− s0

J 2

∂p

∂s

)
Aνµ

+
1

2

(
n0

J 2

∂p

∂n
+

s0

J 2

∂p

∂s
− n2

0

J 2

∂ε

∂n
− n0s0

J 2

∂ε

∂s

)
Aνµ

=

(
n0

J 2

∂p

∂n
+

s0

J 2

∂p

∂s

)
Aνµ

where in the first step I used the identity (6.11). Thus, using ∂Aνµ/∂a
ν = 0,

and an integration by parts (remembering that this expression is inside an

integral), I finally acquire

∂

∂aν

(
∂H
∂qµ,ν

)
fl

=
∂

∂aν

((
n0

J 2

∂p

∂n
+

s0

J 2

∂p

∂s

)
Aνµ

)
= Aνµ

∂

∂aν

(
n0

J 2

∂p

∂n
+

s0

J 2

∂p

∂s

)
= −

(
n0

J 2

∂p

∂n
+

s0

J 2

∂p

∂s

)
∂J
∂qµ

=
∂p

∂n

∂n

∂qµ
+
∂p

∂s

∂s

∂qµ
=

∂p

∂qµ
(6.12)

Finally I have to calculate the magnetic parts, starting with the divergence of

the enthalpy, (
∂µ

∂qµ,ν

)
EM

= −2
hν0h

σ
0

J
∂qµ
∂aσ

+
hλ0h

σ
0

J 2

∂qα

∂aλ
∂qα
∂aσ

Aνµ
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The full thing, now. Note that the fluid enthalpy µfl has no magnetic depen-

dence, so the calculation proceeds differently than in the fluid part.(
∂H
∂qµ,ν

)
EM

=
1

2

[
−πλπ

λ

µ2
+

1

J µ2µfl

(
hσ0
∂qλ

∂aσ
πλ

)2
](

∂µ

∂qµ,ν

)
EM

− 1

J µµfl

(
hσ0
∂qλ

∂aσ
πλ

)
hν0πµ +

1

2J 2µµfl

(
hσ0
∂qλ

∂aσ
πλ

)2

Aνµ

=
1

2

(
−1− 1

J µµ2
fl

(
hσ0
∂qλ

∂aσ
πλ

)2
)(
−2

hν0h
σ
0

J
∂qµ
∂aσ

+
hλ0h

σ
0

J 2

∂qα

∂aλ
∂qα
∂aσ

Aνµ

)
− 1

J µµfl

(
hσ0
∂qλ

∂aσ
πλ

)
hν0πµ +

1

2J 2µµfl

(
hσ0
∂qλ

∂aσ
πλ

)2

Aνµ

=
1

2

(
1 + J α

2

µ

)(
2
hν0h

σ
0

J
∂qµ
∂aσ
− hλ0h

σ
0

J 2

∂qα

∂aλ
∂qα
∂aσ

Aνµ

)
− α

µ
hν0πµ +

1

2

µfl
µ
α2Aνµ

In the first step I used identity (6.11), and in the second I used (6.8) to

eliminate most factors of µfl. Speaking of which, I will look at only the terms

containing Aνµ, and expand the final factor of µfl:

− hλ0h
σ
0

2J 2

∂qα

∂aλ
∂qα
∂aσ

Aνµ −
α2

2µ

hλ0h
σ
0

J
∂qα

∂aλ
∂qα
∂aσ

Aνµ

+
α2

2µ

(
µ+

hλ0h
σ
0

J
∂qα

∂aλ
∂qα
∂aσ

)
Aνµ

=

(
−hλh

λ

2
+

(
hλq̇

λ
)2

2

)
Aνµ (6.13)

where hλ, q̇λ are implicitly written in terms of label space quantities and
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momenta. The remaining terms are

hν0h
σ
0

J
∂qµ
∂aσ

+
α2

µ
hν0h

σ
0

∂qµ
∂aσ
− α

µ
hν0πµ

=
hν0h

σ
0

J
∂qµ
∂aσ

+
α2

µ
hν0h

σ
0

∂qµ
∂aσ
− αhν0

(
q̇µ +

Jα
µ

hλ0
J
∂qµ
∂aλ

)
=

(
hλ0h

σ
0

J 2

∂qτ

∂aλ
∂qµ
∂aσ
− αh

λ
0

J
∂qτ

∂aλ
q̇µ

)
Aντ

=
(
hµh

σ − (hλq̇
λ)hσ q̇µ

)
Aνσ (6.14)

Now I can finally use Hamilton’s equations. The general form of an

equation of motion for f , if f is written in terms of phase-space variables, is

∂f

∂s
= q̇ν

∂f

∂qν
= {f,H}

Thanks to the momentum variation (6.10), the n, σ, and hµ equations are all

fairly simple to derive. I use the test function f(z) =
∫
z(a, ∂q/∂a, π)δ(q0−a)d4a

to pick out the equation at a specific location q. First up, the continuity equa-

tion:

q̇µ
∂n

∂qµ
= {f(n0/J ), H} =

∫
q̇µ

∂

∂qµ
n0

J
δ(q0 − a)d4a

=

∫
− n0

J 2
δ(q0 − a)d4a = −n∂q̇

µ

∂qµ

where I note that the ∂/∂qµ inside the integral is converted to a, then con-

verted right back a couple of steps later. The same argument produces the

σ equation via σ = s0n0/J , or the advective s equation via s = s0. The
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magnetic equation goes

q̇ν
∂hµ

∂qν
=

{
f

(
hλ0
J
∂qµ

∂aλ

)
, H

}
=

∫
q̇ν

∂

∂qν

(
hλ0
J
∂qµ

∂aλ

)
δ(q0 − a)d4a

=−
∫ [

hλ0
J
∂qµ

∂aλ
∂q̇ν

∂qν
+

∂

∂aλ

(
q̇µ
hλ0
J

)]
δ(q0 − a)d4a

=−
∫ [

hλ0
J
∂qµ

∂aλ
∂q̇ν

∂qν
+
hν0
J
∂qλ

∂aν
∂q̇µ

∂qλ

]
δ(q0 − a)d4a

=− hµ∂q̇
ν

∂qν
+ hν

∂q̇µ

∂qν

which is the magnetic advection equation (6.4) written in terms of Lagrangian

coordinates and hµ. To write the momentum equation I must use the previ-

ously derived eqs. (6.12), (6.13), and (6.14). I get

q̇ν
∂πµ

∂qν
=q̇ν

∂

∂qν
(
J (ρ+ p− hλhλ)q̇µ + J (hλq̇

λ)hµ
)

=J ∂

∂qν
(
(ρ+ p− hλhλ)q̇µq̇ν + (hλq̇

λ)hµq̇ν
)

={f(πµ), H} =

∫ (
∂

∂aν
∂H
∂qµ,ν

)
δ(q0 − a)d4a

=J ∂

∂qν

(
pgµν +

1

2

(
−hλhλ + (hλq̇

λ)2
)
gµν + hµhν − (hλq̇

λ)hν q̇µ
)

which is correct; see, for example, my MHD paper’s eqs. (18)-(20).

6.2 Relativistic Euler-Lagrange Map

Next up is converting the MHD canonical bracket,

{f, g} =

∫ (
δf

δqi
δg

δπi
− δf

δqi
δg

δπi

)
d4a,

into the Eulerian noncanonical one from my paper. To do so I need to

express variations of arbitrary functions over spacetime, whether in Eulerian or
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Lagrangian coordinates. The total variation will be the same when expressed

either way:

δf =

∫
δf

δn
δn+

δf

δσ
δσ +

δf

δmµ
δmµ +

δf

δhµ
δhµd4x (6.15)

=

∫
δf

δqµ
δqµ +

δf

δπµ
δπµd4a (6.16)

To Eulerianize expressions I use delta-function expressions like the following:

n(x) =

∫
n(q)δ(x− q)d4q =

∫
n0(a)

J
δ(x− q)d4q =

∫
n0(a)δ(x− q(a))d4a

The other Eulerian quantities produce similar expressions:

σ(x) =

∫
σ0δ(x− q)d4a

mµ(x) =

∫
πµ0 δ(x− q)d4a

hµ(x) =

∫
hν0
∂qµ

∂aν
δ(x− q)d4a

Variations in the Eulerian quantities induce variations in the phase-space

variables qµ and πµ in this manner:

δn =

∫
n0δ

′

µ(x− q)δqµd4a

δσ =

∫
σ0δ

′

µ(x− q)δqµd4a

δmµ =

∫
δ(x− q)δπµ0 + πµ0 δ

′

ν(x− q)δqνd4a

δhµ =

∫
hν0
∂qµ

∂aν
δ
′

λ(x− q)δqµ − hν0δ
′

λ(x− q)
∂qλ

∂aν
δqµd4a

=

∫
hν0
∂qµ

∂aν
δ
′

λ(x− q)δqµ − hν0δ
′

λ(x− q)
∂qλ

∂aν
δqµd4a
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Inserting these expressions into the Eulerian side of (6.15) shows that the total

variation is

δf =

∫ ∫ (
δf

δn
n0 +

δf

δσ
σ0 +

δf

δmν
πν0 +

δf

δhν
hλ0
∂qν

∂aλ

)
δ
′

µ(x− q)δqµ

− δf

δhµ
hν0
∂qλ

∂aν
δ
′

λ(x− q)δqµ +
δf

δmν
δπν0δ(x− q)d4x d4a

Comparison with the Lagrangian side of (6.15) shows that the Lagrangian

functional derivatives are

δf

δπµ
=

∫
δf

δmµ
δ(x− q)d4x =

δf

δmµ

∣∣∣∣
x=q(a)

δf

δqµ
=

∫ (
δf

δn
n0 +

δf

δσ
σ0 +

δf

δmν
πν0 +

δf

δhν
hλ0
∂qν

∂aλ

)
δ
′

µ(x− q)

− δf

δhµ
hν0
∂qλ

∂aν
δ
′

λ(x− q)d4x

=−
∫ [

n0
∂

∂xµ
δf

δn
+ σ0

∂

∂xµ
δf

δσ
+ πν0

∂

∂xµ
δf

δmν

+ hλ0
∂qν

∂aλ
∂

∂xµ
δf

δhν
− ∂

∂xν

(
δf

δhµ
hλ0
∂qν

∂aλ

)]
δ(x− q)d4x

With these expressions in hand I can convert the bracket:

{f, g} =

∫
δf

δqµ
δg

δπµ
− δg

δqµ
δf

δπµ
d4a

=−
∫ ∫ [

n0

(
δg

δmµ

∂

∂xµ
δf

δn
− δf

δmµ

∂

∂xµ
δg

δn

)
+ σ0

(
δg

δmµ

∂

∂xµ
δf

δσ
− δf

δmµ

∂

∂xµ
δg

δσ

)
+ πν0

(
δg

δmµ

∂

∂xµ
δf

δmν
− δf

δmµ

∂

∂xµ
δg

δmν

)
+ hν0

(
δg

δmµ

∂

∂xµ
δf

δhν
− δf

δmµ

∂

∂xµ
δg

δhν

+
δf

δhµ
∂

∂xν
δg

δmµ

− δf

δhµ
∂

∂xν
δg

δmµ

)]
δ(x− q)d4xd4a
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Performing the label-space integration, I acquire the bracket from my other

paper:

{f, g} =−
∫ [

n

(
δg

δmµ

∂

∂xµ
δf

δn
− δf

δmµ

∂

∂xµ
δg

δn

)
+ σ

(
δg

δmµ

∂

∂xµ
δf

δσ
− δf

δmµ

∂

∂xµ
δg

δσ

)
+mν

(
δg

δmµ

∂

∂xµ
δf

δmν
− δf

δmµ

∂

∂xµ
δg

δmν

)
+ hν

(
δg

δmµ

∂

∂xµ
δf

δhν
− δf

δmµ

∂

∂xµ
δg

δhν

+
δf

δhµ
∂

∂xν
δg

δmµ

− δf

δhµ
∂

∂xν
δg

δmµ

)]
d4x

The action also converts into that paper’s action, as it should.

Next up, something interesting I discovered when investigating the rel-

ativistic equivalent of flux conservation. Instead of (6.1), I try

F µνdqµdqν = F µν
0 daµdaν ,

which gives the transformation rule

F µν =
F λσ

J
∂qµ

∂aλ
∂qν

∂aσ
(6.17)

I can thus convert a standard Eulerian action to one using some fluid’s La-

grangian coordinates:

LEM =
1

16π

∫
F µνFµν d

4x =
1

16π

∫
Fαβ

0 F γδ
0

J
∂qν

∂aα
∂qλ

∂aβ
∂qν
∂aγ

∂qλ
∂aδ

d4a
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Using the variational principle (6.6) gives the new terms

1

16π

∂

∂aν

(
F νβ

0 F γδ
0

J
∂qλ

∂aβ
∂qµ
∂aγ

∂qλ
∂aδ

+
Fαν

0 F γδ
0

J
∂qσ

∂aα
∂qσ
∂aγ

∂qµ
∂aδ

+
Fαβ

0 F νδ
0

J
∂qµ
∂aα

∂qλ

∂aβ
∂qλ
∂aδ

+
Fαβ

0 F γν
0

J
∂qσ

∂aα
∂qσ
∂aγ

∂qµ
∂aβ
− Fαβ

0 F γδ
0

J 2
Aνµ

∂qν
∂aα

∂qλ

∂aβ
∂qν
∂aγ

∂qλ
∂aδ

)

= −
Aνµ
4π

∂

∂aν

(
FµλF

λν +
1

4
δνµF

λσFλσ

)
This is the divergence of a general expression for the electromagnetic stress-

energy tensor T µνEM . No condition such as quasineutrality or vanishing proper

electric fields had to be imposed. This suggests that a Lagrangian theory of

multiple charged fluids might be possible, using an advected field tensor as in

(6.17) to get the total Lorentz force.

6.3 Overview of relativistic Navier-Stokes

This section aims to develop the relativistic equivalent of the Navier-

Stokes equation for viscous fluids. The field variables are now number den-

sity n (the mass density must now include internal energy, via mass-energy

equivalence); the specific entropy s or entropy density σ = ns; and the fluid

four-velocity uµ or four-momentum mµ = (ρ + p)uµ. The continuity equa-

tion, Navier-Stokes equation, and entropy production are now expressed as

four-divergences of tensorial quantities:

(nuµ),µ = 0 T µν,ν = 0 σµ,µ ≥ 0

The relativistic stress-energy tensor T µν and entropy vector σµ are as yet

undetermined, but they will depend on relativized stress and heat, in the form
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of tensors σµν and qµ. The tensor σµν should represent a pure stress, which

means that in the local rest frame of the fluid it only contributes to the stress

portion of T µν . Such a restriction can be enforced by setting σµνuν = 0.

In turn, one achieves that restriction by replacing all the Kronecker delta

functions in (2.40) with projection operators:

σµν = Λµνλσ ∂uλ
∂xσ

Λµνλσ = η

(
P µλP νσ + P µσP νλ − 2

3
P µνP λσ

)
+ ζP µνP λσ

P µν = uµuν − gµν

Now to generalize the heat vector. The salient question is whether this heat

vector, newly converted into a four-vector, contributes to the stress-energy

tensor. To support this view, imagine that you have two identical boxes filled

with an ideal gas, separated by a conductive barrier. Start with one box

incredibly hot, and the other cool; then, the masses of the gaseous molecules

in the first box will be larger by a relativistic gamma factor, causing the center

of mass of the entire system to be slightly displaced in the direction of the hot

box. After a long time, the boxes will have reached thermal equilibrium; now,

with comparable gamma factors, the center of mass will be exactly between

the two boxes. Because the center of mass moved from the hot box’s side to

the middle, there must have been a momentum directed from the hot box to

the cold box, in the same direction as the heat flow.

Internal energy will (as in the nondissipative case) be incorporated into

the mass density, via the expression ρ = n(m + ε), so the heat four-vector
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should not contribute to the energy portion of the stress-energy tensor. This

can be achieved by setting uµqµ = 0 and writing the tensor (including all its

other portions) as

T µν = (ρ+ p)uµuν − pgµν + σµν + (qµuν + qνuµ)

Now I will derive an expression for the heat four-vector. For the sake of the

following argument, disregard the viscous stress tensor, as it will not affect my

conclusion. After an application of the continuity equation, the momentum

equation reads

0 = T µν,ν = n ((m+ ε)uµ),ν u
ν + p,νu

µuν + puµ,νu
ν + puµuν,ν

−pνgµν + qµ,νu
ν + qµuν,ν + qν,νu

µ + qνuµν

Contract this equation with uµ to derive the energy conservation equation.

Three terms will vanish via the identity uµu
µ
,ν = 0; one term will vanish via

uµq
µ = 0; two of the remaining pressure terms will cancel each other; finally,

a use of the Leibniz rule will transfer a derivative from a qµ to a uµ. In all,

uµε,µ + puµ,µ + qµ,µ − qµuµ,νuν = 0 (6.18)

The expression uµ,νu
ν occuring in the last term is the acceleration four-vector

aµ of the fluid, obeying aµu
µ = 0. Using the continuity equation and thermo-

dynamic definitions, I can also write down an entropy equation:

(nsuµ),µ = nuµs,µ = nuµ
[(

∂s

∂n

)
ε

n,µ +

(
∂s

∂ε

)
n

ε,µ

]

= nuµ
[
p

n2T
nµ +

1

nT
εµ

]
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Substitute in (6.18) to get

(nsuµ),µ =
1

T

[
puµ,µ − puµ,µ − qµ,µ + qµaµ

]
=

1

T

[
−qµ,µ + qµaµ

]
(6.19)

Incidentally, note that the RHS would be zero if the heat-related terms were

omitted from the stress-energy tensor, and entropy would only be advected,

not generated.

The entropy four-vector σµ should include not only entropy transported

by the fluid (in the form nsuµ), but also entropy generated by heating, rep-

resented schematically by the equation dS = dQ/T . So the quantity will be

defined as

σµ = nsuµ +
qµ

T

Neglecting entropy generation due to stress, and substituting in (6.19), its

four-divergence is

σµ,µ =
1

T

(
−qµ,µ + qµaµ + qµ,µ −

T,µ
T
qµ
)

=
−qµ

T 2
(T,µ − Taµ)

This expression must be positive. In the fluid’s local rest frame, q0 is zero, so qi

must be parallel to T,i−Tai. There are thus a total of three conditions on qµ,

including qµuµ = 0, so qµ is determined up to its magnitude. Said magnitude

is then found by taking the nonrelativistic limit, in which the acceleration term

is of order v2/c2. So one finds the unique expression for qµ,

qµ = −κP µν (T,ν − Taν)
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Note that P µν changes the sign of the inner product, so even though qµqµ is

negative, σµ,µ is positive.

6.4 Metriplectic form of relativistic Navier-Stokes

Now for the brackets! The generator H + λS is composed of

H =

∫
1

2 (ρ+ p)
mµm

µ +
1

2
(p− ρ) d4x S =

∫
n s d4x

and the equations of motion will be generated by

{f,H + λS} = 0

for all functions f of the field variables. The antisymmetric portion of the

bracket is given by

[f, g] = −
∫
n

((
δf

δmµ

∂µ

)
δg

δn
−
(
δg

δmµ

∂µ

)
δf

δn

)
+mµ

((
δf

δmν

∂ν

)
δg

δmµ

−
(
δg

δmν

∂ν

)
δf

δmµ

)
+ σ

((
δf

δmµ

∂µ

)
δg

δσ
−
(
δg

δmµ

∂µ

)
δf

δσ

)
d4x

Finally, the symmetric portion is given by

(f, g) =
1

λ

∫
TΛµνλσ

[
∂µ

δf

δmν

− 1

T

∂uµ

∂xν

δf

δσ

] [
∂λ

δg

δmσ

− 1

T

∂uλ

∂xσ

δg

δσ

]
+κT 2

[
P µν (∂ν + aν)

(
1

T

δf

δσ

)
− uν∂µ

δf

δmν

− uν∂ν
δf

δmµ

]
[
Pνλ

(
∂λ + aλ

)( 1

T

δg

δσ

)
− uσ∂λ

δg

δmσ

− uσ∂σ
δg

δmλ

]
d4x

These brackets have all the properties listed before for the nonrelativistic

brackets, except possibly for the positivity of the symmetric part, which I still
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need to check. At some point I hope to extend this formalism to relativistic

MHD with dissipation.
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Chapter 7

Relativistic classical spin

I begin this chapter by defining the dipole tensor as an antisymmetric

rank-two tensor (following Frenkel [9]), in analogy with the electromagnetic

field tensor (throughout I use the (+−−−) signature, with time components

in the zero position and c=1). In the rest frame of the dipole, this tensor has

the magnetic dipole moment in the space-space part, and the electric dipole

moment in the time-space part:

Mµν =


0 px py pz
−px 0 −mz my

−py mz 0 −mx

−pz −my mx 0


Note, however, that the signs of the magnetic part differs from that of the

field tensor, due to the sign convention used for the magnetic moment.

This dipole tensor can have three interpretations, depending on the

context: m can represent magnetization per unit volume, and p the polariza-

tion per unit volume; the two can represent the total magnetic and electric

dipole moments of a localized charge distribution; finally, they can represent

the intrinsic moments of a particle such as an electron, in which case one would

expect p to be zero in the particle’s rest frame. Even prior to developing the

apparatus (the Hamiltonian and bracket) necessary to incorporate the dipole
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moments into the dynamics of some system, one can find several expressions

which are simpler in tensorial form than when written in terms of 4-vectors.

A localized charge distribution with changing dipole moments produces

the following retarded potentials, with the part due to the electric dipole mo-

ment placed on the first line, followed by that due to the magnetic dipole

moment:

φ =
ṗ · r
r2

A =
ṗ

r

φ = 0 A =
ṁ× r

r2

Using the dipole tensor for the case of a localized charge distribution,

these four equations combine into the single equation

Aµ =
Ṁµνrν
(rλuλ)2

(7.1)

where uµ is the four-velocity of the dipole, and rµ is a null vector from the

retarded position of the dipole to the field point. In order for this expression

to be covariant, the dot refers to differentiation with respect to the dipole’s

proper time. Looking at static fields instead, the classical equations for the

potentials of an ideal stationary electric and magnetic dipole are, respectively,

φ =
p · r
r3

A =
m× r

c r3

The two special cases for the dipole potentials then reduce to the unified

equation

Aµ =
Mµνrν

(rλuλ)
3 −

Mµνuν

(rλuλ)
2

125



where rµ is the position 4-vector to the retarded position of the dipole, and uµ

is the velocity of the dipole at the retarded time. This expression looks a bit

peculiar, but for a particle or charge distribution whose dipole moments are

constant and which has zero total charge, it results from a simpler expression

for the Hertz vectors of the charge distribution, as shown below.

One can also combine the two equations for bound charge and current,

ρ = −∇ · p J =
∂p

∂t
+∇×m

into the single equation

Jµ = −Mµν
,ν

This time one should interpret mµν as polarization and magnetization

per unit volume. The polarization and magnetization also produce a bound

surface charge and current:

σ = P · n K = M× n

where n is the normal vector to a surface at rest. These two equations become

Kµ = Mµνnν

where nµ is the spacelike 4-vector whose components in the frame where the

surface is at rest are (0,n), and Kµ is the surface 4-current.

In a situation where there are no free charge or current, it is convenient

to define the Hertz vectors Πe and Πm, which are related to the potentials as
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follows:

φ = −∇ ·Πe A =
1

c

∂Πe

∂t
+∇×Πm

Substituting these relations into the inhomogeneous electromagnetic wave

equations whose only source terms are bound charges/currents, and grouping

terms, one obtains the two equations

∇ ·
(
∇2Πe −

1

c2

∂Πe

∂t2
+ 4πP

)
= 0

1

c

∂

∂t

(
∇2Πe −

1

c2

∂Πe

∂t2
+ 4πP

)
+∇×

(
∇2Πm −

1

c2

∂Πm

∂t2
+ 4πM

)
= 0

These are clearly solved by the two new inhomogeneous wave equations

∇2Πe −
1

c2

∂2Πe

∂t2
= −4πP

∇2Πm −
1

c2

∂2Πm

∂t2
= −4πM

These solutions are not unique, as choosing them amounts to a choice

of ”gauge” for the Hertz vectors. To convert these expressions to covariant

form, I define the Hertz tensor

Πµν =


0 Πex Πey Πez

−Πex 0 −Πmz Πmy

−Πey Πmz 0 −Πmx

−Πez −Πmy Πmx 0


The relation of the potentials to the Hertz vectors becomes

Aµ = −Πµν
,ν
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and the inhomogenous wave equations become

2Πµν = −4πMµν where 2 ≡ ∂

∂xµ
∂

∂xµ

For a constant dipole moment, the solution of the wave equations is

Πµν = − Mµν

(rλuλ)

From this one can obtain the earlier potentials (7.1).

Contracting Mµν with itself and with its dual tensor, one finds the two

invariants

p ·m m2 − c2p2

These quantities are significant due to the fundamental particles’ intrinsic

magnetic moments. For instance, the second quantity would be nonzero for

any electrons. Were this a relativistic electron in a hot plasma, the covariant

transformation of the tensor Mµν could lead to large, perpendicular electric

and magnetic dipole moments in another frame, much the same way a static

but nonzero electric field in one frame can produce powerful, perpendicular

magnetic and electric fields in a frame moving at high velocity relative to

the first frame, provided that motion is perpendicular to the original field

direction. Such large dipole moments, induced by relativistic motion, would

introduce an extra force on the electrons proportional to the gradient of the

fields, as can be seen in the equations of motion to follow.

To describe the dynamics of a system that includes spin, I need a Hamil-

tonian and a bracket. I will focus in particular on the Hamiltonian physics of

128



an electron, for which spin is an intrinsic quantity. For the nonrelativistic spin

system, the Hamiltonian and bracket are given by

H = H0 − p · E−m ·B

{f, g} = {f, g}0 + p ·
(
∂f

∂p
× ∂g

∂p

)
+ m ·

(
∂f

∂m
× ∂g

∂m

)
(7.2)

where H0 and {, }0 refer to the parts of the Hamiltonian and bracket

independent of spin – see for example Marklund and Morrison [21]. These

definitions give the proper equations of motion, as is easily checked:

ṗ = {p, H} = p× E

ṁ = {m, H} = m×B

The new term in the Hamiltonian, when paired with the field portion of the

non-spin bracket, also gives the gradient forces ∇(p · E) and ∇(m ·B).

In order to generalize these equations to the relativistic case, I need

a new, more general Hamiltonian and bracket. Here is one simple choice of

Hamiltonian:

H = H0 +
1

2
FαβMαβ

where F µν is the electromagnetic field tensor. The spin part gives−p·E−m·B

in the electron’s rest frame. For the electron, specifically, one could also use

H = H0 +
1

2
Mαβ

(
Fαβ + UαF βγUγ − UβFαγUγ

)
.
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Here the spin part of the Hamiltonian just gives −m ·B in the particle’s rest

frame.

Now I need to construct a bracket. I start with the simplest case,

a particle whose 4-position and 4-velocity are treated as given functions of

its proper time, so that one only needs the spin bracket. Noting that the

nonrelativistic bracket (7.2) can be written in index notation as follows,

{f, g} = {f, g}0 + εijkpi
∂f

∂pj
∂g

∂pk
+ εijkmi

∂f

∂mj

∂g

∂mk
,

I first devise an analogous bracket for the relativistic case. It turns out that

a simpler expression is found when using the dual tensors Nµν ≡ εµναβMαβ/2

and Gµν ≡ εµναβFαβ/2, with corresponding Hamiltonian H = GαβNαβ/2.

Also, in the relativistic case I have to insert the gyromagnetic ratio g explicitly,

whereas before it appeared implicitly in the ratio of magnetic dipole moment

to intrinsic spin. After accounting for the symmetries of the dipole tensor, I

can devise the following relativistic spin bracket:

{f, g}M =
g

16
εαβγδNαβU

µ

(
∂f

∂Nγµ
− ∂f

∂Nµγ

)
Uν

(
∂g

∂N δν
− ∂g

∂N νδ

)
, (7.3)

where εαβγδ is the four-dimensional Levi-Civita tensor, equal to one for indices

of even permutation, negative one for indices of odd permutation, and zero

otherwise. Using such a bracket gives the following equation of motion:

dNµν

dτ
= −g

2
εµναβNαδU

δGβγU
γ (7.4)
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From this one can derive the well-known BMT equation [5] for the spin

4-vector Sµ,

dSµ

dτ
=
g

2

[
F µαSα + Uµ(SαF

αβUβ)
]
− Uµ

(
Sα
dUα

dτ

)
, (7.5)

as will presently be shown. To start with, the spin 4-vector and the dipole

tensor are related through the equations

Sµ = NµαU
α Nµν = UµSν − SµUν

I now prove the equivalence, starting with

dSµ

dτ
=
Nµα

dτ
Uα +NµαdUα

dτ

The first term becomes

−N
µα

dτ
Uα =

g

2
εµναβNαδU

δGβγU
γUν

=
g

2
εµναβSαGβγU

γUν

=
g

4
εµναβSαεβγδλF

δλUγUν

=
g

4
εβµναεβγδλSαF

δλUγUν

=
g

4
(δµγδ

ν
δδ
α
λ + δµδδ

ν
λδ

α
γ + δµλδ

ν
γδ
α
δ − δ

µ
λδ

ν
δδ
α
γ

−δµδδ
ν
γδ
α
λ − δµγδνλδαδ)SαF δλUγUν

=
g

4
(SαF

ναUµUν + SαF
µνUαUν + SαF

αµUνUν

−SαF µαUνUν − SαF νµUαUν − SαFανUµUν)
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=
g

4
(SαF

ναUµUν + SαF
αµ − SαF µα − SαFανUµUν)

= −g
2

(F µαSα + Uµ(SαF
ανUν))

where I have used, in order: the definition of Sµ; the definition of the dual

tensor Gµν in terms of Fµν ; the cylic property of the Levi-Civita tensor; an

identity of the Levi-Civita tensor; the index-substitution property of the delta

tensors; the fact that SαUα = 0 and UαUα = 1; and, finally, the antisymmetry

of the field tensor. I now have the first two terms of the BMT equation. For

the second, thankfully simpler term, one finds:

NµαdUα
dτ

= (UµSα − SµUα)
dUα
dτ

= Uµ

(
Sα
dUα
dτ

)
(Since all forces on an electron are rest-mass-preserving forces, UαFα = 0, and

one term is eliminated.) Sticking all three terms together, I have the BMT

equation (7.5). This can in turn be used to derive the Thomas equation of

motion[?] for the spin 3-vector. If one were to write the equation of motion

(7.4) in terms of the original dipole tensor instead of its dual, one would have

dMµν

dτ
= Mµβ (ηνα + UνUα)Fαβ −Mνβ (ηµα + UµUα)Fαβ

in addition to an altered bracket.

While it is more common among physicists to present brackets in terms

of derivatives, one can also define them in terms of basis tensors. To find a
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more general bracket, one them assumes the analyticity of the functions placed

in it, and uses the linearity and Lorentz properties of a bracket:

{f, αg + βh} = α{f, g}+ β{f, g}

{f, gh} = {f, g}h+ {f, h}g

where f , g, and h are functions, and α and β are scalars (here, real numbers).

For instance, the canonical Poisson bracket can be written

{Xµ, Xν} = 0

{Pµ, Pν} = 0

{Xµ, Pν} = δµν

In order to have all covariant indices, one could also alter the last of

these to

{Xµ, Pν} = ηµν .

where ηµν is the flat-space metric. More useful for my purposes is the trans-

formed bracket which uses 4-velocity in place of 4-momentum, as the latter

contains the electromagnetic 4-potential implicitly. Doing so gives the brackets

{Xµ, Xν} = 0
{Xµ, Uν} = ηµν
{Uµ, Uν} = Fµν

One chooses a Hamiltonian H and bracket with the aim of producing

the correct equations of motion

ḟ = {f,H}
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for the various dynamical variables, i.e. (7.4) plus the standard equations of

the electron in its rest frame (dot denotes proper time derivative):

Ẋi = Ui

ṫ = 1

U̇i = FiαU
α +∇i (m ·B)

U̇0 = u · E− ∂

∂t
(m ·B)

One can choose a Hamiltonian freely, but the bracket must satisfy two

properties in addition to its built-in linearity, namely antisymmetry and the

Jacobi identity. The first is easy, but the second requires checking the following

six different basis equations, assuming that the position and velocity already

form a valid bracket:

{{Mαβ,Mγδ},Mεζ}+ cyclic = 0
{{Mαβ,Mγδ}, Uµ}+ cyclic = 0
{{Mαβ, Uµ}, Uν}+ cyclic = 0
{{Mαβ,Mγδ}, Xµ}+ cyclic = 0
{{Mαβ, Xµ}, Xν}+ cyclic = 0
{{Mαβ, Uµ}, Xν}+ cyclic = 0

(7.6)

There is a general way to construct a representation of SO(m,n) in

terms of antisymmetric matrices, which is to define the bracket

{Mαβ,Mγδ} = Mαδηβγ +Mβγηαδ −Mαγηβδ −Mβδηαγ

where ηµν is a symmetric matrix with signature (m,n), in my case the diagonal

flat-space metric. This bracket, unfortunately, does not give the correct equa-
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tions of motion when reasonable Hamiltonians are used. The most promising

alteration to date has been a modified version of the above bracket:

{Mαβ,Mγδ} = Mαδ (ηβγ + UβUγ) +Mβγ(ηαδ + UαUδ)
−Mαγ(ηβδ + UβUδ)−Mβδ(ηαγ + UαUγ)

This bracket was taken from Yee and Bander[?]. When supplied with

the basic Hamiltonian

H =
1

2
UαU

α +
1

2
MαβF

αβ

this gives the correct equations of motion, but it has the irreconciliable flaw of

failling to satisfy the cross-term Jacobi identities (7.6). Note that the bracket

(7.3), which is equivalent to the Yee and Bander bracket, is only valid for a sys-

tem where the 4-velocity and 4-position are specified beforehand as functions

of a particle’s proper time.

Thankfully, there is a way to repair it. Hanson, Regge and Teitelboim

[12] use a Dirac construction to create a bracket that preserves MµνU
ν as a
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Casimir invariant. For an uncharged particle, the bracket is as follows:

[Xµ, Xν ] = Mµν

[Xµ, Uν ] = ηµν

[Xµ,Mνλ] = UλMµν − UνMµλ

[Uµ, Uν ] = 0

[Uµ,Mνλ] = 0

[Mµν ,Mλσ] =
(
Mµσ(ηνλ − UνUλ

)
+Mνλ (ηµσ − UµUσ)

−Mµλ (ηνσ − UνUσ)−Mνσ
(
ηµλ − UµUλ

)
Because this is a Dirac bracket of the previous one, I do not need to check

the Jacobi identity.

From here, it is easy to check that MµνU
ν is a Casimir, on the subspace

where it is already zero:

[Uµ,MνλU
λ] = [Uµ,Mνλ]U

λ + [Uµ, U
λ]Mνλ = 0

[Xµ,MνλU
λ] = Mνλ[Xµ, U

λ] + [Xµ,Mνλ]U
λ

= Mνµ + UλMµνU
λ − UνMµλU

λ

= −UνMµλU
λ

[Mµν ,MλσU
σ] = [Mµν ,Mλσ]Uσ

= MµσU
σ (ηνλ − UνUλ)−MνσU

σ (ηµλ − UµUλ)

Sadly, reasonable choices for the Hamiltonian do not give the correct equations
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of motion. For example, a reasonable guess would be to add a coupling term:

H =
1

2
UµU

µ +MµνF
µν

In this case dUµ/dτ and dMµν/dτ have the correct expressions, but now

dXµ/dτ is

dXµ

dτ
= Uµ + 2MµβUαFαβ +MαβF

αβ
,γM

γµ

Either this is incorrect, or Uµ is not the 4-velocity, implying that, while Mµν

is purely magnetic, it is purely magnetic in a frame of reference slightly dif-

ferent than that defined by the 4-velocity. This may be an interesting idea to

investigate in the future.

Given the appearance of a flat-space metric in the various brackets,

and the inability of the authors to produce a fully general particle bracket in

the special relativistic case, it appears likely that a full Hamiltonian treatment

requires moving to the general relativistic case. Some interesting inroads on

this problem have already been made by Marsden et al. [22]. It has already

been shown by Papapetrou [38] that spinning particles do not follow geodesics,

and an adaptation of Marsden and Morrison’s Hamiltonian approach should

show this deviation. In addition, one could naturally extend a Hamiltonian

theory by switching to a kinetic theory of matter, with distribution functions

in place of individual particles, with ready applications in plasma physics.

Some work in the nonrelativistic Spin Maxwell-Vlasov equations has already

been done by Marklund and Morrison [21]. I remain confident that usefulness

of the dipole tensor is far from exhausted.
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Chapter 8

Physical Consequences of the Jacobi Identity

I will attempt to show that the homogeneous Maxwell equations (equiv-

alent to the vanishing of magnetic monopoles) can be derived from only a few

basic characteristics of the electromagnetic force, given the validity of special

relativity. The first such characteristic is that the 4-force on a test particle is

linear in its 4-velocity. Such a 4-force Kµ can be written as a linear combina-

tion of the components of the 4-velocity Uµ, or

Kµ = MµνUν

where Mµν is some matrix independent of the particle’s 4-velocity but varying

with its position in space and time. The tensorial character of Mµν is assured

by the quotient rule of tensor algebra. Like any rank two tensor, Mµν can be

decomposed into the sum of its symmetric part Sµν and antisymmetric part

Aµν , so that the force can be written

Kµ = SµνUν + AµνUν

To be a valid 4-force, Kµ must obey the relation KµUµ = 0, a geometric

fact resulting from the constancy of UµUµ. Written in full,

0 = SµνUµUν + AµνUµUν
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The second term vanishes from the antisymmetry of Aµν , and by choos-

ing various values of Uµ one can show that Sµν is identically zero. So even the

most general force linear in 4-velocity must have the form

Kµ = AµνUν (8.1)

That is, it is characterized by the six components (or two 3-vectors) of

an antisymmetric tensor Aµν . I next assume that the system is Hamiltonian,

which one can reasonably expect of any physical system without dissipation.

So there exist a Hamiltonian function H and a bracket [f, g], from which one

can derive the equation of motion

Kµ =
dUµ

dτ
= [Uµ, H]

Using once again the relation KµUµ = 0, along with the Leibniz rule for

brackets, I find

0 = UµK
µ = Uµ [Uµ, H] =

[
1

2
UµUµ, H

]
So UµU

µ/2 commutes with any valid Hamiltonian H. (It is a peculiarity of

relativistic Hamiltonian physics that the geometrical constraint UµU
µ = const.

must be applied after derivations using the bracket, with the paired oddity that

the Hamiltonian is just some number, most often zero. So this commutation

is not trivial.) An easy way to assure such commutation is to take H to be a

function of UµU
µ/2, the simplest of which is that very number, so I will set

H =
1

2
UµUµ
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The force law now reads

dUµ

dt
= AµνUν = [Uµ, H] = [Uµ, Uν ]Uν

thus defining a portion of the bracket: [Uµ, Uν ] = Aµν . I fill out the remainder

of the bracket by giving it canonical form, i.e. [Xµ, Uν ] = ηµν and [Xµ, Xν ] =

0, where Xµ is the particle’s 4-position and ηµν is the inverse of the flat-space

metric ηµν . Written out in full, the bracket is

[f, g] = ηµν
(
∂f

∂Xµ

∂g

∂U ν
− ∂g

∂Xµ

∂f

∂U ν

)
+ Aµν

∂f

∂Uµ

∂g

∂U ν

To be a valid bracket, it must obey the Jacobi identity [[f, g], h] +

[[g, h], f ] + [[h, f ], g] = 0, and to check this it suffices to verify the identity by

substituting all combinations of Uµ and Xµ for f , g and h. The only nontrivial

such identity is

[[Uµ, Uν ] , Uλ] + [[Uν , Uλ] , Uµ] + [[Uλ, Uµ] , Uν ]

= [Aµν , Uλ] + [Aνλ, Uµ] + [Aλµ, Uν ]

= Aµν,λ + Aνλ,µ + Aλµ,ν = 0

These are, barring a factor of q/mc that can be factored out, the four ho-

mogeneous Maxwell equations. Note how few assumptions were required to

obtain this equation: it all comes from the linearity of the force law and the

nature of Hamiltonian systems.

However, I have so far been looking at only a single particle. So far

there is no reason to believe that different particles with identical 4-velocities
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will experience similar forces: there may be no relationship between the tensor

Aµν governing one particle and the comparable tensor governing another. It

does happen that, in electromagnetism, the tensors Aµν are proportional, with

the factor of proportionality being q/m, but this must be regarded as an

added assumption if the identity (8.2) is to be regarded as expressing the

homogeneous Maxwell equations.

The more general case merits some investigation. Suppose, then, that

there are various particles labelled by i, each of which experiences a force

linear in its 4-velocity. For each particle there will then be a force of the form

(8.1), with an antisymmetric tensor A
(i)
µν . At a given point, the vector space

of antisymmetric tensors at that point has six dimensions, so the various A
(i)
µν

can be expressed as a linear combinations of at most six basis elements F
(j)
µν ,

to wit:

A(i)
µν = q

(i)
(1)F

(1)
µν + q

(i)
(2)F

(2)
µν + ...

=
∑
j

q
(i)
(j)F

(j)
µν

This can be taken to represent A
(i)
µν at any point, provided one acknowledges

that the individual F
(j)
µν will in general change in different ways as one moves

from point to point. This is an additional assumption, but a reasonable one,

since it expresses a form of translation invariance of supposed laws of physics.

The q
(i)
(j) are then to be thought of as charges of different kinds. The Jacobi
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identity for a given particle can still be derived as before, and becomes

A
(i)
µν,λ + A

(i)
νλ,µ + A

(i)
λµ,ν

=

(∑
j

q
(i)
(j)F

(j)
µν

)
,λ

+

(∑
j

q
(i)
(j)F

(j)
νλ

)
,µ

+

(∑
j

q
(i)
(j)F

(j)
λµ

)
,ν

=
∑
j

q
(i)
(j)

(
F

(j)
µν,λ + F

(j)
νλ,µ + F

(j)
λµ,ν

)
= 0

When summing this identity over the various particles labelled by i, gathering

like terms give the further identity

∑
i,j

q
(i)
(j)

(
F

(j)
µν,λ + F

(j)
νλ,µ + F

(j)
λµ,ν

)
= 0

Suppose that there are many varieties of particle, but no particular relation

among the various q(j) parametrizing any one such particle. Then I expect that,

by choosing particles appropriately, I can make the sums
∑

i q
(i)
(j) disappear for

all but one index j, whereupon the remaining charges factor out, and

F
(j)
µν,λ + F

(j)
νλ,µ + F

(j)
λµ,ν = 0

for the remaining label j. This can then be done for the remaining labels,

so that if I have n charge species that vary independently, I will also get n

different replicas of the homogeneous Maxwell equations. This is particularly

easy to see if I have “pure” charges of each species, because then no summation

is required in (8.2). To avoid this identical behavior among the F
(j)
µν there must

be at least one relationship f(q(1), q(2), ..., q(n)) among the various charges of a

given particle.
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As a specific example of this extended formalism, let’s look at a classical

theory of magnetic charge. Then each particle has an electric charge qe and a

magnetic charge qm, and the non-relativistic Lorentz force becomes

F = qe(E +
1

c
v ×B) + qm(B− 1

c
v × E)

Switching to covariant notation and unitless quantities, this becomes

Kµ = qeF
µνUν + qmG

µνUν

where the tensor Gµν is the dual of the field tensor F µν , that is to say Gµν =

(1/2)εµναβFαβ. The Maxwell-like equation is now satisfied by the combined

tensor qeF
µν +qmG

µν . As explained earlier, if the electric and magnetic charge

can vary independently (for instance, if you have pure charges of both types),

then by summing various such identities I find that both F µν and Gµν obey the

homogeneous Maxwell equations, which is equivalent to the vanishing of both

electric and magnetic charges. To avoid this trivial result, there must be some

relationship f(qe, qm) between the two charges. The simplest such relationship

is a linear equation αqe + βqm = 0, with both α and β non-zero. However,

then the magnetic charge qm can be eliminated from the force equation:

Kµ = qe

(
F µν − α

β
Gµν

)
Uν = q′eH

µνUν

with

q′e = qe

√
1 +

α2

β2

and

Hµν =
1√

1 + α2

β2

(
F µν − α

β
Gµν

)
(8.2)
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Here I’ve chosen the constant of proportionality to anticipate the inhomoge-

neous Maxwell equations F µν
,ν = qeU

µ and Gµν
,ν = qmU

µ, which now combine

into Hµν
,ν = q′eU

µ. Meanwhile Hµν , like any Aµν from (8.1), also obeys the

inhomogeneous Maxwell equations as a result of the Jacobi identity. So, with

some minor tweaking, a proportional magnetic charge is shown to be equiva-

lent to no magnetic charge at all. This result is shown via different means in

Jackson.

No matter what, the Jacobi identity will produce an equation resem-

bling the homogeneous Maxwell equations. However, to interpret this equation

the usual way I must add the final assumption that there is only one field ten-

sor F µν to which all of the tensors Aµν are proportional, possibly following a

reduction such as what led to (8.2). This assumption is not necessary, but it

does happen to be a familiar quality of electromagnetism.

The fact that the field tensor obeys the homogeneous Maxwell equa-

tions, or the equivalent fact that it can be expressed as the curl of a 4-vector

potential, is usually taken to be axiomatic. Here, it has been shown to be

derivable from four assumptions about electromagnetism: (i) the electromag-

netic 4-force is linear in 4-velocity; (ii) two particles with identical 4-velocities

will experience proportional such 4-forces; (iii) a particle in an electromagnetic

field forms a Hamiltonian system; (iv) the Hamiltonian function has the simple

form H = (1/2)UµU
µ. The first two assumptions can be taken to character-

ize the Lorentz force, as opposed to other hypothetical forces (e.g. quadratic

ones or gradient ones), and the third is a reasonable assumption about any
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nondissipative physical system. The fourth assumption, then, is the weakest.

It can, in fact, be generalized somewhat while still yielding half of Maxwell’s

equations, but the weakened versions are not very illuminating, and the al-

ternative Hamiltonians are more cumbersome. Worse, when one attempts to

repeat the above argument for quadratic or higher-order forces, that simple

choice of Hamiltonian no longer works. I will show this, and then show how a

broader class of forces can be acquired from more general Hamiltonians.

A general quadratic force would have the form

dUµ

dτ
= MµνλUνUλ (8.3)

for arbitrary Mµνλ; this time the quotient rule does not apply, and its tensorial

nature would have to be established separately. A rank-three contravariant

tensor can be decomposed into Mµνλ = Sµνλ + Aµνλ + Rµνλ, where Sµνλ is

symmetric in each of its indices, Aµνλ is antisymmetric in each of its indices,

and Rµνλ has the symmetry

Rµνλ +Rνλµ +Rλµν = 0

as may be verified by direct computation. The condition UµK
µ = 0 becomes

0 = SµνλUµUνUλ + AµνλUµUνUλ +RµνλUµUνUλ (8.4)

The middle term drops due to antisymmetry, and in the third term

RµνλUµUνUλ = RνλµUµUνUλ = RλµµUµUνUλ
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since each index is a dummy index. So the cyclic symmetry of Rµνλ shows each

such term to be zero. In (8.4), then, only the term involving Sµνλ contributes,

and by choosing various Uµ one can show that every element of Sµνλ is zero.

Since the antisymmetric Aµνλ does not contribute to the force (8.3), a reduction

occurs (as in the linear case):

dUµ

dτ
= RµνλUνUλ (8.5)

Due to the form of this force law, I can also choose Rµνλ to be sym-

metric in the last two indices, leaving it with a total of twenty independent

components. The next step would be to choose a Hamiltonian and bracket.

However, unlike in the linear case, something undesirable happens if I choose

the simplest Hamiltonian H = (1/2)UµU
µ. This Hamiltonian again suggests

filling out the brackets via [Xµ, Xν ] = 0, [Xµ, Uν ] = ηµν , and

dUµ

dτ
= RµνλUνUλ

=

[
Uµ,

1

2
UνU

ν

]
= [Uµ, Uν ]Uν

which suggests [Uµ, Uν ] = RµνσUσ. The Jacobi identity then renders the force

trivial: [
[Uµ, Uν ] , Xλ

]
+
[[
Uν , Xλ

]
, Uµ

]
+
[[
Xλ, Uµ

]
, Uν

]
=[

RµνσUσ, X
λ
]

+
[
−ηνλ, Uµ

]
+
[
ηλµ, Uν

]
=

Rµνλ = 0
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So, generally speaking, the assumption H = (1/2)UµU
µ is too strong,

and rules out all but the linear case. To solve this problem, I will try a reverse

process. I do not assume a particular force law; instead, my first assumption

will be that I am looking at a Hamiltonian system consisting of a single particle

with a Hamiltonian commuting with UµU
µ, and see what I get from there.

This quantity involves an inner product, which means that I have implicitly

introduced a metric, so my first try will be to add this metric explicitly:

H =
1

2
gµνU

µUν

Moving away from special relativity, I allow this metric to be a function

of position, in contrast to the flat-space metric ηµν . To still be a valid metric,

I require that gµν have signature (+ − −−), which then grants the existence

of an inverse gµν . To complete the system, I still need to fill out the bracket

[f, g]. I will assume analyticity of all functions used in this construction, which

means that repeated applications of the Leibniz rule can reduce the general

bracket [f, g] to expressions only involving brackets of the phase space basis

elements Xµ, Uµ. For Xµ and Uµ to have their usual interpretation, I set

[Xµ, Xν ] = 0 and use the relation

Uµ =
dXµ

dτ
= [Xµ, H] = [Xµ, Uν ]gνλU

λ

From this I infer the next piece of the bracket, [Xµ, Uν ] = gµν . Because

[Xµ, Xν ] = 0, gµν commutes with Xµ, so I could also write [Xµ, Uν ] = δµν .

With nonconstant gµν , I have to start worrying about the Jacobi identity.
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Identities involving terms such as [[Xµ, Xν ], Xλ] and [[Uµ, Xν ], Xλ] are already

satisfied, but a nontrivial one does appear:[
[Uµ, Uν ] , Xλ

]
+
[[
Uν , Xλ

]
, Uµ

]
+
[[
Xλ, Uµ

]
, Uν

]
=

[
[Uµ, Uν ] , Xλ

]
+
[
−gνλ, Uµ

]
+
[
gλµ, Uν

]
=

[
[Uµ, Uν ] , Xλ

]
− gνλ ,αgαµ + gµλ ,αg

αν = 0

The Jacobi identity will be satisfied if I choose

[Uµ, Uν ] = gµσ ,αg
ανUσ − gνσ ,αgαµUσ

= gαµgνβgβσ,αU
σ − gανgµβgβσ,αUσ

where one can acquire the expression gµν ,λ = −gµαgνβgαβ,λ by differentiating

δµν = gµαgαν . The final Jacobi identity involving terms such as [[Uµ, Uν ], Uλ]

is satisfied for symmetric gµν . Now that I have the full bracket, I can get out

an equation of motion:

dUµ

dτ
=

[
Uµ,

1

2
gνλU

νUλ

]
=

1

2
[Uµ, gνλ]U

νUλ +
1

2
gνλ [Uµ, Uν ]Uλ +

1

2
gνλ
[
Uµ, Uλ

]
U ν

=
1

2

(
−gαµgνλ,αUνUλ + (gαµgλσ,α − gµβgβσ,λ)UσUλ + (gαµgνσ,α − gµβgβσ,ν)UσUν

)
= −1

2
gµα (gασ,λ + gαλ,σ − gσλ,α)UσUλ

= −ΓµσλU
σUλ

using the standard definition of the connection coefficients Γµσλ. This time,

the Jacobi identity has yielded the geodesic law of motion from general rela-
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tivity. This is perhaps unsurprising, if you realize that the Hamiltonian sys-

tem thus constructed can be put into canonical form with the substitution

Pµ = gµνU
ν , because the canonical Hamiltonian obeys an extremization prin-

ciple equivalent to the extremization of proper time, which is a more usual

basis for deriving the geodesic law of motion. I could also add an antisymmet-

ric, velocity-independent part Aµν to the [Uµ, Uν ] bracket and get back the

Lorentz force; generally speaking, the various approaches espoused in these

notes can be combined to yield multiple types of forces on a single particle.

For another alternative Hamiltonian, I will introduce the rest mass m

that has thus far been implicit. Suppose some kind of (special relativistic)

interaction yields a nonconstant rest mass; for instance, the particle under

consideration could have intrinsic magnetic and/or electric dipole moments m

and p, which can be expressed as the time-space and space-space 3-vectors

composing an antisymmetric dipole tensor Mµν . The interaction energy −p ·

E−m ·B can be expressed as (1/2)FαβM
αβ, which yields a variable rest mass

m = m0 +
1

2
FαβM

αβ

The Hamiltonian describing a particle of variable rest mass is

H =
1

2
mUµU

µ − 1

2
m

Here the second term must be added to make the Hamiltonian commute with

UµU
µ. As far as the Jacobi identity is concerned, this problem is identical to

the general relativistic case just considered, but with “metric” gµν = mηµν .
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Reiterating the previous arguments, I get the bracket

[Xµ, Xν ] = 0

[Xµ, Uν ] =
1

m
ηµν

[Uµ, Uν ] =
1

m2
(ηµαm,αU

ν − ηναm,αU
µ)

This yields the quadratic equation of motion

dUµ

dτ
= [Uµ, H] =

1

m
(ηµαm,αUνU

ν −m,νU
νUµ)

If the adjustment to rest mass comes from intrinsic dipole moments,

then with Mµν regarded as an independent variable, the equation of motion is

m
dUµ
dτ

=
1

2
Fαβ,µM

αβ − 1

2
Fαβ,νU

νMαβUµ

which gives, in the particle’s rest frame, the standard force p · ∇E + m · ∇B,

subject to the constraint that UµU
µ is constant. In the schema of (8.5), I

would have

Rµνλ =
1

2
Mαβ (Fαβ,µηνλ − Fαβ,νηµλ)

The Jacobi identity has been shown to produce remarkable results: (i)

the identity, plus a linear force, implies the homogeneous Maxwell’s equations

(or their equivalent); (ii) the Jacobi identity, plus a nonconstant metric, implies

the geodesic law of motion; (iii) the identity, plus a nonconstant mass, produces

the relativistic gradient force. All three results are usually found by much

different arguments, but bringing the Hamiltonian nature of particle motion
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to the fore has allowed all three to arise from one oft-neglected identity. I hope

that others will find this as remarkable as I do.
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Chapter 9

Conclusion

I will conclude by noting the paths for future research that I (and

hopefully others) will take, using the preceding research as a starting point.

The discoveries of Chapter 3 provide an important missing link in the

study of Hamiltonian generalized MHD models. While Hamiltonian descrip-

tions of Hall and Extended MHD had already been discovered [1], the brackets

had to be devised by hand, and the Jacobi identities checked explicitly. De-

riving these brackets from a more fundamental one, as I do in Chapter 3,

puts these theories on more solid theoretical ground, while at the same time

strengthening one’s physical intuition about these generalized models. More

importantly, to my tastes, it provides a starting point for developing theories

of relativistic Hall and Extended MHD. While some such descriptions exist

[15, 4], they are based on the simplest method of relativizing a system, by

simply replacing 3-vector quantities with 4-vector ones. Because the relativis-

tic version will have an additional equation versus the nonrelativistic one (four,

rather than three), there is an inherent ambiguity to this procedure. Such am-

biguity turned out to have physical consequences in the theory of Hamiltonian

relativistic MHD developed in Chapter 5, for it allowed me to use hµ instead
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of bµ. Use of a relativistic Euler-Lagrange map (as in Chapter 6) may allow

me to resolve this ambiguity.

As for regular relativistic MHD, while I have developed some of the

implications of my theory, a few more remain. So far, in Chapter 5, I have de-

veloped the Hamiltonian theory, found a few alternative brackets, investigated

the new gauge freedom, and found a couple of Casimir invariants. For example,

a (3+1) split is essential to computational relativistic MHD, and a strength

of my formalism is that it can be used to generate infinitely many different

such splits, corresponding to different foliations of spacetime into spacelike

submanifolds. The full procedure for this split has yet to be developed, and

can be a subject of future research. In addition, knowledge of the Casimirs

allows one to perform a more general stability analysis on RMHD systems, for

it turns out that general critical points correspond to extrema of H + λiCi,

not just H, a point sometimes not realized by those who do energy-stability

analysis outside the context of Hamiltonian physics.

A few more topics may be developed in connection with the Lagrangian

MHD description of Chapter 6. The chapter (part of a paper still in draft form)

already achieves a derivation of Hamiltonian Eulerian MHD from a canonical

Lagrangian description. For example, in the nonrelativistic case it turns out

that some invariants, most importantly the magnetic helicity, are Noether in-

variants corresponding to a relabelling symmetry [14]. Kawazura et al have

investigated this symmetry using a 3-vectorial magnetic field, while I hope to

do so using my 4-vectorial hµ. Furthermore, my theory has a new degree of
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freedom in the α that appears in hµ, which is only determined up to a solution

of the continuity equation. If I can find an infinitesimal transformation corre-

sponding to that symmetry, there should be an associated Noether invariant.

As of yet I have made little progress on metriplectic physics: I have

put the relativistic Navier-Stokes into metriplectic form, but unfortunately the

“the” in that claim is a little suspect, as there are multiple competing versions

of Navier-Stokes in the relativity literature. I do not know whether those other

versions can be put in metriplectic form. More significantly, I have periodic

hopes of deriving the metriplectic formalism from a more fundamental theory,

whereas at present it springs full-formed from the mind of Dr. Morrison. The

research presented in Chapter 7 has foundered, leading me to the suspicion

that there is no theory of classical, relativistic Hamiltonian spin: i.e., it is

essentially quantum-mechanical. But perhaps I may yet discover some new

angle to come at the problem. Finally, while the research in Chapter 8 is

complete in its own right, I sometimes wonder whether I can find an equivalent

for infinite-dimensional systems.

The research presented in this dissertation has a great deal of promise;

perhaps, more promise than success, so far. I hope to be able to fulfill some

its promise in the next couple of years, and I hope even more that others will

see some of this promise, and attempt to add new discoveries of their own.
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Appendix 1

Useful Mathematics

1.1 Functional differentiation

In infinite-dimensional systems, important quantities will depend on

the basic variables via integral expressions. For instance, in kinetic theory a

fluid is described by a distribution function f(x, v, t) over a six-dimensional

tangent space d6z = d3x d3v, and its energy or Hamiltonian is given by

H[f ] =

∫
f

2
v2 d6z

One cannot perform partial derivatives directly on this quantity, because the

corresponding degrees of freedom have been integrated out. Instead one ob-

tains the first variation,

δH[f ; δf ] = lim
ε→0

H[f + δf ]−H[f ]

ε

=
d

dε
H[f + εδf ]

∣∣∣∣
ε=0

=

∫
δf
δH

δf
d6z =

〈
δH

δf
, δf

〉
which defines the functional derivative δH/δf . This derivative is uniquely

defined, provided the product denoted by <,> is non-degenerate, i.e. has the

positivity property of inner products.
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Frequently coordinate changes will force one to alter functional deriva-

tives, leading to specific kind of chain rule calculation. The main insight which

enables this calculation is that the variation δF is identical, whether written

in terms of the new variables or the old variables. For example, in a system

involving magnetism, one can use the field B or the vector potential A, related

via B = ∇×A. The variation is the same in terms of either variable, so

δF =

∫
δF

δB
· δB d3x =

∫
δF

δA
· δA d3x

Furthermore, I have δB = ∇× δA, so the middle term becomes∫
δF

δB
· (∇× δA) d3x =

∫
δA ·

(
∇× δF

δB

)
d3x

Thus

δF

δA
= ∇× δF

δB

Another common situation is having to perform a chain rule calculation

where the quantity being differentiated depends on multiple field variables. For

example, a quantity in fluid physics might depend on the scalar field ρ (density)

and the vector field m (momentum). However, the pair ρ and v = m/ρ

(velocity) might prove more useful. Because the two must be distinguished,

the density will be called ρ in the first pair of variables and ρ̄ in the second.

The chain rule proceeds as follows (there are no integrations by part, so the

integration can be safely omitted):

δF

δρ
δρ+

δF

δm
· δm =

δF

δρ̄
δρ̄+

δF

δv
· δv

δF

δρ
δρ+

δF

δm
· δm =

δF

δρ̄
δρ̄+

δF

δv
· δm
ρ̄
− 1

ρ̄2

δF

δv
δρ̄
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Equating coefficients yields

δF

δm
=

1

ρ̄

δF

δv

δF

δρ
=
δF

δρ̄
− 1

ρ̄2

δF

δv

This example highlights a quirk of functional (and partial) differentiation:

when a variable is unchanged, its derivative will nonetheless change. The same

thing happens with the chain rule for partial derivatives. More sophisticated

uses of the chain rule can be found in Secs. 2.3.2 and 6.1, and Chap. 3.

1.2 Useful expressions involving the Jacobian determi-
nant

The Euler-Lagrange map of Sections 2.3.2 and 6.1 relies on a dy-

namic coordinate change q(a, t), where a is the coordinate on a three- or

four-dimensional label space, and q typically denotes the position of a fluid

element starting at a. The coordinate change defines a Jacobian matrix ∂qi

∂aj
,

whose determinant, the Jacobian scalar, is:

J =

∣∣∣∣ ∂qi∂aj

∣∣∣∣ =
1

6
εijkε

lmn∂q
i

∂al
∂qj

∂am
∂qk

∂an

The cofactor matrix Aij, for invertible transformations (as all in this disserta-

tion must be), is proportional to the inverse transformation:

Ail
∂ql

∂aj
= J δij (1.1)

If I write qj,i = ∂qj/∂ai then

∂J
∂qj,i

=
1

2
εijkε

lmn ∂q
j

∂am
∂qk

∂an
= Aij
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Another useful identity is

∂Aij
∂ai

=
1

2
εjklε

imn

(
∂2qk

∂am∂ai
∂ql

∂an
+
∂qk

∂am
∂2ql

∂an∂ai

)
= 0

which is zero due to contracting a symmetric object with an antisymmetric

object. Keeping in mind that time derivatives and label derivatives commute,

J̇ =
1

6
εijkε

lmn∂q̇
i

∂al
∂qj

∂am
∂qk

∂an
+ . . .

The first term is

1

3
Ali

∂q̇i

∂al
=

1

3
Ali

∂q̇i

∂qj
∂qj

∂al
=

1

3
J δji

∂q̇i

∂qj
=

1

3
J ∇ · q̇

So, altogether,

J̇ = J ∇ · q̇ (1.2)

By taking a partial derivative of (1.1) with regards to qm,n, one finds

∂Ail
∂qm,n

∂ql

∂aj
+ Ail δ

l
m δ

n
j = δij A

n
m

which, after multiplying by Ajk and manipulating, reduces to

∂Aij
∂qm,n

=
1

J
(
AijA

n
m − AimAnj

)
By taking a time derivative of (1.1), substituting in (1.2), and performing

similar manipulations, one acquires

Ȧij = δij (∇ · q̇)− 1

J

(
Aik

∂q̇k

∂al
Alj

)
Jacobian determinants in relativity have analogous properties, with a

few substitutions: all indices now range over four values, one uses the 4D

Levi-Civita symbol εµνλσ instead of the 3D εijk, and the time derivative (for

instance, in (1.2)) is replaced by a proper time derivative.
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1.3 Jacobi identity for the MHD brackets

Because the Covariant Poisson brackets of (5.32) and (5.35) are direct

generalizations of the Lie-Poisson form given in Refs. [30, 31, 26] for non-

relativistic MHD the Jacobi identity follows from general Lie algebraic and

functional derivative properties (see e.g., Refs. [26] [23] [24, 28]). However,

since these may not be known to some readers I include a direct proof in this

appendix.

The Jacobi identity is

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0 (1.3)

for the two brackets (5.32) and (5.35).

When expanding the expression (1.3), many terms will contain second

functional derivatives, for instance

nhλ
δG

δmν

(
∂ν

δ2F

δhλδmµ

)
∂µ
δH

δn

Thankfully, by a theorem in Ref. [26], all such terms cancel for any antisym-

metric bracket. Thus I only have to worry about those terms containing only

first functional derivatives. Starting with the bracket (5.32), the needed terms
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are thus
δ{F,G}
δn

=
δF

δmµ

∂µ
δG

δn
− δG

δmµ

∂µ
δF

δn
+ . . .

δ{F,G}
δσ

=
δF

δmµ

∂µ
δG

δσ
− δG

δmµ

∂µ
δF

δσ
+ . . .

δ{F,G}
δmµ

=
δF

δmν

∂ν
δG

δmµ

− δG

δmν

∂ν
δF

δmµ

+ . . .

δ{F,G}
δhµ

=
δF

δmν

∂ν
δG

δhµ
− δG

δmν

∂ν
δF

δhµ
+

∂µ
δF

δmν

δG

δhν
− ∂µ

δG

δmν

δF

δhν
+ . . .

(1.4)

with similar expressions for the other two permutations of F , G, and H. Be-

ginning with this expression, it is to be understood that, in the absence of

parentheses, the gradient operators act only on the term immediately to their

right; when they are followed by an expression in parentheses, they act as nor-

mal. This convention will remove many superfluous symbols. The ellipses at

the end of each line indicate the terms that may be disregarded thanks to the

aforementioned theorem. Upon inserting the expressions (1.4) into the Jacobi

identity (1.3), all pertinent terms will be linear in the field variables. Each of

these four sets of terms (one for each field variable) must vanish separately.

The terms linear in n are:∫
d4xn

[(
δF

δmν

∂ν
δG

δmµ

− δG

δmν

∂ν
δF

δmµ

)
∂µ
δH

δn
− δH

δmµ

∂µ

(
δF

δmν

∂ν
δG

δn
− δG

δmν

∂ν
δF

δn

)
+ �

F,G,H

]
(1.5)

where the circle symbol indicates permutation in F , G, and H. Inside the
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square braces, the collected second derivative terms are

− δH

δmµ

δF

δmν

∂2
µν

δG

δn
+

δH

δmµ

δG

δmν

∂2
µν

δF

δn
− δF

δmµ

δG

δmν

∂2
µν

δH

δn

+
δF

δmµ

δH

δmν

∂2
µν

δG

δn
− δG

δmµ

δH

δmν

∂2
µν

δF

δn
+

δG

δmµ

δF

δmν

∂2
µν

δH

δn

which vanish due to the fact that second (partial) derivatives commute. The

remaining terms linear in n, keeping the same order they have in the Jacobi

identity, follow:

δF

δmν

∂ν
δG

δmµ

∂µ
δH

δn

2©
− δG

δmν

∂ν
δF

δmµ

∂µ
δH

δn

6©
− δH

δmµ

∂µ
δF

δmν

∂ν
δG

δn

3©
+

δH

δmµ

∂µ
δG

δmν

∂ν
δF

δn

1©
+

δG

δmν

∂ν
δH

δmµ

∂µ
δF

δn

5©
− δH

δmν

∂ν
δG

δmµ

∂µ
δF

δn

1©
− δF

δmµ

∂µ
δG

δmν

∂ν
δH

δn

2©
+

δF

δmµ

∂µ
δH

δmν

∂ν
δG

δn

4©
+

δH

δmν

∂ν
δF

δmµ

∂µ
δG

δn

3©
− δF

δmν

∂ν
δH

δmµ

∂µ
δG

δn

4©
− δG

δmµ

∂µ
δH

δmν

∂ν
δF

δn

5©
+

δG

δmµ

∂µ
δF

δmν

∂ν
δH

δn

6©

They vanish in pairs, as labeled by the circled numbers.

So all the terms linear in n have vanished from the Jacobi identity.

However, the terms linear in σ are identical, but with functional derivatives

δ/δn replaced by δ/δσ. So the σ terms vanish by an identical calculation.

Moreover, the mλ terms do as well: the δ/δn are replaced with δ/δmλ, con-

tracted with the remaining mλ term outside the square brackets of its version

of (1.5), and the calculation proceeds as before.

The only terms remaining to be checked are those linear in hλ; unfor-
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tunately, there are quite a few:∫
d4xhλ

[(
δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)
∂ν
δH

δhλ

1©

− δH

δmν

∂ν

(
δF

δmµ

∂µ
δG

δhλ
− δG

δmµ

∂µ
∂F

∂hλ

) 1©
− δH

δmν

∂ν

(
∂λ

δF

δmµ

δG

δhµ
− ∂λ

δG

δmµ

δF

δhµ

)
+∂λ

(
δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)
δH

δhν

−∂λ
δH

δmν

(
δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν
+∂ν

δF

δmµ

δG

δhµ
− ∂ν

δG

δmµ

δF

δhµ

)
+ �

F,G,H

]
The terms labelled by a circled “one” produce a calculation identical to that

already performed, and thus cancel. From the remaining terms, I first gather

all the second derivative ones inside the square braces:

− δH

δmν

δG

δhµ
∂2
λν

δF

δmµ

5©
+

δH

δmν

δF

δhµ
∂2
λν

δG

δmµ

2©
+

δF

δmµ

δH

δhν
∂2
λµ

δG

δmν

1©
− δG

δmµ

δH

δhν
∂2
λµ

δF

δmν

4©

− δF

δmν

δH

δhµ
∂2
λν

δG

δmµ

1©
+

δF

δmν

δG

δhµ
∂2
λν

δH

δmµ

6©
+

δG

δmµ

δF

δhν
∂2
λµ

δH

δmν

3©
− δH

δmµ

δF

δhν
∂2
λµ

δG

δmν

2©

− δG

δmν

δF

δhµ
∂2
λν

δH

δmµ

3©
+

δG

δmν

δH

δhµ
∂2
λν

δF

δmµ

4©
+

δH

δmµ

δG

δhν
∂2
λµ

δF

δmν

5©
− δF

δmµ

δG

δhν
∂2
λµ

δH

δmν

6©

They cancel in pairs. Finally, the remaining terms, in the same order and
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bearing the same indices as in the Jacobi identity, are:

− δH

δmν

∂λ
δF

δmµ

∂ν
δG

δhµ

3©
+

δH

δmν

∂λ
δG

δmµ

∂ν
δF

δhµ

9©
+
δH

δhν
∂λ

δF

δmµ

∂µ
δG

δmν

4©
− δH

δhν
∂λ

δG

δmµ

∂µ
δF

δmν

12©

− δF

δmµ

∂λ
δH

δmν

∂µ
δG

δhν

1©
+

δG

δmµ

∂λ
δH

δmν

∂µ
δF

δhν

5©
− δG

δhµ
∂λ
δH

δmν

∂ν
δF

δmµ

7©
+
δF

δhµ
∂λ
δH

δmν

∂ν
δG

δmµ

2©

− δF

δmν

∂λ
δG

δmµ

∂ν
δH

δhµ

10©
+

δF

δmν

∂λ
δH

δmµ

∂ν
δG

δhµ

1©
+
δF

δhν
∂λ

δG

δmµ

∂µ
δH

δmν

11©
− δF

δhν
∂λ

δH

δmµ

∂µ
δG

δmν

2©

− δG

δmµ

∂λ
δF

δmν

∂µ
δH

δhν

6©
+

δH

δmµ

∂λ
δF

δmν

∂µ
δG

δhν

3©
− δH

δhµ
∂λ

δF

δmν

∂ν
δG

δmµ

4©
+
δG

δhµ
∂λ

δF

δmν

∂ν
δH

δmµ

8©

− δG

δmν

∂λ
δH

δmµ

∂ν
δF

δhµ

5©
+

δG

δmν

∂λ
δF

δmµ

∂ν
δH

δhµ

6©
+
δG

δhν
∂λ

δH

δmµ

∂µ
δF

δmν

7©
− δG

δhν
∂λ

δF

δmµ

∂µ
δH

δmν

8©

− δH

δmµ

∂λ
δG

δmν

∂µ
δF

δhν

9©
+

δF

δmµ

∂λ
δG

δmν

∂µ
δH

δhν

10©
− δF

δhµ
∂λ

δG

δmν

∂ν
δH

δmµ

11©
+
δH

δhµ
∂λ

δG

δmν

∂ν
δF

δmµ

12©

They also cancel in pairs, establishing the Jacobi identity. This derivation

is also valid in curved spacetimes, for the functional derivative cancels out

a factor of
√
−g, and there is no integration by parts to catch another such

factor.

Next I will perform a similar calculation for the alternative bracket

(5.35). While the same kinds of terms appear as above, there is no longer a

complete cancellation. Most of the functional derivatives (1.4) are unchanged,

the only differing one being

δ{F,G}
δhµ

=
δF

δmν

∂ν
∂G

∂hµ
− δG

δmν

∂ν
∂F

∂hµ
+ ∂µ

δF

δhν
δG

δmν

− ∂µ
δG

δhν
δF

δmν

+ . . .

with the ellipsis again indicating terms with second functional derivatives, all

of which can be disregarded.

164



The terms of the Jacobi identity once more appear in four sets, each

linear in one of the field variables. The n, σ, and mλ terms involve no deriva-

tives with respect to hλ, and are thus unchanged: they cancel as before. Only

the hλ terms differ. They read:∫
d4xhλ

[(
δF

δmν

∂ν
δG

δmµ

− δG

δmν

∂ν
δF

δmµ

)
∂µ
δH

δhλ

1©

− δH

δmν

∂ν

(
δF

δmµ

∂µ
δG

δhλ
− δG

δmµ

∂µ
δF

δhλ

) 1©
− δH

δmν

∂ν

(
∂λ
δF

δhµ
δG

δmµ

− ∂λ
δG

δhµ
δF

δmµ

)
+∂λ

(
δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν
+ ∂ν

δF

δhµ
δG

δmµ

− ∂ν
δG

δhµ
δF

δmµ

)
δH

δmν

− ∂λ
δH

δhν

(
δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)
+ �

F,G,H

]
The terms labelled with a circled “one” cancel as in the previous bracket. The

collected second derivative terms are

− δH

δmν

δG

δmµ

∂2
νλ

δF

δhµ

2©
+

δH

δmν

δF

δmµ

∂2
νλ

δG

δhµ

1©
+

δF

δmµ

δH

δmν

∂2
λµ

δG

δhν

− δG

δmµ

δH

δmν

∂2
λµ

δF

δhν
+

δH

δmν

δG

δmµ

∂2
λν

δF

δhµ

2©
− δH

δmν

δF

δmµ

∂2
λν

δG

δhµ

1©
+ �

F,G,H

=
δF

δmµ

δH

δmν

∂2
λµ

δG

δhν
− δG

δmµ

δH

δmν

∂2
λµ

δF

δhν
+

δG

δmµ

δF

δmν

∂2
λµ

δH

δhν

− δH

δmµ

δF

δmν

∂2
λµ

δG

δhν
+

δH

δmµ

δG

δmν

∂2
λµ

δF

δhν
− δF

δmµ

δG

δmν

∂2
λµ

δH

δhν

Six terms do not cancel. The other terms (i.e. those that are not second

165



derivatives) are

− δH

δmν

∂λ
δF

δhµ
∂ν

δG

δmµ

2©
+

δH

δmν

∂λ
δG

δhµ
∂ν

δF

δmµ

5©
+

δH

δmν

∂λ
δF

δmµ

∂µ
δG

δhν
− δH

δmν

∂λ
δG

δmµ

∂µ
δF

δhν

+
δH

δmν

∂λ
δG

δmµ

∂ν
δF

δhµ
− δH

δmν

∂λ
δF

δmµ

∂ν
δG

δhµ
− δF

δmµ

∂λ
δH

δhν
∂µ

δG

δmν

1©
+

δG

δmµ

∂λ
δH

δhν
∂µ

δF

δmν

3©

− δF

δmν

∂λ
δG

δhµ
∂ν
δH

δmµ

6©
+

δF

δmν

∂λ
δH

δhµ
∂ν

δG

δmµ

1©
+

δF

δmν

∂λ
δG

δmµ

∂µ
δH

δhν
− δF

δmν

∂λ
δH

δmµ

∂µ
δG

δhν

+
δF

δmν

∂λ
δH

δmµ

∂ν
δG

δhµ
− δF

δmν

∂λ
δG

δmµ

∂ν
δH

δhµ
− δG

δmµ

∂λ
δF

δhν
∂µ

δH

δmν

4©
+

δH

δmµ

∂λ
δF

δhν
∂µ

δG

δmν

2©

− δG

δmν

∂λ
δH

δhµ
∂ν

δF

δmµ

3©
+

δG

δmν

∂λ
δF

δhµ
∂ν
δH

δmµ

4©
+

δG

δmν

∂λ
δH

δmµ

∂µ
δF

δhν
− δG

δmν

∂λ
δF

δmµ

∂µ
δH

δhν

+
δG

δmν

∂λ
δF

δmµ

∂ν
δH

δhµ
− δG

δmν

∂λ
δH

δmµ

∂ν
δF

δhµ
− δH

δmµ

∂λ
δG

δhν
∂µ

δF

δmν

5©
+

δF

δmµ

∂λ
δG

δhν
∂µ

δH

δmν

6©

This time twelve terms do not cancel. All told, eighteen terms remain, which

collect in groups of three. Each group reduces to a gradient with a ∂λ pulled

outside the expression. The whole Jacobi identity simplifies to

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G}

=

∫
d4xhλ∂λ

(
δF

δmν

δG

δmµ

∂µ
δH

δhν
− δG

δmν

δF

δmµ

∂µ
δH

δhν
+

δG

δmν

δH

δmµ

∂µ
δF

δhν
−

δH

δmν

δG

δmµ

∂µ
δF

δhν
+

δH

δmν

δF

δmµ

∂µ
δG

δhν
− δF

δmν

δH

δmµ

∂µ
δG

δhν

)
An integration by parts shows that the Jacobi identity is satisfied if

hν ,ν = 0. In a curved spacetime, the above expression is the same, except

that d4x becomes
√
−gd4x. The integration by parts catches this extra factor,

yielding (hν
√
−g),ν = hν ;ν = 0 as a requirement for the Jacobi identity.
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