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The Hamiltonian and Action Principle (HAP) formulations of plasmas

and fluids are explored in a wide variety of contexts. The principles involved

in the construction of Action Principles are presented, and the reduction pro-

cedure to obtain the associated noncanonical Hamiltonian formulation is de-

lineated.

The HAP formulation is first applied to a 2D magnetohydrodynamics

(MHD) model, and it is shown that one can include Finite Larmor Radius

effects in a transparent manner. A simplified 2D limit of the famous Bran-

ginskii gyroviscous tensor is obtained, and the origins of a powerful tool - the

gyromap - are traced to the presence of a gyroviscous term in the action. The

noncanonical Hamiltonian formulation is used to extract the Casimirs of the

model, and an Energy-Casimir method is used to derive the equilibria and

stability; the former are shown to be generalizations of the Grad-Shafranov

equation, and possess both flow and gyroviscous effects. The action principle

of 2D MHD is generalized to encompass a wider class of gyroviscous fluids,

and a suitable gyroviscous theory for liquid crystals is constructed.
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The next part of the thesis is devoted to examining several aspects of

extended MHD models. It is shown that one can recover many such models

from a parent action, viz. the two-fluid model. By performing systematic

orderings in the action, extended MHD, Hall MHD and electron MHD are

recovered. In order to obtain these models, novel techniques, such as non-

local Lagrange-Euler maps which enable a transition between the two fluid

frameworks, are introduced. A variant of extended MHD, dubbed inertial

MHD, is studied via the HAP approach in the 2D limit. The model is endowed

with the effects of electron inertia, but is shown to possess a remarkably high

degree of similarity with (inertialess) ideal MHD. A reduced version of inertial

MHD is shown to yield the famous Ottaviani-Porcelli model of reconnection.

Similarities in the mathematical structure of several extended MHD models

are explored in the Hamiltonian framework, and it is hypothesized that these

features emerge via a unifying action principle. Prospects for future work,

reliant on the HAP formulation, are also presented.
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Chapter 1

The need for Hamiltonian and Lagrangian

methods

“The time has come,” the Walrus said,

“To talk of many things:

Of shoes – and ships – and sealing-wax –

Of cabbages – and kings –

And why the sea is boiling hot –

And whether pigs have wings.”

- Lewis Carroll, Through the Looking-Glass

1.1 A brief historical overview

The history of physics is replete with models that have been derived

from action principles (Lagrangians) or Hamiltonians. The importance of such

methods in a plethora of fields, ranging from quantum physics [1] and general

relativity [2] to condensed matter [3] and statistical physics [4] is well doc-

umented. Hence, it comes as no surprise that such methods have also been

widely employed in the context of fluids and plasmas. In fact, the former field

witnessed pioneering contributions from Lagrange himself in his remarkable
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treatise [5], which laid down the foundations for an action-principle based for-

mulation of fluids. This was followed by a series of works in this area by several

illustrious scientists in the 19th century [6, 7, 8, 9, 10, 11]. The 20th century

witnessed a further slew of developments, which we shall not summarize here.

Instead, the reader is referred to [12] which contains an excellent exposition of

the developments in mathematical fluid mechanics up to the mid-20th century;

see also [13, 14, 15] for associated expositions of these methods in the context

of continuum classical models. A more comprehensive list of references and

a broader historical discussion of Hamiltonian (and Lagrangian) methods can

be found in the reviews of Salmon [16] and Morrison [17].

Although the action principle formulation of fluids existed since the

pioneering work of Lagrange [5], the closely associated field of plasmas did not

witness such an action principle formulation until nearly two centuries later.

One such reason stemmed from the relatively recent rise of magnetohydrody-

namics (MHD) in the mid-20th century. The corresponding MHD action was

first derived by Newcomb in [18]; see also [19] for a near-contemporaneous

action principle of MHD. It is unfortunate that Newcomb is a forgotten figure,

as he also went on to derived extended fluid models in a series of prescient

papers [20, 21, 22, 23] in the 1970s and 1980s. Although MHD possesses the

Newcomb action principle formulation, it is only valid in the non-relativistic

limit. The relativistic case still remains a work in progress, and the interested

reader is referred to [24, 25, 26] for a summary of the recent progress in this

arena.

2



But what of the Hamiltonian formulation of ideal hydrodynamics (HD)

and MHD? As ideal, non-relativistic MHD possesses an action principle formu-

lation, it would seem logical for it to also possess a Hamiltonian formulation.

As we shall see in the subsequent sections, the great difficulty in constructing

such a formulation stems from the fact that the MHD variables, such as the

density, velocity, etc., are noncanonical in nature. The genesis of noncanon-

ical Hamiltonian methods has been argued to have origins in the works of

Sophus Lie in the 19th century, and several Russian and Polish physicists in

the mid-20th century [27]. However, the modern noncanonical Hamiltonian

formulation of HD and MHD was first set forth in the pioneering work of

Morrison and Greene in 1980 [28]. The emergence of the noncanonical Hamil-

tonian formulation revolutionized progress in the fields of plasmas and fluids,

and we shall explore some of these in further detail in the subsequent sections.

For now, we observe that it has been successfully employed in geophysical

fluid dynamics [16], guiding centre motion and the flow of magnetic field lines

[29, 30], Maxwell-Vlasov dynamics [31, 32], nonlinear waves and plasma phe-

nomena [33, 34], elasticity [35] and reduced plasma models [36, 37]. Moreover,

the formalism has played a key role in influencing associated fields such as

the Euler-Poincaré formulation of field theories [38, 39, 40], Clebsch variables

and coadjoint orbits [41], perturbation theory [42] and dissipative dynamics

[43, 44, 45, 46, 47, 48]. We emphasize that these selection of topics are not

comprehensive; there are many other domains which have not been covered in

this fleeting overview of the subject.
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1.2 The motivation

It is clear that the preceding discussion has established the long and

distinguished role of Hamiltonian and Action Principle (HAP) formulations in

fluids and plasmas. The weight of historical progress and usage clearly serves

as one tangible reason for the use of these methods, but we shall delineate

other reasons in this section.

Firstly, let us recall some of the advantages of the action principle for-

malism. It is evident that one obvious use is its ability to extract information

about the symmetries, and associated invariants, of the model via Noether’s

theorem, which was first proven by Emmy Noether in 1918; see [49] for an

English translation of the original German work [50]. When applied correctly,

Noether’s theorem enables us to extract a great many invariants of the system,

as shown in [51, 52, 53, 54]. Thus, instead of resorting to tedious manipulation

of the equations, this represents an elegant method of recovering important in-

variants of HD and MHD, some of which are endowed with crucial topological

properties. The latter includes the magnetic and fluid helicities, which share

deep connections with knot theory [55, 56].

When one moves to the associated Hamiltonian formalism of fluids

and plasmas, which is noncanonical in nature, the advantages are somewhat

technical, albeit very powerful and general, in nature. Hence, we shall defer

a full discussion until Section 2.6. For now, we note that the noncanonical

formalism gives rise to a special class of invariants, the Casimirs, which foliate

the phase space. They play a crucial role in determining the equilibria and

4



stability of models via the Energy-Casimir method. A detailed exposition of

this method can be found in several excellent reviews on the subject, see for

e.g. [27, 17]. A second, and equally important, advantage of the Hamiltonian

formalism is the presence of an ‘energy’, which is an invariant of the system.

Through the proper construction of (noncanonical) Hamiltonian systems, it is

easy to avoid the effects of ‘spurious dissipation’.

It is well-known that virtually all real-world systems are endowed with

dissipative effects, which raises the question of what ‘spurious’ dissipation

refers to. We distinguish between ‘real’ dissipation, engendered by effects such

as viscosity and resistivity, and ‘spurious’ dissipation which emerges when a

system is claimed to be Hamiltonian, but actually fails to conserve the phase

space or even the ‘energy’. The latter can lead to several unwelcome instabil-

ities such as the existence of false instabilities, which are caused primarily by

the (mistaken) assumption that the system is Hamiltonian in nature. An ex-

cellent discussion of this issue in the context of extended MHD models is found

in [57], and an associated discussion for hybrid fluid-kinetic models exists in

[58].

This brings us to the third, and perhaps the most crucial, advantage

of the HAP approach: how do we construct and design physical models? It is

helpful to recall a general principle espoused by Popper in this regard:

“Science may be described as the art of systematic over-simplification

– the art of discerning what we may with advantage omit.”
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- Karl Popper, The Open Universe: An Argument for Indetermin-

ism

If we follow this maxim, the HAP formalism is endowed with several advan-

tages. In Chapter 2, we shall see that it entails the a priori inclusion of

‘frozen-in’ constraints, which possess an immediately intuitive and geometric

meaning. Secondly, each term in the action (or the Hamiltonian) can be writ-

ten down in a transparent manner, and one can use analogies with particle

mechanics to justify their presence. As a result, this method enables a higher

degree of physical clarity in determining what terms exist in our model, and

the role that they play in determining the dynamics. Lastly, the process of

obtaining dynamical equations via the HAP approach is a mathematically rig-

orous one, and ensures that effects such as ‘spurious’ dissipation do not creep

in. Thus, we argue that the HAP formalism constitutes both a physically

and mathematically clear approach to model-building, in contrast to the phe-

nomenological, and sometimes ad hoc, approach used in designing fluid and

plasma models.

The HAP approach also has a natural advantage when dealing with

reduced models. Reduced models are obtained from a more complete, and

complex, parent model by imposing a certain choice of ordering, typically en-

tailing an expansion in small dimensionless parameter(s). However, the path

to formulating reduced models is often a tricky one, as these manipulations

are carried out on the level of the dynamical equations, which can result in a

complex, and opaque, process. On the other hand, it is found that dropping
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one term in the action can amount to dropping multiple terms in the dynam-

ical equations. Hence, the HAP approach represents an elegant, and simpler,

means of obtaining reduced models through an ordering procedure on the level

of the action (or the Hamiltonian).

Although we have advanced several reasons as to why the HAP formal-

ism is beneficial, it is evident that most of them are of an abstract nature. In

the subsequent sections, we shall address this issue in greater detail, and show

how they can be gainfully employed in a wide variety of contexts, for specific

plasma models.

1.3 Summary of the thesis

The aim of the thesis is to use the HAP formalism to tackle several exis-

tent, and new, plasma fluid models in the literature and employ the advantages

of this approach in constructing and analysing them. In order to kick-start

our analysis, we commence with an introduction to the action principle and

noncanonical Hamiltonian formalisms in Chapter 2, which is applied to ideal

MHD. This chapter primarily encapsulates results from the classic works of

[18, 28, 17].

In Chapter 3, we shall introduce the concept of gyroviscosity, which

is a crucial effect in plasmas. Gyroviscosity emerges from the simple notion

of charged particles undergoing Larmor gyration in a magnetic field; such

gyration-induced effects are known to give rise to momentum transport, and

thereby to viscosity-like terms. However, gyroviscosity is an odd beast indeed,
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as it conserves momentum but it also conserves the energy, in stark contrast to

conventional viscous effects, which are interpreted in a dissipative framework.

We shall show the origins of gyroviscosity stem from the inclusion of a simple,

yet unusual, term in the ideal MHD action. It is shown that the new term gives

rise to terms that are identical to the famous Braginskii gyroviscous tensor [59]

in a simplified limit. By moving to the associated noncanonical Hamiltonian

through a systematic procedure, we investigate general properties of the equi-

libria and stability of this model. In particular, we derive generalizations of

the well-known Grad-Shafranov equation [60] which includes the effects of flow

and gyroviscosity.

After having studied the role of gyroviscosity in 2D ideal MHD in Chap-

ter 3, we generalize the treatment to a very wide class of action principles

for fluids and plasmas in Chapter 4. We begin by considering a generic La-

grangian, and obtain the corresponding dynamical equations for the model.

Generalized criteria regarding the energy, momentum and angular momentum

conservation laws for this general family are presented. As an illustration of

the formalism, we construct fluids endowed with an intrinsic angular momen-

tum, which can be viewed as a classical ‘spin’ variable, and derive a suitable

gyroviscous model. We also highlight the similarity of this model with theories

of nematic liquid crystals.

In Chapter 5, we begin our investigations of extended MHD models

via an action principle formulation. In particular, we start with the two-fluid

action principle for plasmas, and impose a series of orderings, which enable us

8



to throw away some terms in this action. We re-express our model in terms

of the one-fluid variables, but this necessitates some unique mathematical

subtleties, which manifest in the form of complex Lagrange-Euler maps that

need to be introduced. We introduce and physically motivate these maps,

and demonstrate that a wide class of plasma models can be obtained from the

two-fluid model via a rigorous variational procedure. We also invoke Noether’s

theorem to determine the conserved quantities corresponding to the Galilean

symmetries of the models.

The HAP formalism can also be used to construct new models from

scratch through the suitable imposition of a priori frozen-in constraints. We

exploit this feature to our advantage in Chapter 6 by duly constructing a rarely

studied model of extended MHD, which is dubbed inertial MHD, as it does

not assume that the electrons are inertialess, i.e. the mass of the electrons

is not entirely neglected. After presenting the equations for the model, and

the noncanonical Hamiltonian formulation, we show that this model, in a

highly simplified limit, reduces to the famous Ottaviani-Porcelli model [61] of

reconnection, which has been widely used in fusion and astrophysical plasmas.

Each of the previous chapters increasingly point towards connections

between several variants of extended MHD. In Chapter 7, we tackle this issue

in greater detail and demonstrate that most extended MHD models possess

a common mathematical structure, which is best understood by reverting to

noncanonical Hamiltonian dynamics. Furthermore, we use the Lagrangian

picture of the fluid, which models it as a continuum collection of particles,

9



to physically motivate this common mathematical structure, thereby pointing

towards the existence of a common action principle formulation for all extended

MHD models.

Finally, we conclude in Chapter 8 with an overview of the work accom-

plished in the thesis, and some of the outstanding issues that remain currently

unexplored. We also highlight avenues of interest which are well-suited to

future investigations stemming from a HAP-based approach.

Although we present a fairly detailed discussion of the basics in Chapter

2, we shall endeavour to keep the subsequent chapters self-contained to a high

degree. We believe that this will facilitate an easier, and more selective, reading

experience although it comes at the price of repetitiveness.
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Chapter 2

Hamiltonian and Action Principles: The basics

In this Chapter, we shall present an exposition of the principles Hamil-

tonian and Action Principle formalisms, and apply it to ideal MHD. We closely

follow the approach and notation employed in [17, 28, 62, 63, 64, 65].

2.1 Hamilton’s Principle of Least Action

We commence with a brief discussion of the action principle in discrete

classical mechanics. A more comprehensive discussion can be found in [15, 66].

The prescription outlined in most textbooks is the same in employing

Hamilton’s Principle of Least Action. We begin by identifying a configuration

space and variables that describe the system in its entirety; these are the

generalized coordinates qi(t), where i = 1, 2, . . . , N and N is the number of

degrees of freedom of the system. The second step entails the construction of

the Lagrangian, which is typically of the form L := T − V , and is obtained by

identifying the kinetic energy T and potential energy V , yielding the action

functional,

S[q] =

∫ t2

t1

dt L(q, q̇, t) . (2.1)

Mathematically, the word “functional” refers to a quantity whose domain is
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comprised of functions and whose range is given by real numbers. Let us

suppose that we are given path a q(t), and the action functional S[q] returns

a real number upon substitution of this path into the above expression.

In Hamilton’s principle, the initial and final limits of the path, q(t1) and

q(t2), are fixed and the path that gives rise to the extremal value is sought.

By “extremal”, we imply that the functional derivative of the action vanishes,

i.e. we require δS[q]/δqi = 0, where the functional derivative is defined by

δS[q; δq] =
dS[q + εδq]

dε

∣∣∣∣
ε=0

=:

〈
δS[q]

δqi
, δqi

〉
=

∫ t2

t1

dt

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi . (2.2)

For an extended discussion of functional derivatives, the reader is referred

to the excellent works by [67, 68]. In the above expression, δq(t) represents

the arbitrary perturbation of a path q(t); as δq(t) is specified to be entirely

arbitrary, the only way for δS to vanish for all choices of δq(t) is to have the

quantity within the parentheses vanish, i.e.

δS[q]

δqi
= 0 ⇔ ∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 . (2.3)

In other words, we see that the extremal path corresponds to the Euler-

Lagrange equations of motion.

2.2 The Lagrangian and Eulerian viewpoints of fluids
and magnetofluids

In this section we review the Lagrangian and Eulerian descriptions of

a fluid and the relationship between them. The section is divided into two
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parts. Firstly, we describe the basic Lagrangian variable that describes the

trajectory of a fluid element, and then present some useful algebraic identities

and properties. The Lagrangian picture of a fluid is naturally endowed with a

least principle, as it models the fluid as a (continuous) collection of particles.

Next, we explore the relationship between the intrinsic properties of the fluid

and their Eulerian counterparts. The two descriptions of the fluid are shown to

be related through the Lagrange - Euler maps. For a more detailed exposition

of the background material we suggest [12, 17, 18, 69].

Before proceeding further, some comments regarding the notation are

in order. We shall adopt the notation employed in [17] where vectors and

scalars possess a similar form - the former must be distinguished entirely by

the context. For instance, the generalized coordinate q(a, t), the velocity v,

the magnetic field B, etc. are all vectors; quantities such as the density ρ and

the entropy s serve as scalars.

2.2.1 The Lagrangian variable q(a, t) and its properties

The Lagrangian variable q(a, t) is a generalized coordinate that denotes

the position of a particular fluid element, which is also referred to as the fluid

particle or parcel, at a given time t. The coordinate, which indicates the

position relative to the origin is denoted by q = q(a, t) = (q1, q2, q3); for the

sake of simplicity Cartesian coordinates are used henceforth. The quantity

a = (a1, a2, a3) denotes the fluid element label at time t = 0, which implies

that a = q(a, 0), but this means of labeling need not always be the case
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(cf. [70]). In general, the continuous label a is the continuum analog of the

discrete index that enables us to track a given particle in a finite degree-of-

freedom system. The map q : D → D is assumed to be one-to-one and onto

at a given fixed time t, with D serving as the domain occupied by the fluid.

We will further suppose that q is invertible and smooth and also impose any

other “nice” properties that the problem necessitates. It is to be noted that

these assumptions may not be entirely justified, and are primarily chosen to

enable us to carry out the algebra on a formal level.

Given the Lagrangian coordinate q, we introduce two other related

important quantities which play an important role: the deformation ma-

trix, ∂qi/∂aj =: q i, j and the corresponding determinant, the Jacobian, J :=

det(q i, j); the latter, in three and two dimensions, has the form

J =
1

6
εkjlε

imnq k, iq
j
,mq

l
,n , (2.4)

=
1

2
εkjε

ilq k, iq
j
, l , (2.5)

where εijk = εijk and εij = εij are the Levi-Civita tensors in the appropriate

number of dimensions. By assuming that the label a specifies a unique tra-

jectory, we conclude that J 6= 0; this ensures the invertibility of q = q(a, t),

denoted by a = a(q, t). Physically, we interpret the quantity a(q, t) as the

label of a fluid element that reaches the position q at time t. In general, for

coordinate transformations we have

q i,ka
k
,j = a i,kq

k
,j = δ i, j ,
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i.e. the the deformation matrix has an inverse given by ak,j = ∂ak/∂qj. We also

use the Einstein summation convention everywhere, unless explicitly specified.

Using q(a, t) or its inverse, we can express quantities such as ak,j as functions

of either q or a.

The volume element d3a at time t = 0 maps into the volume element

at time t according to

d3q = J d3a , (2.6)

and the components of an area element evolve as per

(d2q)i = J aj, i (d2a)j , (2.7)

where J aj, i is the transpose of the cofactor matrix of q j, i; it is given by

J a i,k =
1

2
εkjlε

imnq j,mq
l
,n or J a i,k = εkjε

ilq j, l , (2.8)

in three and two dimensions, respectively. A couple of other useful identities

include

1

J
∂J
∂q i, j

= aj, i , (2.9)

∂(J ai,k)
∂ai

= 0 , (2.10)

where (2.9), the standard rule for differentiation of determinants, follows from

(2.4) or (2.5), and (2.10) follows from (2.8) by the antisymmetry of εijk or εij.

2.2.2 Attributes, observables, and the Lagrange to Euler map

Up to now, we have considered kinematical properties of the fluid, as

described by the Lagrangian coordinate q. But, a fluid element is not solely
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characterized by its position q and its label a. In addition, we observe that the

fluid ‘particle’ is endowed with several intrinsic properties, i.e. it may carry a

certain density, or be endowed with some magnetic flux; the latter occurs when

one considers magnetofluid theories such as magnetohydrodynamics (MHD).

We shall now study these intrinsic properties in three spatial dimensions.

We will refer to quantities that the fluid element transports as the

attributes, since they are intrinsic to the fluid under consideration. A fluid

element that starts off at time t = 0 carries its attributes, which remain

unchanged with time. Thus, by definition, we see that attributes are purely

functions of the label a, and are Lagrangian variable constants of motion.

We will use the subscript ‘0’ to distinguish attributes from their Eulerian

counterparts, discussed below.

Most of the times, in fluid theories, the Lagrangian variable description

is not emphasized and, consequently, the attributes are usually not discussed.

More typically, it is the Eulerian fields that are emphasized and observed.

Before addressing the Eulerian fields, it is important to ask what the Eulerian

picture of a fluid is.

In the Lagrangian picture, we have seen that the fluid ‘particle’ tra-

verses through the domain, carrying with it several attributes along the way.

On the other hand, the Eulerian picture does not distinguish between fluid

particles. Instead, imagine that we stick in a probe into the fluid at a certain

point r := (x, y, z) = (x1, x2, x3) at a time t. We will find that the fluid has

a certain density, velocity, etc. This entails the Eulerian picture of a fluid,
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wherein all fields are viewed as functions of r and t. We will refer to these

fields as Eulerian observables, or just observables for short. Some of the most

commonly used Eulerian observables include velocity field v(r, t) and the mass

density ρ(r, t).

We reiterate that it is crucial to distinguish the Lagrangian coordinate

q from the Eulerian observation point r. The latter is an independent variable

that does not move with the fluid, although it is a point of D. The inability or

unwillingness to distinguish between the two descriptions has led to confusion

in the literature. As we have argued for the existence of two independent

physical descriptions of the same system, it is quite natural to argue that the

two must be connected somehow.

In other words, given q(a, t) and the attributes, we require the observ-

ables to be uniquely determined based on the nature of the attributes, in

particular, their tensorial properties. For example, consider the velocity field

v(r, t). If we were to insert a velocity probe into a fluid at (r, t), we would

measure the velocity of the fluid element that happened to be at r at time t.

Hence, q̇(a, t) = v(r, t), where the overdot indicates that the time derivative is

obtained at fixed a. We are still left with the ambiguity of determining the label

a, but the element at r is given by r = q(a, t), whence a = q−1(r, t) =: a(r, t).

By combining all this information, we see that the Eulerian velocity field is

given by

v(r, t) = q̇(a, t)|a=a(r,t) . (2.11)

The above expression is an example of the Lagrange to Euler map that supplies
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a means of moving from one picture to the other.

Attributes, as part of their definition, possess rules for transformation

to their corresponding Eulerian observables. The totality of these rules de-

termines the set of observables. For a continuum system, in which mass is

neither created nor destroyed, it is natural to attach a mass density, ρ0(a), to

the element labelled by a. We note that the mass in a given volume is given

by ρ0d
3a. By demanding that the mass by conserved, regardless of whether

one uses the Eulerian or Lagrangian picture, we see that ρ(r, t)d3r = ρ0d
3a.

By using (2.6) we obtain ρ0 = ρJ . This defines the rule for transforming to

the Eulerian description, and constitutes one example of a Lagrange to Euler

map.

Next, let us consider the specific entropy (per unit particle). It is

common to have the entropy conserved along the streamlines in the absence of

heat flow or associated effects; in such a scenario, we require the entropy to be

constant along a trajectory. Hence, we require the attribute s0(a) to equal the

Eulerian observable s(r, t). Thus, the Lagrange to Euler map for the specific

entropy is s0 = s. Similarly, we may attach a magnetic field B0(a) to a given

fluid element, and define its transformation law by insisting on frozen-in flux.

This yields B · d2r = B0 · d2a, and from (2.7) we obtain JBi = q i, j B
j
0.

However, there is still a missing link as the observables are functions of

r and t, whilst the attributes and the trajectory q depend on a and t. Hence,

we evaluate the expressions for the mass density, the specific entropy and the

magnetic field at a = q−1(r, t) =: a(r, t), thereby yielding the Lagrange to Euler
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map for these quantities. In other words, given q(a, t) and the attributes, the

fields {ρ, s, v, B}, constituting the observables, are now defined.

Most of the time we will find it convenient to work with the alternative

set of observables {ρ, σ,M,B}, whereM = ρv is the kinetic momentum density

and σ = ρs is the entropy density. This allows a convenient way to represent

the Lagrange to Euler map in an integral form by using an appropriate Dirac

delta function; the latter is used as a probe to ‘pluck out’ the fluid element that

happens to be at the Eulerian observation point r at time t. As an example

of this procedure, the mass density ρ(r, t) is obtained by

ρ(r, t) =

∫
D

d3a ρ0(a) δ (r − q (a, t))

=
ρ0

J

∣∣∣∣
a=a(r,t)

. (2.12)

The expression for σ is entirely akin to that of the density, and we do not

present it separately, as we just replace ρ → σ in the above expression. We

will introduce the canonical momentum density, M c = (M c
1 ,M

c
2 ,M

c
3), which

is related to the Lagrangian canonical momentum through the expression

M c(r, t) =

∫
D

d3aΠ(a, t) δ (r − q(a, t))

=
Π(a, t)

J

∣∣∣∣
a=a(r,t)

. (2.13)

The superscript ‘c’ indicates that the momentum density constructed is the

canonical one, as opposed to a different momentum density introduced in the

next section. For most fluid theories, Π(a, t) = (Π1,Π2,Π3) = ρ0q̇. This in

turn implies that M c = M = ρv. In general, note that Π(a, t) can be found
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from the Lagrangian through Π(a, t) = δL/δq̇ and is not always equal to ρ0q̇.

Lastly,

Bi(r, t) =

∫
D

d3a q i, j(a, t)B
j
0(a) δ (r − q(a, t))

= q i, j(a, t)
Bj

0(a)

J

∣∣∣∣∣
a=a(r,t)

, (2.14)

for the components of the magnetic field.

We round off this subsection with a couple of useful identities between

the Eulerian and Lagrangian variables. In our subsequent calculations, we

encounter Eulerian gradients quite often. The components of the gradient, in

Eulerian form, can be mapped to the Lagrangian variables as follows

∂

∂xk
= a i,k

∂

∂ai

∣∣∣∣
a=a(r,t)

. (2.15)

By using the condition that r = q(a, t), the time derivative of any function

f(a, t) = f̃(r, t) = f̃(q(a, t), t) can be mapped to the corresponding Eulerian

variables according to the expression

ḟ
∣∣∣
a=a(r,t)

=
∂f̃

∂t
+ q̇i(a, t)

∂f̃

∂xi

∣∣∣∣∣
a=a(r,t)

=
∂f̃

∂t
+ v · ∇f̃(r, t) . (2.16)

As stated earlier, we note that the overdot denotes the time derivative at

constant a, ∂/∂t denotes the time derivative at constant r, and ∇ is the

Eulerian derivative, i.e. ∂/∂r with components ∂/∂xi .
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Lastly, we can obtain an evolution equation for the determinant J

using Eq. (2.9)

J̇ =
∂J
∂q i, j

q̇ i, j = J aj, i q̇ i, j , (2.17)

which upon evaluation at a = a(r, t) gives a formula due to Euler [12],

∂J̃
∂t

+ v · ∇J̃ = J̃ ∇ · v . (2.18)

2.2.3 A note on Lie-dragged dynamical equations

As we have seen in the previous subsection, the Lagrange to Euler

maps emerge via the natural imposition of conservation laws. In this section,

we examine these conservation laws in further detail, and emphasize their

geometric significance.

Let us first start with the specific entropy s. From the Lagrange-Euler

map s = s0 and (2.16), we can show that the evolution equation for s is

∂s

∂t
+ v · ∇s = 0, (2.19)

and this lends itself to a twofold interpretation. We can view it as the Lie-

dragging of a 0-form, or as the Lie-dragging of a scalar, i.e. the above expres-

sion can be written as (
∂

∂t
+ Lv

)
s = 0, (2.20)

where L denotes the Lie derivative with the velocity v serving as the flow field.

For a discussion of Lie-dragging, and a geometric interpretation of invariants,

in the context of fluid and plasma theories we refer the reader to [51, 54, 71].
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Next, we can carry out the same procedure for the density by using

ρ0 = ρJ , in conjunction with (2.16) and (2.18). We arrive at

∂ρ

∂t
+∇ · (ρv) = 0, (2.21)

and it can be interpreted as the Lie-dragging of a scalar density of weight 1.

Alternatively, one can rewrite the above expression as(
∂

∂t
+ Lv

)(
ρ d3r

)
= 0, (2.22)

implying that the 3-form ρ d3r is Lie-dragged.

Lastly, using the relation JBi = q i, j B
j
0 for the magnetic field, along

with (2.16) and (2.18), we obtain

∂B

∂t
+B (∇ · v)− (B · ∇) v + (v · ∇)B = 0, (2.23)

which can be cast into the more familiar form

∂B

∂t
−∇× (v ×B) = 0, (2.24)

provided that ∇·B = 0. Notice that (2.24) is precisely the widely-used induc-

tion equation of ideal MHD [60]. In MHD, it is common to view flux-freezing

as a consequence of the induction equation, but the Lagrangian viewpoint of

MHD emphasizes the flux-freezing as a fundamental relation; the induction

equation, then, becomes a consequence of flux-freezing. Following the same

line of reasoning, it is possible to view (2.23) as the Lie-dragging of a vector

density of weight 1. If the fluid were incompressible, the fourth term on the
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LHS would vanish yielding the Lie-dragging of one vector field (B) by another

(v). We can also rewrite (2.23) to yield(
∂

∂t
+ Lv

)(
B · d2r

)
= 0, (2.25)

implying that the 2-form B · d2r, the magnetic flux, is Lie-dragged.

2.3 A general procedure for building an action principle
for continuum models

In this section, we provide a brief summary of the general methodology

advocated in [64, 65] for building action principles for continuum fluid models.

As opposed to ordering in the equations of motion or ad hoc methods that

are deployed in obtaining models from a basic set of equations, we can intro-

duce each term in the action serially, and emphasize the physical relevance

of each term to the model being built. This allows for an improved physical

understanding and motivation as to why the different terms arise, and what

roles they play in the model. In most cases, the terms in the action are the

continuum analogs of their discrete counterparts, and the latter usually have

clear-cut interpretations and uses.

The first step in constructing an action principle lies in choosing the

domain D. For a fluid it would be either one, two, or three-dimensional, D ⊂

R1,2,3. Furthermore, we suppose that there exists a Lagrangian (trajectory)

variable q : D → D. We also suppose that q(a, t), where the label a ∈ D, is a

well behaved function that is smooth, has an inverse, etc. as noted in Section

2.2.
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The next step lies in choosing the sets of attributes and the corre-

sponding observables, defined via a Lagrange to Euler map. There is some

freedom in choosing the set of observables that interest us, as discussed in

the previous section. It is important to recognize that the observables must

be completely determined by the functions q(a, t) and the attributes, but the

converse statement is not a necessity.

From the analogy with Hamilton’s action principle in mechanics, it is

evident that the action will comprise of terms that involve the variable q(a, t)

and its derivatives with respect to both of its arguments. The last step of

the method is to impose a most stringent requirement upon the terms in the

action – viz. the existence of a closure principle which ultimately means that

our theory must be ‘Eulerianizable.’ More precisely, we impose the condition

that our action must be expressible entirely in terms of our set of observables.

Such a requirement is well motivated, since it leads to energy-like quantities

that are entirely expressible in terms of the desired Eulerian variables.

To illustrate the Eulerian closure principle, let us take the kinetic energy

as an example, which satisfies

T [q] :=
1

2

∫
D

d3a ρ0(a)|q̇|2 =
1

2

∫
D

d3r ρ|v|2 , (2.26)

where |q̇|2 := q̇igij q̇
j = q̇iq̇i and for Cartesian coordinates, the metric gij = δij

is chosen. Thus, the Lagrangian variable description of the first equality can

be written as the purely Eulerian description of the second. On the other
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hand, suppose we consider the term

EM [q] :=
1

2

∫
D

d3a |B0(a)|2, (2.27)

we see that it resembles the magnetic energy density, but it cannot be written

purely in terms of Eulerian variables. As a result, it is not a viable candidate

for the magnetic energy density.

The imposition of the closure principle leads to important consequences:

equations of motion that are purely expressible in terms of our observables, i.e.

an Eulerian variable description, and an Eulerian Hamiltonian description in

terms of noncanonical Poisson brackets, which are discussed in the subsequent

sections. At this stage, we also reiterate that there is no evident a priori

rationale that ensures that all (closed) fluid models possess both Eulerian and

Lagrangian descriptions; there may be instances where only the former exist.

2.4 Ideal MHD: the Newcomb action

Hitherto, our discussion has veered towards the abstract, and we shall

present a concrete model that embodies our methodology. We present the

action originally derived by Newcomb [18], but we maintain consistency with

our prior discussions and notation. We observe that associated discussions can

also be found in [63, 64, 65].

The kinetic energy was already determined previously, and has the form

T [q] :=
1

2

∫
D

d3a ρ0(a)|q̇|2 =
1

2

∫
D

d3r ρ|v|2 , (2.28)
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The fluid is also endowed with an internal energy density U per unit mass. We

assume that U is a function of the thermodynamical variables ρ and s. From

the expression dU = Tds− PdV , and using the relation between V and ρ, we

obtain the auxiliary relations

P = ρ2∂U

∂ρ
, T =

∂U

∂s
. (2.29)

The internal energy contribution to the action is

U [q] :=

∫
D

d3aρ0(a)U

(
ρ0

J
, s0

)
=

∫
D

d3rρU (ρ, s) , (2.30)

and the first equality is chosen such that the second equality satisfies the

Eulerian closure principle. Lastly, there is the magnetic energy density

EM [q] :=
1

2

∫
D

d3a
q i, jq

i
,kB

j
0B

k
0

J
=

1

2

∫
D

d3r |B|2, (2.31)

and we observe that the second equality follows by applying the Lagrange-

Euler maps to the first one. Once again, we see that this term is consistent

with the tenets of the Eulerian closure principle. In the rest of the thesis, we

operate in SI units with µ0 = 1, unless explicitly indicated otherwise.

The ideal MHD action is given by

SMHD[q] := T [q]− U [q]− EM [q], (2.32)

where the RHS is determined via the equations (2.28), (2.30) and (2.31). We

can now vary the above action with respect to q and use the identities presented

in Section 2.2. We divide the ensuing result by J and apply the Lagrange-

Euler maps throughout. Our final equation of motion is entirely Eulerian in
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nature, and is given by

ρ

(
∂

∂t
+ v · ∇

)
v = −∇

(
P +

|B|2

2

)
+B · ∇B, (2.33)

where we have assumed ∇ · B = 0, and the pressure is defined in (2.29).

We have already indicated, in Section 2.2, that the entropy, density and the

magnetic field evolve as per (2.19), (2.21) and (2.23); the latter reduces to

the familiar induction equation (2.24) of ideal MHD under the assumption

∇ ·B = 0.

Finally, a comment regarding the internal energy U is in order. Al-

though we have assumed it to be a function of ρ and s, we can extend this to

include a |B|-dependence as well. In such an event, one finds that the pressure

appearing in (2.33) becomes anisotropic in nature. In fact, it was shown in

[57, 62] that a suitable choice of the |B|-dependent internal energy function U

gave rise to the famous Chew-Goldberger-Low theory [72].

2.5 Ideal MHD: Reduction to noncanonical Hamilto-
nian dynamics

In the previous sections, we have presented an action principle (La-

grangian) formulation of fluid models, couched in the Lagrangian viewpoint

of the fluid, where the variation of the action was solely undertaken with re-

spect to q. However, the Eulerian viewpoint is the more commonly used one,

and the Hamiltonian formalism is endowed with unique advantages of its own.

Hence, we need to transition from a Lagrangian, action principle formulation
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to an Eulerian, Hamiltonian formulation. Formally, this procedure is termed

reduction and involves mathematical intricacies that fall outside the scope of

the thesis. The reduction procedure stems from the early works of [73, 74, 75],

and was applied to fluid and kinetic models in [76, 77]. A geometric formula-

tion of this procedure was presented in [32] and a summary can be found in

[38, 66].

Instead, we adopt a different approach by focusing on a more direct

approach, by using ideal MHD as a specific example. We shall work through

the procedure in some detail, and other models in future chapters are also

obtained through a similar approach.

2.5.1 Noncanonical Hamiltonian formulation of ideal MHD

We have specified the ideal MHD action, in Lagrangian variables, in

(2.32). Now, we can compute the associated canonical momentum Π = δL/δq̇,

which yields Π = ρ0q̇. The Hamiltonian functional is determined via a Legen-

dre transform, and is given by

H[q,Π] =

∫
D

d3a q̇ · Π− L, (2.34)

and the convexity property of ideal MHD allows us to write q̇ in terms of Π

and obtain the Hamiltonian. However, we observe that our action is in terms

of q and Π, and we use the Lagrange-Euler maps to express the Hamiltonian

in terms of Eulerian variables. Upon doing so, we find that it simplifies to

HMHD =

∫
D

d3r

[
ρ|v|2

2
+ ρU (ρ, s) +

|B|2

2

]
, (2.35)
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and one can arrive at the same result through the use of Noether’s theorem,

and subsequent Eulerianization, i.e. expressing everything in terms of Eulerian

variables.

In terms of Π and q, one can determine Hamilton’s equations of motion

through the canonical Poisson bracket in infinite dimensions,

{F̄ , Ḡ} =

∫
D

d3a

(
δF̄

δq
· δḠ
δΠ
− δḠ

δq
· δF̄
δΠ

)
, (2.36)

where F̄ and Ḡ are arbitrary functionals that depend on q and Π. In order to

verify that the above bracket yields (2.33), we must calculate q̇ = {q,H} and

Π̇ = {Π, H} and carry out the Eulerianization procedure; the Hamiltonian to

be used is found from (2.34) by using the Lagrangian for ideal MHD.

As our system is endowed with a canonical Poisson bracket in La-

grangian variables that generates the correct dynamics, it is natural to look

for a Poisson bracket that generates the same dynamics in Eulerian variables.

However, it is crucial to recognize that Eulerian variables are not canonical in

nature. As a result, the Poisson bracket in Eulerian variables does not possess

the same form as (2.36). We will now outline the procedure by which the

Eulerian noncanonical Poisson bracket is obtained from its Lagrangian and

canonical counterpart.

The first step entails choosing our set of observables for ideal MHD. We

shall work with {ρ, σ,M,B}, and for each of them, the Lagrange-Euler maps

can be expressed in an integral form, as described in Section 2.2. Let us recall
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the relations once more:

ρ(r, t) =

∫
D

d3a ρ0(a) δ (r − q (a, t))

=
ρ0

J

∣∣∣∣
a=a(r,t)

, (2.37)

σ(r, t) =

∫
D

d3a σ0(a) δ (r − q (a, t))

=
σ0

J

∣∣∣∣
a=a(r,t)

, (2.38)

M c(r, t) =

∫
D

d3aΠ(a, t) δ (r − q(a, t))

=
Π(a, t)

J

∣∣∣∣
a=a(r,t)

, (2.39)

Bi(r, t) =

∫
D

d3a q i, j(a, t)B
j
0(a) δ (r − q(a, t))

= q i, j(a, t)
Bj

0(a)

J

∣∣∣∣∣
a=a(r,t)

, (2.40)

and ideal MHD yields Π = ρ0q̇, implying that M = ρv = M c. As a result, we

can replace the LHS of (2.39) with M instead.

In obtaining the noncanonical bracket, the cornerstone of our procedure

stems, once again, from the fact that a fluid, or magnetofluid, theory must

be equally describable by Lagrangian and Eulerian viewpoints. Hence, we

demand that

F̄ [q,Π] = F [ρ, σ,M,B], (2.41)
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which implies

δF̄ ≡
∫
D

d3a
δF̄

δΠ
· δΠ +

δF̄

δq
· δq

= δF ≡
∫
D

d3r
δF

δρ
δρ+

δF

δσ
δσ +

δF

δM
· δM +

δF

δB
· δB. (2.42)

Now, let us consider (2.37), which yields

δρ = −
∫
D

d3a ρ0(a)∇δ (r − q (a, t)) · δq, (2.43)

and this can be substituted into (2.42), thereby yielding∫
D

d3a
δF̄

δΠ
· δΠ +

δF̄

δq
· δq = −

∫
D

d3r
δF

δρ

∫
D

d3a ρ0(a)∇δ (r − q (a, t)) · δq+ . . . ,

(2.44)

and the ‘. . . ’ indicate that a similar procedure is carried out for (2.38), (2.39)

and (2.40) as well. In the above expression, one can carry out an integration

by parts and isolate the functional derivatives by eliminating
∫
D
d3a through

equating the coefficients of δq and δΠ. Thus, we arrive at

δF̄

δΠ
=

∫
D

d3r
δF

δM
δ (r − q (a, t)) , (2.45)

and

δF̄

δq
= Oρ

δF

δρ
+Oσ

δF

δσ
+OM

δF

δM
+OB

δF

δB
, (2.46)

and the O’s are integral operators that involve factors of
∫
D
d3r, Dirac delta

functions, etc. The expression for Oρ can be read off by inspecting (2.43); the

others are found through similar means. Thus, in principle we have computed

δF̄ /δΠ and δF̄ /δq, which can now be substituted into (2.36). After a fair
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amount of algebraic manipulations, we arrive at

{F,G}MHD = −
∫
D

d3r

[
Mi

(
δF

δMj

∂

∂xj

δG

δMi

− δG

δMj

∂

∂xj

δF

δMi

)
+ρ

(
δF

δMj

∂

∂xj

δG

δρ
− δG

δMj

∂

∂xj

δF

δρ

)
+σ

(
δF

δMj

∂

∂xj

δG

δσ
− δG

δMj

∂

∂xj

δF

δσ

)
+Bi

(
δF

δMj

∂

∂xj

δG

δBi

− δG

δMj

∂

∂xj

δF

δBi

)
+Bi

(
δG

δBj

∂

∂xi

δF

δMj

− δF

δBj

∂

∂xi

δG

δMj

)]
, (2.47)

and this is clearly a very different beast when compared to (2.36) - it consti-

tutes the noncanonical Poisson bracket of ideal MHD, which was first intro-

duced in [28]. The dynamical evolution of ψ is found from ψ̇ = {ψ,H} where

the bracket is given by (2.47) and the Hamiltonian is (2.35); note that the

latter must be re-expressed in terms of M and σ. Upon carefully working out

the dynamical equations, we find that they are identical to the ones obtained

via the Newcomb action in Section 2.4.

As a result, we conclude that (2.35) and (2.47) give rise to a fully (non-

canonical) Hamiltonian formulation of ideal MHD dynamics that is entirely

Eulerian in nature. The corresponding bracket and Hamiltonian for ideal hy-

drodynamics (HD) is obtained by simply dropping the B-dependent terms in

(2.35) and (2.47).

Now, the bracket (2.47) is quite clearly antisymmetric and bilinear.

Furthermore, it is also easy to verify that it satisfies the Leibnitz rule, and it
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serves as an example of a Lie-Poisson bracket [17, 62]. Yet, a simple inspection

of (2.47) will not suffice to convince us that the Jacobi identity holds true,

which is one of the requirements for ensuring that (2.47) is a valid Poisson

bracket. However, as our starting point, the canonical bracket (2.36), did

satisfy the Jacobi identity and the procedure employed above preserves this

property; for more details and references, the reader is referred to [17, 78, 79].

2.6 Noncanonical Hamiltonian dynamics

Although we highlighted the reduction procedure and obtained a non-

canonical Poisson bracket for ideal HD and MHD, there was no commentary

offered on the usefulness and properties of noncanonical brackets. These top-

ics shall form the subject of our discussion in this section. We shall confine

ourselves primarily to a discussion of finite-dimensional noncanonical Hamilto-

nian systems, as the generalization to infinite dimensions can be undertaken,

albeit with some subtleties.

Given a time-independent function H({z}), a Hamiltonian system is of

the form

żi = J ij
∂H

∂zj
; i, j = 1, 2 . . . 2n, (2.48)

and one defines the Poisson bracket via

[f, g] =
∂f

∂zi
J ij

∂g

∂zj
; i, j = 1, 2 . . . 2n, (2.49)

and J ij must be bilinear, antisymmetric and satisfy the Jacobi identity [15].
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Most systems familiar to the readers are canonical, i.e. J has the form:

J =

(
0n In
−In 0n

)
, (2.50)

where 0n is an n × n matrix with all zeroes and and In is the n × n identity

matrix. It is easy to verify that this yields the familiar form of Hamilton’s equa-

tions, upon identifying {z1, z2 . . . zn} ≡ {q1, q2 . . . qn} and {zn+1, zn+2 . . . z2n} ≡

{p1, p2 . . . pn}.

However, most real-world models do not possess a canonical structure,

although they can still be described via (2.48), i.e. they are Hamiltonian. By

a noncanonical structure, we simply mean that J is not of the form (2.50),

although it is still bilinear, antisymmetric and satisfy the Jacobi identity. For

instance, it is possible that J could depend on the z’s themselves, which occurs

for the rigid body dynamics [17]. When one has det J 6= 0, it is possible to

find a suitable coordinate transformation that maps J to (2.50) - this is the

famous Darboux theorem of classical mechanics [15].

However, what happens when det J = 0? The answer was given by

Sophus Lie [80], who generalized the Darboux theorem, and demonstrated

that one could find a coordinate transformation that maps J to

J =

 0m Im 0
−Im 0m 0

0 0 0n−2m

 , (2.51)

and we see that this is identical to (2.50) if we identify m→ n, and recognize

that we are endowed with n− 2m extraneous coordinates. As det J = 0 now,

there exists a degeneracy in J whose rank is now given by 2m. Hence, it is
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possible for n − 2m null eigenvectors of J to exist, and these constitute the

Casimir invariants which satisfy

J ij
∂CI

∂zj
= 0; I = 1, 2, . . . n− 2m, (2.52)

which can also be represented as the condition
[
f, CI

]
= 0 for all arbitrary

choices of f . Collectively, one can envision the n-dimensional phase space

Z foliated by 2m-dimensional symplectic leaves P ; the latter are found from

the intersection of Z with the (n − 2m)-dimensional surfaces determined via

CI = const. A consequence of the degeneracy is that any dynamics that

originates on P stays on P throughout. For more details, and a pictorial view

of the dynamics, the reader is referred to [17].

Before proceeding further, we turn our attention to an important class

of systems, which possess a special form - they satisfy J ij = cijk z
k, where the

elements of cijk are all constants. Such systems are said to be a Lie-Poisson

form, since they serve as structure constants of a suitable Lie algebra. Infinite

dimensional Hamiltonian systems can also possess analogous properties - it

is known that the noncanonical bracket of ideal MHD, represented by (2.47)

in Section 2.5, is one such example. Lie-Poisson brackets are endowed with

an abundance of beautiful mathematical features, and the reader can find an

exhaustive study of their properties in [81].

Now, let us suppose that we did not have a degeneracy and J was given

by (2.50). Then, one could simply determine the equilibria via ∂H/∂zi = 0,

which is evident from (2.48) as det J 6= 0. However, when we are confronted
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with det J = 0, the Casimirs come into play in determining the equilibria of

our model. They are obtained from ∂F/∂zi = 0, where F = H +
∑

I λICI .

It is appropriate to think of the Casimirs as Lagrange multipliers allowing for

the (constrained) determination of the equilibria.

The next issue that arises is the stability of these equilibria. Hamil-

tonian systems have close connections with stability, which goes back all the

way to a theorem proven by Lagrange for Hamiltonians of the form H =

p2/2m + V (q). It states that equilibria satisfying pe = 0 and qe serving as a

local minimum of V are stable. However, it is evident that not all Hamiltonian

systems possess such a nice, and separable, form. Fortunately, an old theorem

by Dirichlet [82] states that one only needs to analyse ∂2H/∂zi∂zj - the defi-

niteness of this matrix constitutes a sufficient condition for stability, although

it is not a necessary and sufficient condition. However, this statement is true

when one has det J 6= 0 alone. When we have degeneracy, one must replace

H by F implying that the definiteness property of ∂2F/∂zi∂zj will suffice for

stability. In general, the field of Hamiltonian stability is a subtle one, and

extended discussions of the same can be found in [17, 27].

From our preceding discussion, it is clear that Casimirs play a crucial

role in determining the equilibria and stability of Hamiltonian systems; the lat-

ter is often referred to as the Energy-Casimir method of determining stability

criteria. Another primary method of deducing stability, involving dynamically

accessible variations, also relies heavily on the notions of noncanonical Hamil-

tonian systems and Casimir invariants [17]. Casimirs also play a crucial role
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in dissipative systems, where they serve as surrogates for the entropy, and

preserving consistency with the laws of thermodynamics. We do not investi-

gate such aspects in this dissertation, but succinct accounts can be found in

[45, 83].

When we move to infinite-dimensional systems, one must replace the

functions with functionals, and the partial derivatives with functional deriva-

tives. The cosympletic form J is replaced by the corresponding cosymplectic

operator J . The Poisson bracket is now represented as:

{F,G} =

∫
D

dnx
δF

δψi
J ij δG

δψj
, (2.53)

and D ∈ Rn while the ψ’s constitute the dynamical variables of our system

and are functions of {x1, x2, . . . xn} and t. The above discussions pertaining

to the Casimirs and their role in equilibria and stability can be formulated

here in an analogous manner [17]. For instance, the Energy-Casimir method

requires us to compute the Hessian δ2F/δψaψb where the ψ’s are the Eulerian

fields. However, we wish to emphasize that there are still several unresolved,

or partially resolved, subtleties regarding Casimir invariants and their role in

dynamical systems. The interested reader is referred to [84, 85] to explore

these issues further.

Before closing this section, a few observations regarding noncanonical

Hamiltonian dynamics of ideal MHD are in order. Firstly, we note that the

magnetic helicity,

CM =

∫
D

d3r A ·B, (2.54)
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is a Casimir invariant of the system; this can be seen by computing {F,CM}

from (2.47) and verifying that it is always zero. Secondly, through a similar

procedure, one can verify that

C0 =

∫
D

d3r ρF(s), (2.55)

where F is arbitrary is also a Casimir of ideal MHD. Now, suppose that we

drop entropy from the theory - one finds that the cross helicity

CH =

∫
D

d3r
M ·B
ρ
≡
∫
D

d3r v ·B, (2.56)

is also a Casimir invariant. If we assume the presence of additional symmetry

(axisymmetry, translational or helical), the class of Casimirs becomes much

more richer. This was illustrated in [70, 86], where the equilibria of these

models were also computed following the principles delineated above. A com-

prehensive stability analysis using three different methodologies, including the

Energy-Casimir method, was carried out by the same authors in [87]. We

observe that the Energy-Casimir method has been deployed in other plasma

contexts to undertake stability analyses; see for e.g. [88, 89, 90, 91, 92].

38



Chapter 3

A two-dimensional MHD model with

gyroviscosity

In this section, we shall construct a simple model for two-dimensional

(2D) MHD which is endowed with Finite Larmor Radius (FLR) effects. We

determine and analyse the equilibria, and offer a few comments on the sta-

bility. We also indicate how reduced fluid models with gyroviscosity can be

constructed as limiting cases of our model. The results presented in this Chap-

ter have been published in [65].

3.1 Finite Larmor Radius effects: A discussion

Before commencing our treatment, it is necessary to motivate the study

of FLR effects. Firstly, we begin by noting that one of the crucial approxima-

tions in deriving ideal MHD is that ε ≡ ρi/a � 1 [93] where a is the length

scale of the plasma and ρi = vT i/ωci; the expressions ρi, vT i and ωci represent

the gyroradius, thermal velocity and cyclotron frequency of the ions respec-

tively. It is, of course, quite manifest that that above assumption is but one

of many that are employed in obtaining ideal MHD. Hence, it is possible that

the condition ε � 1 may break down; one such example is systems wherein
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the magnetic field is very weak. In such an event, one must include corrections

that arise from the presence of a finite Larmor radius. MHD models with FLR

corrections originated in the 1950s and 1960s [59, 94, 95, 96], of which the

work by Braginskii is the best known [59]. We refer the reader to [97] for a

more exhaustive list of references in this area.

However, these corrections are necessary, primarily in a mathematical

sense, to ensure that the extended model captures FLR effects accurately.

Beyond the mathematical aspects, FLR effects also possess a host of physical

consequences; we shall not summarize the many fusion applications herein, and

refer the reader instead to [97, 98]. One of the key consequences of FLR effects

is their ability to alter momentum transport, which is of huge importance in

fusion and astrophysical plasmas. In the latter, such effects are of tremendous

import in accretion discs, where the transport of angular momentum plays a

key role [99, 100]. Rather surprisingly, despite the ubiquitous nature of the

magnetorotational instability (MRI) in astrophysics, FLR effects have been

studied only for a handful of models [101, 102, 103]; this is likely since the MRI

is operational only when the magnetic field is ‘weak’. In addition, we observe

that dilute and weakly magnetized plasmas are now being modelled with FLR

effects, as evidenced from [104, 105, 106, 107]. It must be emphasized, however,

that the works cited use fluid models, which do not possess the same level of

complexity as models that are kinetic or gyrokinetic in nature; the latter in

particular has proven to be very useful in a host of astrophysical and fusion

contexts [108, 109].
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Before moving on the HAP derivation of our simple 2D gyroviscous

MHD model, we record some of the methodologies employed in constructing

such models. Fluid models that include FLR effects are often constructed by

incorporating kinetic effects, e.g., by moving from particle phase-space coor-

dinates to guiding center coordinates [110, 111, 112, 113]. FLR models have

also been extended to include contributions arising from Landau damping,

anisotropic pressures and curvature [114, 115, 116, 117, 118, 119]. A second

approach involves expansions in the smallness of the Larmor radius as com-

pared to a characteristic length scale of the system and the imposition of

closures for higher-order moments [120, 121, 122, 123]. A third method uses

the Hamiltonian framework to construct full and reduced MHD models with

FLR effects [36, 37, 111, 124, 125, 126, 127, 128]. Our approach is akin to

the third path described, but its Hamiltonian nature actually emerges via a

detailed consideration of its underlying action principle formulation.

3.2 Building an action principle for the 2D gyroviscous
fluid model

Now we follow the method described in Sec. 2.3. First we introduce

and motivate the set of observables, then we describe how their corresponding

attributes are used to construct an action principle.
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3.2.1 The observables of the 2D gyroviscous model

We start off by choosing the domain D = R2, with coordinates (x, y),

since our theory is two-dimensional. Hence, our model is endowed with trans-

lational symmetry in the ẑ-direction. We can work with either the canonical

momentum defined in (2.13) or the ‘kinetic’ momentum defined by

M(r, t) =

∫
D

d2a ρ0(a)q̇(a, t) δ (r − q(a, t))

=
ρ0q̇(a, t)

J

∣∣∣∣
a=a(r,t)

. (3.1)

The 2D version of the canonical momentum defined through (2.13) is given by

M c(r, t) =

∫
D

d2aΠ(a, t) δ (r − q(a, t))

=
Π(a, t)

J

∣∣∣∣
a=a(r,t)

, (3.2)

where we suppose there is no momentum in the ẑ-direction. As we have

emphasized, the kinetic and the canonical momenta are not always the same;

in fact, their difference gives rise to the gyromap, one of the key results in this

chapter. When deriving the equations of motion, we work with M , although

we shall use M c extensively in the Hamiltonian formalism for this model. Next

consider the magnetic field, which also belongs to our set of observables. Since

∇ ·B = 0, we decompose it as follows:

B = Bz(x, y, t) ẑ + ẑ ×∇ψ(x, y, t), (3.3)

which is a usual decomposition with ψ representing the parallel vector poten-

tial. Following the same line of reasoning of Sec. 2.2.2, the associated attribute
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takes on the form

B0 = B0z(a) ẑ + ẑ ×∇aψ0(a) . (3.4)

which satisfies the properti ∇a · B0 = 0 and the subscript a on the gradient

indicates spatial derivatives obtained with respect to the a’s. One can obtain

the correspondence between these attributes and observables by using (2.14),

which yields

Bz(r, t) =

∫
D

d2aB0z(a) δ (r − q (a, t))

=
B0z

J

∣∣∣∣
a=a(r,t)

, (3.5)

ψ(r, t) = ψ0|a=a(r,t) . (3.6)

We know that ψ serves as a magnetic stream function, making it analogous

to the velocity stream function. Since the latter is preserved along a fluid

trajectory, we see that (3.6) is also consistent with this notion. We have

argued in Section 2.2 that the magnetic field behaves as a vector density of

weight 1; from (3.5), we conclude that Bz serves as a scalar density of weight

1 for our model. Our last observable is the density, which is given by the 2D

version of (2.12)

ρ(r, t) =

∫
D

d2a ρ0(a) δ (r − q (a, t)) =
ρ0

J

∣∣∣∣
a=a(r,t)

. (3.7)

Thus, our set of observables is now {ρ,M,Bz, ψ}. Notice that we have dropped

entropy from our theory, which can be re-incorporated without much difficulty.

Up to now we have not specified anything about the internal energy per

unit mass, which in general is U := U(ρ, s). However, we restrict ourselves to
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the barotropic case, i.e., assume a thermodynamic energy that is independent

of the entropy s. Thus, the pressure is obtained from U := U(ρ) via P =

ρ2dU/dρ = κρ2, with κ constant, and the last equality follows by choosing a

specific ansatz for U which is linear in ρ. The Lagrange to Euler map between

P and P0 can be determined through the use of (3.7); it takes on the form

P =
P0

J 2

∣∣∣∣
a=a(r,t)

. (3.8)

We shall now introduce a new variable, the usage of which will seem

somewhat ad hoc at the moment; however, its purpose will soon become evi-

dent. The new variable attribute-observable pair is the following:

β =
P

Bz

and β0 =
P0

B0z

. (3.9)

We use the Lagrange to Euler maps for the ẑ-component of the magnetic field

and the pressure, respectively given by (3.5) and (3.8). Together, they enable

us to conclude that

β =
β0

J

∣∣∣∣
a=a(r,t)

, (3.10)

which demonstrates that the above equation is similar to (3.7) and (3.5), imply-

ing that all three variables obey a similar dynamical equation of motion. From

(3.9), we see that only 2 out of {P,Bz, β} can be treated as independent func-

tions. Thus, we proceed with the following set of variables {ρ,M,Bz, ψ, β},

although we shall introduce M c in place of M and analyse the consequences

later. We have assembled together all the requisite apparatus for building the

action principle. We shall now proceed onwards to this task.
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3.2.2 Constructing the gyroviscous action

Much of the discussion presented herein is a variant of the ideal MHD

action, discussed in Section 2.4. However, for the sake of making the discussion

self-contained, we recall the essential steps involved in the construction.

The kinetic energy is given by

T [q] :=
1

2

∫
D

d2a ρ0(a)|q̇|2 =
1

2

∫
D

d2r ρ|v|2 . (3.11)

Now, consider the multiple components that make up the potential

energy of the Lagrangian. The first involves the internal energy of the fluid,

which is given by the following functional:

Uint[q] :=

∫
D

d2a
B0zβ0

J
=

∫
D

d2r Bzβ , (3.12)

which, in light of (3.9), satisfies the closure principle. The expression for U [q]

follows from the specific ansatz chosen for U(ρ) earlier, in conjunction with

the definition of β from (3.9).

The next component of the internal energy is the magnetic field. The

field energy density is B2/8π; upon scaling away the factor of 4π we obtain

Umag[q] :=
1

2

∫
D

d2a

(
|B0z|2

J
+ J gkla i,k a

j
, l

∂ψ0

∂ai
∂ψ0

∂aj

)
=

1

2

∫
D

d2r
(
|Bz|2 + |∇ψ|2

)
, (3.13)

an expression that by (3.3) satisfies the closure principle, while physically

corresponding to the magnetic energy density. In our subsequent discussion,

we work with Cartesian coordinates implying that gkl ≡ δkl.
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Finally, we introduce a novel term that will be seen to account for gyro-

viscosity. Since gyroviscosity is ultimately gyroscopic in nature, this suggests

a term of the following form:

G[q] :=

∫
D

d2aΠ? · q̇ =

∫
D

d2rM? · v , (3.14)

which, unlike the other terms that are either independent of or quadratic in

q̇, is linear in q̇. It remains to determine the form of M? or its corresponding

attribute Π?. We emphasized the importance of the closure principle in Section

2.4, and this ensures that the choices of M? and Π? are strongly constrained.

There are still an endless number of possibilities, but we shall assume

that Π∗ has the simple following form:

Π∗i =
m

2e
J εijam,j

∂

∂am

(
β0

J

)
, (3.15)

which is motivated in part by the knowledge that gyroviscous effects should be

linear in the magnetic moment that scales as β ∼ P/B. To be more precise, β

is identical to the (magnitude of) magnetization inherent to the magnetofluid.

From (3.14), we see that

M? =
Π∗

J

∣∣∣∣
a=a(r,t)

, (3.16)

which can be used in conjunction with (3.15) to conclude that

M? =
m

2e
∇× (βẑ) . (3.17)

The m/(2e) prefactor of (3.15) and (3.17) can be explained by introducing

a new variable L? - the intrinsic angular momentum - according to M? =:
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∇×L?. We shall identify L? as an intrinsic angular momentum emerging from

the inherent magnetic moment of the fluid particles due to gyro-effects. The

magnetic moment and the angular momentum are related via the gyromagnetic

ratio, which explains the presence of an m/e factor. Writing the magnetization

in terms of the pressure, the magnetic moment can be identified and this leads

to the factor of 2.

Let us now probe the definitions of Π? and M? further to gain a better

feel for their physical existence. In the 1970s and 80s, Newcomb [20, 21, 22]

developed a theory of incompressible gyrofluids. Later, it was shown in [64, 65]

that the gyroviscous action that we define in (3.19) gives rise to a simplified

2D version of the Braginskii gyroviscous tensor [59, 120, 121], and serves as

a compressible generalization of Newcomb’s models. But, it is important to

recognize that several of these reasons emerge only after a posteriori consid-

erations.

Momentum transport by gyroviscosity arises from microscopic charged

particle gyration [129, 130], and so it is natural to think that the mass and

charge of the important species (ions for a single fluid model) would enter.

Similarly, the presence of gyration is immediately suggestive, when visualized

pictorially, of the presence of a curl. From (3.17), we do see that each of

these properties are indeed satisfied by M?. If we were to add an additional

component to the kinetic momentum M , such that the continuity equation

remains unchanged, it is evident that the new momentum must be divergence

free. In other words, it must be the curl of another quantity, which has the
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dimensions of angular momentum density. This provides a second reason for

M? involving a curl. Since M has already been “used” elsewhere, this leaves

ρ, ψ, Bz and β to construct this curl. Using dimensional analysis, and the

presence of m and e (outlined above), it is seen that (3.17) can also be justified

on heuristic grounds.

A second way to visualize the gyroviscous term (3.14) is to interpret

it as an additional contribution to the kinetic energy, which can be viewed as

proportional to M · v, with M = ρv denoting the momentum density. Now,

in addition to the momentum density, suppose that we had an additional

contribution that also couples to the velocity. Clearly, such a term could be

visualized as another ‘kinetic’ energy of sorts. If we carefully inspect equation

(30) of [121], we see that the magnetization current is defined as

J? = −enu? = ∇×
(
P⊥
|B|

b̂

)
. (3.18)

Upon taking the 2D limit and assuming the simplified limit where b̂ = ẑ, we

obtain a reduced expression for the magnetization velocity. By multiplying

it with the density, the ‘magnetization momentum density’ can be obtained,

which is analogous to M . Hence, we can interpret M? as the momentum

density arising from the magnetization, and (3.14) captures the effects of finite

magnetization in plasmas.

In any event, all of the above interpretations really boil down to the

presence of an intrinsic angular momentum. We shall see shortly hereafter that

(3.14) gives rise to the gyroviscous tensor (3.25) and this remarkable tensor
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has been shown to originate in a variety of contexts, ranging from quantum

Hall systems [131] to anomalous HD of vortex fluids [132], in addition to

plasmas, where it was first emphasized. The commonality of these systems

was elucidated in [133] by invoking the existence of an underlying internal

angular momentum.

We end this subsection by presenting our action, which is obtained by

combining equations (3.11), (3.12), (3.13) and (3.14) as follows:

S =

∫ t2

t1

dt (T [q]− Uint[q]− Umag[q] +G[q]) , (3.19)

and we are ready to explore its consequences.

3.2.3 The Eulerian equations and the gyromap

We begin by giving the Eulerian dynamical equations for the observ-

ables ρ, Bz, ψ and β. These are found from the expressions (3.7), (3.5), (3.6)

and (3.10), respectively.

∂ρ

∂t
= −∂sMs , (3.20)

∂Bz

∂t
= −∂s

(
BzMs

ρ

)
, (3.21)

∂ψ

∂t
= −Ms

ρ
∂sψ , (3.22)

∂β

∂t
= −∂s

(
βMs

ρ

)
. (3.23)

The final Eulerian equation, which governs the evolution of momentum, is

found from δS = 0. The computation is somewhat long and tedious, but
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straightforward. Hence, we shall only present the final result, and analyse the

different terms. The momentum equation is given by

Ṁs = −∂l (MsMl/ρ)− ∂s
(
P + |B|2/2

)
+Bl∂lBs − ∂lπls , (3.24)

where the pressure is given by (3.9) and the gyroviscous tensor πls is

πls = Nsjlkβ∂k

(
Mj

ρ

)
Nsjlk =

m

2e
(δskεjl − δjlεsk) . (3.25)

Now consider the gyroviscous action given by (3.19). On varying the

kinetic energy functional we obtain ρ0q̈, which yields the terms on either side of

the equality sign in (3.24). The second term in the action, the internal energy,

gives rise to the pressure gradient term. Similarly, the magnetic component of

the internal energy, which comprises of two terms, as seen from (3.13), gives

rise to the magnetic pressure and the penultimate term in (3.24).

Lastly, the gyroviscous part of the action gives rise to the gyroviscous

tensor, as defined in (3.25), and constitutes the last term in (3.24). As men-

tioned earlier, the gyroviscous tensor is consistent with the results described

in Braginskii [59, 120, 121], when the dissipative terms are neglected and re-

stricted to a simplified 2D limit. Furthermore, a simpler version of the model

was first constructed in [124]. The gyroviscous tensor has also been referred

to as Hall viscosity or odd viscosity in other contexts [131, 132].
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Finally, it is important to recognize that the action (3.19) has two

different terms that involve q̇, and hence the canonical momentum will not be

the same as ρq̇. In fact, we find that

Π =
δL

δq̇
= ρq̇ + Π? . (3.26)

Dividing throughout by J and evaluating the expression at a = a(r, t), the

Eulerian counterpart is obtained through the use of (3.1), (3.2), (3.16) and

(3.17),

M c = M +M? = M +
m

2e
∇× (βẑ) . (3.27)

As we are dealing with a two-dimensional momentum vector, we can write the

above equation as

M c
s = Ms −

m

2e
εls∂lβ , (3.28)

which is the gyromap first introduced in [124], and subsequently employed in

[37, 127]. As a result, we see that the true origins of the gyromap stem from

the action principle formulation of gyroviscous MHD. However, the gyromap

is more than just a relation between M c and M - we shall explore its uses

further in a Hamiltonian context.

3.3 The Hamiltonian description of gyroviscous MHD

Hitherto, our discussion has centred around an action principle formu-

lation of gyroviscous MHD, expressed in Lagrangian variables. It is advanta-

geous to transition to the Hamiltonian description in Eulerian variables. This
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is undertaken through a reduction procedure. We shall not summarize the de-

tails here, as the derivation closely mirrors that of ideal MHD in Section 2.5.

We also refer the reader to Section 2.6 as we shall use the tools introduced in

that section; it also summarizes the advantages inherent to the noncanonical

Hamiltonian approach.

Now we study two different cases of the gyroviscous model and action

developed in Sec. 3.2. First we set the attribute ψ0 set to zero, and conse-

quently ψ as well. Upon doing so, we obtain a simplified model, albeit one

that possesses many features of the full model - this was first studied in [124].

The simpler model enables us to arrive at a better understanding of the role

of the gyromap, the Hamiltonian and the bracket. Subsequently, we introduce

ψ into our theory and analyse the equilibria and stability.

3.3.1 The ψ ≡ 0 model

For this reduced model we choose to work with M c of (3.27), because it

is directly obtained via the canonical momentum Π through (3.2). Thus, since

ψ ≡ 0, only the ẑ-component of the magnetic field is present. The Hamil-

tonian, obtained through the Legendre transformation and Eulerianization,

is

H =

∫
d2r

(
1

2ρ

∣∣∣M c − m

2e
∇× (βẑ)

∣∣∣2 + βBz +
B2
z

2

)
, (3.29)
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which, when written in terms of the ‘kinetic’ momentum M takes on a more

recognizable form

H =

∫
d2r

(
|M |2

2ρ
+ βBz +

B2
z

2

)
. (3.30)

In terms of M c, the noncanonical bracket obtained by using the procedure of

Sec. 2.5, is

{F,G}0
c =

∫
d2r

[
M c

l

(
δG

δM c
k

∂k
δF

δM c
l

− δF

δM c
k

∂k
δG

δM c
l

)
+ρ

(
δG

δM c
k

∂k
δF

δρ
− δF

δM c
k

∂k
δG

δρ

)
+Bz

(
δG

δM c
k

∂k
δF

δBz

− δF

δM c
k

∂k
δG

δBz

)
+β

(
δG

δM c
k

∂k
δF

δβ
− δF

δM c
k

∂k
δG

δβ

)]
, (3.31)

and we see that this corresponds to Morrison-Greene bracket [64] restricted to

B = Bz ẑ with the momentum M c replacing M . The index ‘0’ indicates that

we are considering ψ = 0, and ‘c’ is used to convey the information that the

bracket is in terms of the canonical momentum M c. Thus, we see that the

effects of gyroviscosity are ‘hidden’ as we have used M c. However, if we choose

to write the bracket in terms of M , the gyroviscous contributions are manifest

{F,G}0
G = {F,G}0 − βNijsl

(
∂s
δG

δMi

)(
∂l
δF

δMj

)
, (3.32)

where we obtain a new term that produces the gyroviscous tensor and {F,G}0

is the bracket of (3.31) with Mc replaced by M . This bracket is identical to

that given in [124], which was obtained through a more ad hoc procedure. If
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we compare the Hamiltonian-bracket pair of Eqs. (3.29) and (3.31) with that

of Eqs. (3.30) and (3.32), the significance of the gyromap becomes evident.

We can choose to work with a system that possesses a relatively simple Hamil-

tonian with a more complex bracket, or vice versa, and it is the gyromap that

allows us to move back and forth between these two versions. Both versions

give the same equations of motion: those obtained in Sec. 3.2.3 with ψ ≡ 0.

We use the condition {F,C} = 0 for all F to find the Casimirs. Upon

simplification, the only Casimirs that exist are independent of the gyro term,

and in fact, are independent of the velocity of the fluid. We find the following

infinite family of Casimirs:

C =

∫
d2r βf

(
ρ

β
,
Bz

β

)
, (3.33)

where f is an arbitrary function, a result that was first obtained in [124]. Be-

cause of its homogeneous form, the three variables of (3.33) are interchange-

able, i.e., we can permute ρ, β and Bz without loss of generality.

Now that we have the Casimirs, we can employ energy-Casimir method,

as described in Section 2.6, to determine the equilibria. They are found by

demanding that δF = 0, where F = H+C. This yields two familiar conditions,

M = 0 and P +
B2
z

2
= const , (3.34)

which imply that there is zero equilibrium flow, and the existence of a total

pressure balance. It is easy to verify that these are valid equilibria of the

model from the equations of motion. However, it may well be possible for other
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equilibria to exist, not captured by the energy-Casimir method. This stems

from the subtleties underlying Casimirs, which remain only partly understood

[84, 85].

The astute reader will note that we have reverted back to M . Although

this may appear confusing at first sight, there exists a well-defined general

prescription: we first find the Casimirs by working in terms of M c, and then

apply the gyromap to express them in terms of M . Since the Hamiltonian is

much simpler in terms of M , we can proceed to calculate δF , wherein M is the

variable of choice, and not M c. We shall use this procedure in the following

sections as well to express our final results in terms of M .

Having determined the equilibria, we can carry out the stability anal-

ysis, as outlined in Section 2.6. Using the energy-Casimir methodology and

computing the elements of the Hessian, we find that the equilibria satisfying

(3.34) are always stable, regardless of the functional form of the Casimir. This

is, of course, to be expected and serves as a sanity check.

3.3.2 The ψ 6≡ 0 model

Now consider the full model with ψ 6≡ 0 and magnetic field given by

(3.3). We shall proceed to write down the Hamiltonian-bracket pair in terms

of M c, observing that the simplicity of the latter is obtained at the expense of
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the former. The Hamiltonian is

H =

∫
d2r

(
1

2ρ

∣∣∣M c − m

2e
∇× (βẑ)

∣∣∣2 + βBz

+
B2
z

2
+
|∇ψ|2

2

)
, (3.35)

which is equal to (3.29) plus the perpendicular magnetic energy, and the Pois-

son bracket is

{F,G}ψc = {F,G}0
c +

∫
d2r∇ψ ·

(
δF

δM c

δG

δψ
− δG

δM c

δF

δψ

)
. (3.36)

Thus, the noncanonical bracket (3.36) in conjunction with the Hamiltonian

(3.35) successfully generates the equations of motion derived in Sec. 3.2.3.

The presence of a ψ leads to significant changes in the Casimirs ob-

tained. Unlike the ψ ≡ 0 case, we do obtain Casimirs that depend on M c,

implying that they depend on the gyroviscous term inherent in M c. We find

that two broad Casimir families emerge, of which the first is independent of

M c, and has the form

C =

∫
d2r C (ρ, β,Bz)K(ψ) , (3.37)

where C = βf (ρ/β,Bz/β) or an equivalent function involving a permutation of

ρ, β andBz. The similarities with (3.33) are self-evident, as the two expressions

only differ by K(ψ). If we choose K = const, this eliminates ψ from (3.37),

and renders it identical to (3.33). Thus, we can interpret (3.37) as a natural

extension of (3.33).
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Now, we turn our attention to the second Casimir family, which depends

on M c. From the condition {F,C} = 0, we arrive at

∂l

(
M c

k

δC

δM c
l

)
+M c

l ∂k

(
δC

δM c
l

)
+ ρ∂k

(
δC

δρ

)
+Bz∂k

(
δC

δBz

)
+β∂k

(
δC

δβ

)
− δC

δψ
∂kψ = 0 , (3.38)

∂k

(
δC

δM c
k

ρ

)
= 0 , ∂k

(
δC

δM c
k

β

)
= 0 , (3.39)

∂k

(
δC

δM c
k

Bz

)
= 0 ,

δC

δM c
k

∂kψ = 0 , (3.40)

From the equation of (3.40) we obtain the candidate

C =

∫
d2rM c · (ẑ ×∇ψ)F (ρ, β,Bz, ψ) , (3.41)

which when inserted in the first equation of (3.39) gives

C =

∫
d2r

M c · (ẑ ×∇ψ)

ρ
F (ψ) , (3.42)

while the remaining two equations of (3.39) and (3.40) imply[
ψ,
Bz

ρ

]
=

[
ψ,
β

ρ

]
= 0, (3.43)

and we introduce the notation [f, g] = fxgy − fygx. Equation (3.43) implies

there are no velocity dependent Casimirs unless the model is reduced, which

is well known for symmetric variants of MHD [70, 86]. The constraints of

(3.43) are a consequence of over labeling [134], as it is impossible for the three

advected labels of Eqs. (3.21), (3.22), and (3.23) to be independent. Thus,

we assume Bz/ρ and β/ρ are functions of ψ, which effectively eliminates them
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from the dynamics. With this assumption (3.42) is a Casimir since it also

satisfies (3.38). Upon collapsing (3.37), our general Casimir is then

C =

∫
d2r

(
M c · (ẑ ×∇ψ)

ρ
F (ψ) + ρJ (ψ)

)
. (3.44)

Using B⊥ = ẑ × ∇ψ, M · B = M · B⊥ and M c · ẑ = 0 (although parallel

momentum could be included), and setting F = constant, the first term of

(3.44) reduces to the well-known cross-helicity invariant of ideal MHD, exem-

plified by (2.56). However, there is a crucial difference since the velocity is

now vc = M c/ρ instead of v. Thus, in the absence of gyroviscosity, vc = v and

the usual cross-helicity is recovered.

Given the Casimir invariants we can proceed to the variational equilib-

rium analysis, following the approach outlined in [70, 86]. As the analysis is

a somewhat complicated one, we shall first consider the case with no flow as

a trial run. For this case, the variational principle δF = 0 contains only the

Casimir of (3.37), and gives rise to the following equilibria

M ≡ 0 and ∆ψ = −P ′ −BzB
′
z , (3.45)

where P and Bz are flux functions, and the prime denotes differentiation with

respect to ψ. We obtain the Grad-Shafranov equation, which is to be expected.

Next consider the case with the Casimir of (3.44). As stated earlier,

this involves a reduction owing the conditions imposed by (3.43). Hence, we

introduce Bz = ρ$(ψ) and β = ρ ς(ψ) and the Hamiltonian becomes

H =

∫
d2r

(
1

2ρ
|M c −M?|2 + ρ2

[
ς$ +

$2

2

]
+
|∇ψ|2

2

)
. (3.46)
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The equilibrium conditions that follow from δF = 0, with (3.44) and (3.46),

are

δF

δM c
= M c −M? + (ẑ ×∇ψ)F = 0, (3.47)

δF

δρ
= − 1

2ρ2
|M c −M?|2 − M c · (ẑ ×∇ψ)

ρ2
F

+ J + 2ρ

[
ς$ +

$2

2

]
= 0, (3.48)

δF

δψ
= −∆ψ + ρ2 [ς ′$ + ς$′ +$$ψ]

+ F∇ ·
(
ẑ ×M c

ρ

)
+ ρJ ′ = 0. (3.49)

By manipulating these equations further, we arrive at

1

4
|∇ψ|2

(
F
ρ

)2

+
Pz
ρ

+
J
2

+
m

2e

F
2ρ2
∇β · ∇ψ = 0 , (3.50)

∇ ·
[(

1− F
2

ρ

)
∇ψ
]

+ |∇ψ|2 FF
′

ρ
= ρJ ′ − ρ2

(
Pz
ρ2

)′
−m

2e
F∇ ·

(
∇β
ρ

)
(3.51)

with Pz := P +B2
z/2 = ρ2 (ς$ +$2/2) and recall that β = ρ ς(ψ) everywhere

in the above expressions. Equations (3.50) and (3.51) compare with those of

ordinary MHD as in [70], but with the addition of new gyro terms which are

easily identified by the presence of factors of m/(2e). In a manner analogous

to ideal MHD, there are free functions of ψ that can be chosen to determine

current and flow profiles. Equation (3.51) is a generalization of the Grad-

Shafranov equation, but since the density is not a flux function it cannot

be solved in isolation. Hence, we must use (3.50), the generalized Bernoulli
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equation, to close the system. We observe that the two expressions constitute

generalizations with flow and gyroviscosity of the JOKF equation [135].

There are various ways of rewriting (3.50) and (3.51), one that brings

out the Mach singularity is the following:

|∇ψ|2
[

1

4

(
F
ρ

)2

+
m

2e

Fς ′

2ρ

]
+
Pz
ρ

+
J
2

+
m

2e

Fς
2ρ2
∇ρ · ∇ψ = 0 , (3.52)

∇ ·
[(

1− F
2

ρ
+
m

2e
Fς ′
)
∇ψ
]

+ |∇ψ|2
(
FF ′

ρ
− m

2e
F ′ς ′

)
+
m

2e

Fς ′

ρ
∇ρ · ∇ψ

+
m

2e
Fς∇ ·

(
∇ρ
ρ

)
= ρJ ′ − ρ2

(
Pz
ρ2

)′
. (3.53)

An inspection of (3.52) and (3.53) makes it manifestly clear that they possess

a rich structure. It is possible to undertake several analyses such as (i) their

region of hyperbolicity, (ii) modification of the fast and slow magnetosonic

waves due to the gyroviscous terms, etc. We shall not tackle these issues in

this dissertation, but they constitute promising avenues for future work.

3.3.3 High-β gyro-RMHD

As noted in Sec. 3.1 there exists a large literature on reduced gyrofluid

models that have been obtained by various means. In this subsection, we shall

address the emergence of the three-field model given in Sec. IIIA of [37] via

the HAP formalism.

From the action, we obtained, without approximation, the Poisson

bracket of (3.36); we can also apply the gyromap on (3.36) to obtain {F,G}ψG.

Now, let us suppose that we assume Bz → B0 and ρ → ρ0 are constant.
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This implies that P ∝ β, which follows from (3.9) and the latter condition

is consistent with incompressibility. Hence, we introduce the scalar vorticity

Ωc = ẑ · ∇ ×M c and M c = ∇ϕc × ẑ, where ϕc is the stream function, up to

the constant factor of ρ0.

The subscript c is present everywhere to indicate that these include the

gyroviscous terms. Following a similar line of analysis to that employed in

[70], viz. chain rule relations of the form ∇2δF/δΩc = ẑ · ∇ × δF/δM c, we

reduce the bracket of (3.36) to the following:

{F,G} =

∫
d2r
(

Ωc [FΩc , GΩc ] + ψ ([Fψ, GΩc ]− [Gψ, FΩc ])

+ β ([Fβ, GΩc ]− [Gβ, FΩc ])
)
, (3.54)

which is precisely the high-β RMHD bracket first given in [36]. Because (3.54)

is homogeneous of degree zero in β and ψ and of degree one in Ωc, which

means scaling Ωc only scales time, these quantities can be identified with the

corresponding quantities of [37]. Following a similar procedure, the reduced

Hamiltonian is

H =
1

2

∫
d2r
(
|∇ϕ|2 + |∇ψ|2

)
, (3.55)

and we have neglected the pressure term for simplicity; we have neglected the

effect of toroidal curvature that usually occurs in high-β RMHD.

From (3.27), the gyromap relation between M c and M , we obtain

ϕc = ϕ+
m

2e
β , (3.56)
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where M = ∇ϕ × ẑ. Equation (3.56) is precisely the gyromap used in [37].

Using (3.56) we can follow one of two paths: (i) eliminate ϕ from (3.55)

and insert the resulting H into (3.54) to obtain the equations of motion in

terms of Ωc (ii) transform the bracket of (3.54) to one in terms of Ω and use

the Hamiltonian of (3.55) in its current form. Both give gyrofluid evolution

equations equivalent to the three-field model in Sec. IIIA of [37]. However, not

all terms are recovered since our model lacks the effect of toroidal curvature

and the Hall term. The latter is a consequence of extended MHD [136], which

we shall tackle in subsequent chapters.

Thus, we have shown that our model of 2D gyroviscous MHD, con-

structed rigorously through a HAP formalism, yields a rich collection of equi-

libria. Moreover, we have shown that it can also be used to construct reduced

gyrofluid models existent in the literature.
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Chapter 4

Action principles for generalized fluid models

with gyroviscosity

In Chapter 3, we considered a 2D model of gyroviscous MHD, and

proceeded to analyse it in detail. Yet, it is evident that it constitutes but

one example of gyroviscous models in general. In this context, we refer to

any model that possesses a Lagrangian incorporating spatial derivatives of

the velocity as being ‘gyroviscous’ in nature. This is quite different from our

previous definition, and represents a generalization of the gyroviscous action

introduced in Chapter 3. The contents of this chapter were investigated, and

published, in [71].

4.1 Action principle for the general gyroviscous fluid

In this section, we provide a brief summary of the general method-

ology advocated in [64, 65] for constructing action principles for fluid and

magnetofluid models and obtain the gyroviscous fluid action. The advantages

of this approach are manifold, and we shall refer the reader to Chapters 1 and

2 for extended discussions of the same. Next, we describe how we build our

model and obtain the corresponding equation of motion, thereby establishing
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the Eulerian closure principle along the way.

4.1.1 The general action

First, we choose the domain D ⊂ R3. We also assume the existence

of the Lagrangian coordinate q : D → D, which is a well behaved function

that is sufficiently smooth, invertible, etc. Next, we specify our set of observ-

ables, which are fully determined by the attributes and q. In our case, the

set corresponds to E = {v,Sα,Pβ,Bγ}. Here v denotes the velocity, which

is determined via v(r, t) = q̇(a, t), and the RHS is evaluated at a = q−1(r, t).

The quantities S, P and B are stand-ins for the entropy, density and magnetic

field respectively. In other words, they are quantities that are Lie-dragged as

0-forms, 3-forms and 2-forms; alternatively, they can be viewed as Lie-dragged

scalars, scalar and vector densities (of weight 1) respectively. This interpre-

tation is a natural consequence of the geometric interpretation provided in

Section 2.2. For instance, we see that the entropy density σ and the velocity

stream function ϕ usually serve as examples of P and S respectively. A careful

inspection reveals that there are no 1-forms in our theory. It is easy enough

to incorporate them as well, and we only refrain from doing so as we are not

aware of any fluid or magnetofluid theories that are endowed with such inde-

pendent quantities; one may view the vector potential A as one such example,

but it is clearly related to the magnetic field. In 3D, such quantities amount

to the Hodge dual of the 2-forms and might lead to over specification [134],

which we wish to avoid. The Greek indices α, β and γ are used to keep track
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of the number of fields that fall in each category.

The last step involves the imposition of a closure principle, which is

necessary for our model to be ‘Eulerianizable.’ Mathematically, this principle

is implemented by demanding the action to be expressible fully in terms of our

Eulerian observables. In other words, we require our action to be expressible

as follows:

S[q] :=

∫
D

d3adtL (q, q̇, ∂q/∂a) =: S̄ [E] . (4.1)

Now, we shall make a simplification: S̄ =
∫
D
d3rdt L̄, where L̄, can depend

on the observables and their spatial and temporal derivatives of any order.

However, for convenience we shall use the following ansatz for the Lagrangian

density L̄:

S̄ =

∫
D

d3rdt L̄
(
v,Sα,Pβ,Bγ,∇v,∇Sα,∇Pβ,∇Bγ

)
; (4.2)

i.e., we choose to work with actions that only involve the observables and

their first-order spatial derivatives. Such a simplification is well-motivated

since most of the widely used fluid and magnetofluid models possess this form.

The generalization to higher derivatives is straightforward.

To sum up, there are two simplifications employed in this model. Firstly,

we assumed that our model does not have observables that are akin to one-

forms and, secondly, we chose the ansatz (4.2) for the action. In order to

obtain the equation of motion, we must use Hamilton’s principle to extremize

the action (4.1). We shall instead show how we can extremize the action (4.2),

and how it leads to equations of motion that are purely Eulerian.
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As a result, for our family of models, this amounts to proving the

Eulerian closure principle, which states that a completely Eulerianizable action

yields Eulerian equations of motion. At this stage, an important caveat must

be added: our discussion only holds true when there exist observables that

exhibit Lie-dragging, thereby giving rise to the conservation laws discussed

herein. In general, the observables, such as the magnetic flux or entropy, need

not exhibit ‘frozen-in’ constraints such as the ones employed in the preceding

analysis.

We shall drop the overbar in the action and the Lagrangian density

described in (4.2), as it simplifies the notation. For the same reason, we also

drop the Greek indices α, β and γ present in (4.2).

4.1.2 The Eulerian closure principle and equations of motion

The variation of the action (4.2) yields

δS =

∫
D

d3rdt
( δS
δvk

δvk +
δS

δBk
δBk +

δS

δP
δP +

δS

δS
δS
)
. (4.3)

However, we need to express the quantities δBk, δS, etc in terms of δq in

order to derive the Euler-Lagrange equations of motion. We shall present this

calculation in detail for δP , since it is the most convenient for illustrating the

procedure. From (2.12), we find that

δP = −
∫
D

d3aP0(a) ∂kδ (r − q (a, t)) δqk, (4.4)

where the partial derivative is now implemented with respect to r. Substituting

this into the relevant component of (4.3), and integrating by parts yields the
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expression ∫
D

d3rdt
δS

δP
δP =

∫
D

d3adtP0

[
∂k
δS

δP

]
q

δqk, (4.5)

where the notation
[
∂k

δS
δP

]
q

is introduced as short-hand notation for[
∂k
δS

δP

]
q

=

∫
D

d3rδ (r − q (a, t)) ∂k
δS

δP
. (4.6)

The above expression has a ready physical interpretation. In Section 2.2,

we indicated that the observables can be determined from the corresponding

attributes since the delta function allows us to ‘pluck out’ the appropriate fluid

element. Here, the converse relation is true: given an Eulerian field (expressed

in terms of the observables), the delta function allows us to pluck out the

Lagrangian counterpart. As a result, the quantity (4.6) is fully Lagrangian,

since the action is fully representable either in terms of q and its derivatives,

or in terms of the Eulerian observables. Hence, the subscript q has been

introduced to emphasize its Lagrangian nature.

Let us now return to (4.5) and extremize the action. This requires

everything appearing in front of δqk must vanish. The contribution from the

P term is evidently

P0

[
∂k
δS

δP

]
q

, (4.7)

and since we know that the determinant J 6= 0, we can divide throughout by

J . Next, evaluating this expression at the label a = q−1(r, t) and using (2.12)

gives the following Eulerian contribution form the P-term:

P∂k
δS

δP
, (4.8)
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where we have used the fact that [∂k(δS/δP)]q evaluated at a = q−1(r, t)

yields ∂k(δS/δP). This effectively amounts to taking the quantity ∂k(δS/δP)

and Lagrangianizing it - expressing it in terms of q, its derivatives and the

attributes - and then re-Eulerianizing it again, i.e. re-expressing in terms

of the Eulerian fields. We can also derive the same relation, by using the

approach outlined in [137], which is often dubbed the Euler-Poincaré method

[38], as it originated with the work of Poincaré in [138]. In terms of the

notation employed in [87], the Lagrangian variation δq is denoted by ξ and the

Eulerianized counterpart is denoted by η. The Euler-Poincaré method leads

to an induced variation for P given by

δP = −∂k
(
Pηk

)
. (4.9)

Substituting this into (4.5), integrating by parts and separating out the alge-

braic expression in front of ηk, ultimately yields the same result as (4.8).

Consider now the S-term. Since S = S0, when the RHS is evaluated

at a = q−1(r, t), the integral representation of this amounts to

S =

∫
D

d3aS0J δ (r − q (a, t)) . (4.10)

With this term, we can either carry out the same approach outlined above for

P , or use the equivalent approach described in [137]. Substituting (4.10) into

the appropriate term in (4.3), obtaining the Lagrangian expression, dividing

throughout by J , and Eulerianization gives

S∂k
δS

δS
− ∂k

(
S δS
δS

)
. (4.11)
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Next, we consider the variable B-term, which satisfies the relation

Bj =

∫
D

d3a qj,iBi0δ (r − q (a, t)) . (4.12)

We repeat the procedure for this term, and obtain

Bj∂k
δS

δBj
− ∂j

(
Bj δS
δBk

)
. (4.13)

Lastly, we note that the velocity is determined via

vj =

∫
D

d3a q̇jJ δ (r − q (a, t)) , (4.14)

and we can use this to determine δv in terms of δq and obtain the final Eulerian

result. It is given by

vj∂k
δS

δvj
− ∂k

(
vj
δS

δvj

)
− ∂j

(
vj
δS

δvk

)
(4.15)

− ∂

∂t

(
δS

δvk

)
.

Together, equations (4.8), (4.11), (4.13) and (4.15) constitute the pieces that

make up the equation of motion. Putting them all together, we have

P∂k
δS

δP
+ S∂k

δS

δS
− ∂k

(
S δS
δS

)
(4.16)

+Bj∂k
δS

δBj
− ∂j

(
Bj δS
δBk

)
+ vj∂k

δS

δvj

−∂k
(
vj
δS

δvj

)
− ∂j

(
vj
δS

δvk

)
− ∂

∂t

(
δS

δvk

)
= 0.

It is evident that (4.16) is fully Eulerian, since it does not contain any La-

grangian pieces. Earlier, we’d mentioned that two different assumptions were
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made in building our model. Of these, we have used only the absence of the

1-forms in proving that our equation of motion is Eulerian. This assumption

can also be relaxed, and the ensuing result still remains the same.

Now, we shall make use of the second assumption, namely the ansatz

from (4.2) to recast (4.16) into a more recognizable form. From the definition

of the functional derivative, it can be shown that

δS

δΨ
=
∂L
∂Ψ
− ∂j

(
∂L

∂ (∂jΨ)

)
, (4.17)

where Ψ represents any of the observables. This follows from the fact that

L only involves the observables and their first-order spatial derivatives. It is

important to recognize that the LHS of (4.17) is primarily a compact way

of representing the RHS of the same expression. Using this notation when

necessary, one can rewrite (4.16) as

− ∂

∂t

(
δS

δvk

)
+ ∂j

[
δjk

(
P δS
δP

+ Bj δS
δBj
− L

)]
(4.18)

+ ∂j

[
∂L

∂ (∂jS)
(∂kS) +

∂L
∂ (∂jP)

(∂kP)

]
+ ∂j

[
∂L

∂ (∂jBi)
(
∂kBi

)
+

∂L
∂ (∂jvi)

(
∂kv

i
)]

− ∂j

[
Bj δS
δBk

+ vj
δS

δvk
+ . . .

]
= 0 .

It is important to clarify the notation employed in the above equation. We

commence with the observation that S and L are the Eulerian action and La-

grangian density respectively, since the overbars were dropped at the end of

the previous subsection. The functional derivatives of S are just the shorthand
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notation for the RHS of (4.17). Hence, it must be noted that the final expres-

sion only involves the partial derivatives of L with respect to the observables,

and with respect to the spatial gradients of the observables. Lastly, we note

that the “. . . ” indicate that higher order derivatives of the observables can

be included in the action (4.2), which in turn induces higher order derivatives

(and terms) in the above equation.

The equation of motion has been determined, and is given by (4.18).

Now, let us evaluate the dynamical equations for the observables. From the

Lagrange-Euler maps, one can use the procedure outlined in [64, 65] to obtain

the corresponding dynamical equations. For P , we find that

∂P
∂t

+∇ · (Pv) = 0. (4.19)

The dynamical equation for S is found to be

∂S
∂t

+ v · ∇S = 0, (4.20)

and lastly, the evolution equation for B is given by

∂B
∂t

+ B (∇ · v)− (B · ∇) v + (v · ∇)B = 0 . (4.21)

We observe that replacing the specific entropy S by the entropy density σ =

PS in (4.20) leads to a conservation law of σ.

Finally, we note that our Lagrangian density (typically) possesses an

internal energy density U per unit mass/particle. We can close the fluid sys-

tem by choosing U to be a suitable function of the thermodynamic variables.
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By extending this framework to incorporate |B| as well, one can construct

models with anisotropic pressure. We refer the reader to [62, 57] for a detailed

account of the same. The Lagrangian counterpart of the internal energy is

automatically achieved via the closure principle, i.e. we choose Lagrangian

functionals such that they Eulerianize to their known (Eulerian) counterparts.

4.2 Analysis of fluids, magnetofluids, and gyrofluids

In this section, we use Noether’s theorem in conjunction with (4.18) to

make some general statements about fluids and magnetofluids. Then, we shall

specialize to the case of the gyrofluid and discuss it in greater detail.

We work with the commonly used observables for fluid models, i.e., S

is replaced by s, B by B and P by ρ, and we split the action into a part that

depends on q̇ and one that does not:

S[q] =

∫
dt
(
T [q̇]− V [q]

)
. (4.22)

It is important to note that there is no explicit q-dependence in our model. To

see this, we must first recollect that none of our Lagrange-Euler maps involve

q explicitly; instead, they involve only the derivatives of q with respect to t

and a. Next, we notice that our Eulerian action is written solely in terms

of the observables, and by the closure principle, it must have arisen from its

Lagrangian counterpart. But, we see that none of the observables, on mapping

back to their Lagrangian counterparts, involve q explicitly. As a result, we

conclude that our Lagrangian action does not involve q explicitly. In general,
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let us suppose that we can write T [q̇] as

T [q̇] =

∫
D

d3a
(
M0iq̇

i + ℘0ij q̇
iq̇j + V0ijkq̇

iq̇j q̇k + . . .
)

+

∫
D

d3r
(
Miv

i + ℘ijv
ivj + Vijkvivjvk + . . .

)
, (4.23)

where we have used the fact that our action is fully Eulerianizable. In other

words, we require Mi = M0i/J and identical relations for ℘ and V in order

to ensure this property. Note that the RHS of this relation is evaluated at

a = q−1(r, t) as always. All of the expressions described above, such asM, ℘,

V , etc. are purely functions of s, ρ and B, i.e. they are independent of v.

We have not yet specified anything about the tensors M, ℘ and V .

At this stage, we only know that they are functions of the observables and

their spatial derivatives, i.e., they must possess the same form as L from (4.2),

minus the dependence of v. Let us postulate further that these tensors are fully

symmetric under the exchange of any pair of indices - this is chosen purely

for the sake of simplicity. Since we know that our action is independent of

q, the corresponding canonical momentum must be conserved. The canonical

momentum is given by

Πi =M0i + 2℘0ij q̇
j + 3V0ijkq̇

j q̇k + . . . , (4.24)

since the tensors are symmetric. The Eulerian counterpart can be found from

(2.13) by using the fact that Mi = M0i/J (and the same for the rest). It

turns out to be

M c
i =Mi + 2℘ijv

j + 3Vijkvjvk + . . . . (4.25)
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This result can also be obtained from (4.18), thereby serving as a good con-

sistency check. The first term in (4.18), which is given by − ∂
∂t

(
δS
δvk

)
, reduces

to ∂M c
k/∂t. As a result, our equation of motion becomes

∂M c
k

∂t
+ ∂jT

j
k = 0, (4.26)

which ensures that M c is conserved. The conservation of angular momentum

is a trickier business. The sufficient condition for angular momentum con-

servation is that T jk must be symmetric. Since we are dealing with a very

general ansatz, it is not possible to determine a priori whether our classes of

models will conserve angular momentum in general. The quantitiesM, ℘, etc

must be explicitly known in order to provide a definite answer. For the case

of ideal hydrodynamics and magnetohydrodynamics, the tensor T jk is indeed

symmetric.

Now, let us consider the simpler case wherein ℘ij = 1
2
ρδij. We define

the kinetic momentum M = ρv. We find that

M c
i =Mi +Mi + 3

Vijk
ρ2

M jMk + . . . , (4.27)

and we know that the LHS is conserved, i.e. d
dt

[∫
D
d3rM c

]
is zero, provided

we assume that all boundary terms that arise vanish. Let us now consider the

constraints under which the conservation of M c simplifies to the conservation

of M . For starters, the first term on the RHS of (4.27) must be expressible

as the divergence of a tensor. Upon integration by parts, it will then yield a

boundary term which can be made to vanish. Hence, a sufficient condition for

M to be conserved is to have Mi = ∂jL
j
i and Vijk = 0.
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We will now focus our attention on the model where the above con-

straints are satisfied. Let us choose to work with an action

S = SMHD −
∫
D

d3rdtLji∂jv
i, (4.28)

where our set of observables are now ρ, s, B and v. The quantity SMHD

represents the ideal MHD action, whose explicit expression is known (see, e.g.,

[18, 64]). The expression for the action is quite similar to the one studied in

Chapter 3, and, in fact, constitutes the class of gyroviscous models.

From our preceding analysis, it is clear that both M c and M are con-

served for this model. It is also clear that this action satisfies the ansatz that

we specified in (4.2). Furthermore, the ideal MHD action yields a symmetric

momentum flux tensor, ensuring that T jk is symmetric. Hence, the first term

in (4.28) also conserves angular momentum.

As a result, we only need to investigate L and the constraints that must

be imposed upon it to ensure that T jk is symmetric. Given that L can only

depend on B, s and ρ and their first order derivatives, there are still an infinite

number of terms that can be generated. It is evident of course that this system

is too elaborate to permit further analysis. Hence, to illustrate our mode of

analysis, we shall work with a test case where Lji is symmetric and has the

form

Lji =
1

2

[(
BjBi +BiBj

)
αI +

(
δji + δij

)
αII
]
, (4.29)

with αI,II only depending on s, ρ and |B|. We use (4.28) and (4.29) in (4.18).

Rather than use brute force, we shall use some of the inherent symmetries of
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(4.18). Note that the first line in (4.18) contains terms that yield a symmetric

contribution to T jk , since they are gradient terms, similar to the pressure. In

the second line of (4.18), there are no contributions since there are no density

and entropy gradients. The same is also true for the first term on the third

line of (4.18), since (4.29) does not possess magnetic field gradients. As a

result, we are left with only three terms of interest - the last three occurring

in the LHS of (4.18). Upon evaluation, we find that the resulting tensor is

not symmetric, and the ansatz (4.29) does not possess angular momentum

conservation. Thus, from this test case, we see that one can analyse the model

in considerable depth without explicitly working through all the intermediate

details.

The existence of multiple observables, such as the magnetic field for

instance, makes it difficult to address the issue of angular momentum conser-

vation. The primary source of ambiguity emerges from the difficulty in impos-

ing a priori constraints on the general structure that the Lagrangian should

possess in order to exhibit rotational invariance. However, one may be able

to generate an angular momentum, albeit not r ×M , that is conserved. We

observe that the intricacies behind angular momentum conservation are quite

interesting, and constitute a promising line of enquiry, both from a theoretical

and applied standpoint; the latter is of interest as it affects angular momentum

transport, which is widely studied in fusion and astrophysical plasmas.

Now, let us suppose that we consider the hydrodynamic case where B

is absent. Let us further specialize to the case where gradients with respect
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to s and ρ are absent, and the gyroscopic term is of the form (4.28). In

such a scenario, the condition for angular momentum conservation becomes

particularly simple, since the tensor

Lji
(
∂kv

i
)

+ vj∂i
(
Lik
)
, (4.30)

must be symmetric.

4.3 An illustration of the formalism

To demonstrate the utility of the formalism developed in this paper,

we now consider a simple illustration that demonstrates how an additional

attribute can be added to ideal HD. The attribute we add represents an internal

degree of freedom, an intrinsic rotational (angular) velocity, attached to each

fluid element. Given the new set of observables, we can immediately use (4.18)

to compute the corresponding equation of motion.

There are many physical situations where an internal angular velocity

or momentum is appropriate, because such microscopic behaviour influences

the macroscopic dynamics. One example is the effect of finite Larmor radius

gyration of charged particles in a magnetic field [129, 130] while another oc-

curs in the theory of nematodynamics. We consider the latter which applies to

liquid crystals, where the Lagrangian description of the fluid ‘particles’ models

them as a collection of rods. These rods are endowed with a preferred direc-

tion, called the director, and an intrinsic angular momentum. The relevant

dynamics for this system are described in [139]; see also [140] for an associated
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discussion. For an introduction to nematodynamics, we refer the reader to

the classic works of [141, 142, 143] and the modern works of [144, 40, 145].

A simplified limit of this work where phenomenological dissipative relaxing is

removed (their parameter γ−1 → 0) results in a reduction to a single variable

Ω‖, an angular velocity proportional to the intrinsic angular momentum paral-

lel to the now constant director. The new variable Ω‖ is advected by the fluid

velocity field, and thus behaves as a 0-form. We shall work with this subcase

henceforth.

One must now construct an appropriate Lagrange-Euler map for our

attribute-observable pair, denoted by Ω0‖ and Ω‖, respectively. Since we have

noted that Ω‖ is advected, this corresponds to Ω‖ = Ω0‖, with the RHS evalu-

ated at a = q−1(r, t). The advection equation is given by

∂Ω‖
∂t

+ vj∂jΩ‖ = 0, (4.31)

and the similarity to the entropy is self-evident. One can now construct an

angular momentum density, l2ωd := ρ l2Ω‖, that behaves as a three-form. Here

the quantity l represents the radius of gyration with l2 being interpreted as

the moment of inertia per unit mass. Its governing equation is

∂ωd
∂t

+ ∂j
(
vjωd

)
= 0, (4.32)

and the relationship between ωd and its corresponding attribute ω0d is ωd =

ω0d/J with the RHS evaluated at a = q−1(r, t).
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By analogy with classical (discrete) mechanics, we propose the contin-

uum rotational kinetic energy functional,

Krot :=

∫
D

d3a
1

2
ρ0l

2Ω2
0‖ =

∫
D

d3a l2
ω2

0d

2ρ0

. (4.33)

It is easily verified that the above functional satisfies the Eulerian closure

principle, with its counterpart given by l2ω2
d/(2ρ). From (4.33), it is evident

that the expression is entirely independent of q, implying that it serves as a

Lagrangian invariant, and does not enter the equation of motion. This can also

be verified by taking the Eulerian counterpart and substituting it into (4.18).

Despite its absence in the momentum equation of motion, it is instructive to

see how the rotational and translational kinetic energies stack up against each

other. In order to compute the rotational energy, we assume that our fluid

particles can be modelled as molecules. In such a scenario, we find that the

ratio reduces to
l2Ω2

‖

v2
∼ Θ

T
, (4.34)

where Θ denotes the rotational temperature of the molecules [146]. We have

assumed that v is characterized by the thermal velocity, and lΩ‖ by the rota-

tional temperature. In general, it is evident that this ratio is extremely small

for hot fluids, such as the ones observed in fusion reactors or in stars. How-

ever, there exist environments in nature, such as giant molecular clouds which

possess temperatures of a few tens of Kelvin [147, 148]. They are comprised

of molecular hydrogen, whose rotational temperature is known to be around

88 K [146]. As a result, we see that the two energies are comparable in this
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regime and there remains an outside possibility that such effects might be of

importance. As stated earlier, (4.33) does not enter the equation of motion,

but it does serve as a Casimir invariant, and is therefore of interest.

We have earlier mentioned that we study a subcase of [139] where cou-

pling terms involving v and Ω‖ are non-existent. Now, let us add a simple

term of the form l2ωdC
k
i ∂kv

i to the action, where Ck
i is a tensor with constant

coefficients. Then, the full action is given by

S := SHD +

∫
D

d3rdt l2ωdC
k
i ∂kv

i, (4.35)

where SHD represents the ideal HD action. The new term can be interpreted

as follows. Firstly, observe that an integration by parts casts it in the form of

v·∇×Lint, provided that we associate the tensor Ck
i with the three-dimensional

Levi-Civita tensor - with one of the indices fixed to be ẑ, the director direction -

and the term Lint with the intrinsic angular momentum density. By inspection,

it is found that Lint = (l2ωd) ẑ = (ρl2) Ω‖ẑ and it is evidently the product

of the moment of inertia (per unit volume) and the angular velocity. This

term was not constructed at random - it corresponds to the analogue of 2D

gyroviscous MHD studied in Chapter 3. In gyroviscous MHD, the particles

undergo Larmor gyration as a result of the magnetic field, behaving as though

they were indeed endowed with an intrinsic angular velocity (and angular

momentum). The corresponding equation of motion is given by

∂ (ρvk)

∂t
+ ∂j

[(
Cj
kv

i − Ci
kv

j
)
∂i
(
l2ωd

)]
(4.36)

+ ∂j
[(
l2ωd

) (
Cj
k∂iv

i − Cj
i ∂kv

i
)]

+ · · · = 0,
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where the “. . . ” indicates that the rest of the terms are identical to the ones

present in the ideal HD momentum equation. The four additional terms in-

volve gradients with respect to the velocity (or angular velocity), and they

serve as the de facto viscosity tensor. If we assume that the fluid has the

property that ωd = const, the two terms in the first line of (4.36) vanish iden-

tically. However, the next two terms are still present, which changes the ideal

MHD momentum flux. With this special choice of ωd, one notices a striking

resemblance with the conventional viscous tensor - there are terms involving

∂kv
i and the divergence ∂iv

i, and the coefficients in front of these terms cor-

respond to the dynamic and bulk viscosities respectively. This explains the

rationale behind treating it as a ‘viscosity’ despite the fact that it is dissipa-

tionless in general. Thus, we see that the angular momentum fluid, with some

minor restrictions, mirrors the conventional viscous fluid. The viscous tensor

that arises when we set Ci
k ≡ εik is a very special one - it corresponds to the

2D simplified limit of the Braginskii gyroviscous tensor, as noted in Chapter

3. We also remarked, in the same Chapter, that it arises in a wide range of

contexts in condensed matter, and has been referred to as Hall viscosity. Thus,

we see that there exists a natural commonality between plasmas and liquid

crystals, which was further explored in [133].

In general, ωd depends on time, and hence one can interpret (4.36)

as comprising of time-dependent viscosities, thereby representing a theory of

non-Newtonian fluids [149, 150]. The importance of such fluids in biological

systems is well-documented [151, 152]. The action (4.35) conserves energy and
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linear momentum ρv, but it does not always conserve the angular momentum

r × (ρv). If we assume that the coupling tensor Ci
j is purely antisymmetric,

the stress tensor in (4.36) becomes symmetric, thereby leading to angular

momentum conservation. One such choice corresponds to the 2D Levi-Civita

tensor, which was discussed in the previous paragraph.

In our discussion here, we have built a theory of fluids with intrinsic

angular momentum by incorporating the rotational kinetic energy and gyro-

viscous terms. This illustrative model corresponds to a simplified version of

[139] for nematic effects in liquid crystals, but with additional effects incorpo-

rated, and it serves as an illustration of building models from scratch. Clearly

the nondissipative parts of more complete models can be built in this manner,

and potential applications in a variety of fields, e.g., nematics, micromorphic

systems [153], and plasma physics, come to mind.
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Chapter 5

The derivation of extended MHD models via

the two-fluid action

In this Chapter, we shall use the two-fluid action as our starting point,

and highlight one of the chief advantages of the HAP formulation - the capac-

ity to perform orderings in the action, as opposed to the equations of motion.

We shall see that a variety of extended MHD models emerge as a consequence.

Unlike the previous chapters, which relied on an action principle in purely La-

grangian variables, our treatment involves a mixed Eulerian-Lagrangian frame-

work. Hence, we shall endeavour to keep the treatment as self-contained as

possible. The results derived in this Chapter have been published in [154].

5.1 Review: Two-fluid model and action

In this section, we will briefly review the derivation of the non-dissipative

two-fluid model equations of motion from the general two-fluid action. We shall

use the two-fluid action as our parent model in deriving reduced models via

suitable orderings. We also use this section to briefly establish the notation

employed.

To simplify our notation, we will avoid explicit vector notation, fol-
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lowing the approach outlined in [17], and define the following: qs = qs(a, t)

is the position of a fluid element in a Cartesian coordinate system, where

a = (a1, a2, a3) is any label identifying the fluid element and qs = (qs1, qs2, qs3).

The label s = (i, e) is used to denote the species under consideration. Here,

we choose a to be the initial position of the fluid particle at t = 0, although

other choices are possible [87]. The Lagrangian velocity will then be denoted

by q̇s.

The Eulerian velocity field will be denoted by vs(r, t), where vs =

(vs1, vs2, vs3) and r = (x1, x2, x3) denotes the position in the Eulerian frame-

work. Similarly, we define the electric field vector E(r, t), the magnetic field

vector B(r, t), and the vector and electrostatic potential A(r, t) and φ(r, t). If

we need to explicitly refer to components of these vectors, we will use sub-

scripts (or superscripts) j and k. To simplify the equations, we will also often

suppress the dependence on r, a, and t.

The action functional described below will include integrations over

both the position space
∫
d3r and the label space

∫
d3a. We will not explicitly

specify the domains of integration, but we shall assume that our functions are

well-defined on their respective domains, and that integrating them and taking

functional derivatives is allowed. Moreover, we will assume that all variations

on the boundaries of the domains and any surface terms (due to integration

by parts) vanish. In the previous Chapters, we worked with in SI units with

µ0 = 1, but we shall use CGS units for the duration of this Chapter.
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5.1.1 Constructing the two-fluid action

The action functional of a general theory of a charged fluid interacting

with an electromagnetic field should include the following components:

• The energy of the electromagnetic field, comprising of terms proportional

to E2 and B2.

• The fluid-field interaction energy, expressed in terms of the electromag-

netic potentials. There are two components of this term, one for each

species.

• The fluid energy, comprising of the kinetic and internal energies for each

species.

We will assume two independent fluids corresponding to two different

species, chosen to be ions and electrons. The species are endowed with charge

es, mass ms and initial number density of ns0(a) and they interact with the

electromagnetic field, but not directly with each other. Therefore, it is easy

to see that the fluid-dependent parts of the action will naturally split into two

parts, one for each species.

The complete action functional is given by

S[qs, A, φ] =

∫
T

dt L , (5.1)
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where T serves a finite time interval and the Lagrangian L is given by

L =
1

8π

∫
d3r

[ ∣∣∣∣−1

c

∂A(r, t)

∂t
−∇φ(r, t)

∣∣∣∣2 − |∇ × A(r, t)|2
]

(5.2)

+
∑
s

∫
d3a ns0(a)

∫
d3r δ (r − qs(a, t))×

[es
c
q̇s · A(r, t)− esφ(r, t)

]
(5.3)

+
∑
s

∫
d3a ns0(a)

[ms

2
|q̇s|2 −msUs (msns0(a)/Js, ss0)

]
. (5.4)

The symbol Js is the Jacobian of the map between Lagrangian positions

and labels, q(a, t), which shall be covered in more detail subsequently. We

have expressed the electric and magnetic fields in terms of the vector and

scalar potential, E = −1/c (∂A/∂t) − ∇φ and B = ∇ × A everywhere. The

first term (5.2) is the electromagnetic field energy, while the next expression

(5.3) denotes the the coupling of the fluid to the electromagnetic field, which

is achieved here by using the delta function. The delta function ensures that

the fluid element passing by the Eulerian point r is ‘plucked out’. The last

line of the Lagrangian L (5.4) represents the kinetic and internal energies of

the fluid. We see that the specific internal energy (energy per unit mass) of

species s, Us, depends both on the density as the entropy ss0 for each species.

Also note, that the vector and scalar potentials are Eulerian variables. Thus,

the Lagrangian, and thereby, the action, are mixed in nature, they comprise

of both the Eulerian and Lagrangian variables.
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5.1.2 Lagrange-Euler maps for the two-fluid model

In accordance with the Eulerian Closure Principle introduced in Chap-

ter 2, we need to ensure that the action (5.1) can be completely expressed in

terms of the desired set of Eulerian variables, which in turn ensures that the

resulting equations of motion will also be completely Eulerian, hence represent-

ing a physically meaningful model. The connection between the Lagrangian

and Eulerian pictures of fluids is achieved via the Lagrange-Euler maps. Be-

fore looking at the mathematical implementation of this map, let us recollect

its physical meaning once more. As an example, consider the Eulerian velocity

field v(r, t) at a particular position r at time t. The velocity of the fluid at

that point will be the velocity of the particular fluid element q̇(a, t) which has

started out at position a at time t = 0 and then arrived at point r = q(a, t) at

time t.

To implement this idea, we define the Eulerian number density ns(r, t)

in terms of Lagrangian quantities as follows:

ns(x, t) =

∫
d3a ns0(a) δ (x− qs(a, t)) . (5.5)

Using the properties of the delta function, this relation can be rewritten as

ns(x, t) =
ns0(a)

Js

∣∣∣∣
a=q−1

s (x,t)

, (5.6)

where, Js = det (∂qs/∂a) is the Jacobian determinant. Note that (5.6) implies

the continuity equation

∂ns
∂t

+∇ · (nsvs) = 0 , (5.7)
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automatically follows, which corresponds to local mass conservation if we de-

fine the mass density as ρs = msns. As per the interpretation discussed in

Chapter 2, this arises as a consequence of the number density being Lie-

dragged as a 3-form.

The corresponding relation for the Eulerian velocity is

vs(r, t) = q̇s(a, t)|a=q−1
s (r,t) , (5.8)

where the dot indicates differentiation with respect to time at fixed particle

label a. This relation follows from integrating out the delta function in the

Lagrange - Euler map for the (Eulerian) momentum density, Ms := msnsvs,

Ms(r, t) =

∫
d3a ns0(a, t)δ (r − qs(a, t))msq̇s(a, t) . (5.9)

Finally, our Eulerian entropy per unit mass, ss(r, t), is defined by

ρsss(r, t) =

∫
d3a ns0(a)ss0(a)ms δ (r − qs(a, t)) , (5.10)

completing our set of fluid Eulerian variables for this theory, which is {ns, ss,Ms}.

It is easy to check that the closure principle is satisfied by these variables.

For later use, we quote (without proof) some results from Chapter 2

involving the determinant and its derivatives

∂qk

∂aj
Aik
J

= δij , (5.11)

where Aik is the cofactor of ∂qk/∂ai := qk,i. A convenient expression for Aik is

Aik =
1

2
εkjlε

imn ∂q
j

∂am
∂ql

∂an
, (5.12)
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where εijk(= εijk) is the Levi-Civita tensor. Using (5.11), one can show that

∂J
∂qi,k

= Aji (5.13)

and using the chain rule

∂

∂qk
=

1

J
Aik

∂

∂ai
. (5.14)

5.1.3 Varying the two-fluid action

The action of (5.1) depends on four dynamical variables: the scalar and

vector potentials, φ and A, and the positions of the fluid elements qs. Of these,

the former duo are Eulerian in nature, whilst the latter are Lagrangian.

Varying with respect to φ yields Gauss’s law

∂k

(
−1

c

∂Ak
∂t
− ∂kφ

)
= 4πe

[∫
d3a ni0(a) δ (r − qi)−

∫
d3a ne0(a) δ (r − qe)

]
,

where ∂k := ∂/∂xk, or in more familiar form

∇ · E = 4πe (ni(x, t)− ne(x, t)) . (5.15)

Similarly, the variation with respect to A recovers the Maxwell-Ampere law

1

4π

[
−∇×∇× A+

1

c

∂

∂t

(
−1

c

∂A

∂t
−∇φ

)]
− e

c

∫
d3a [δ (r − qe)ne0q̇e + δ (r − qi)ni0q̇i] = 0

which can be re-expressed to yield

∇×B =
4πJ

c
+

1

c

∂E

∂t
(5.16)
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where the Eulerian current density J is defined as

J(r, t) = e (nivi − neve) . (5.17)

Recall that the other two Maxwell equations are contained in the definition of

the potentials.

Variation with respect to the qs’s is slightly more complex, and we will

illustrate a few intermediate steps. Varying the kinetic energy term is straight

forward and yields

−ns0(a)msq̈s(a, t) (5.18)

The j-th component of the interaction term results in

esns0(a)

[
−1

c

dAj(qs, t)

dt
+

1

c
q̇ks
∂Ak(qs, t)

∂qjs
− ∂φ(qs, t)

∂qjs

]
= esns0(a)

[
−1

c

∂Aj(qs, t)

∂t
− 1

c
q̇ks
∂Aj(qs, t)

∂qks

+
1

c
q̇ks
∂Ak(qs, t)

∂qjs
− ∂φ(qs, t)

∂qjs

]
(5.19)

= esns0(a)

[
E(qs, t) +

1

c
q̇s(a, t)× (∇qs × A (qs, t))

]
j

Notice that this expression is purely Lagrangian. The fields A and E are

evaluated at the positions qs of the fluid elements and the curl ∇qs× is taken

with respect to the Lagrangian position qs. Also note, since qs = qs(a, t), any

total time derivative of, e.g., A(qs, t) will result in two terms.

Variation of the internal energy term yields

Aji
∂

∂aj

ρ2
s0

J 2
s

∂U
(
ρs0
Js , ss0

)
∂
(
ρs0
Js

)
 . (5.20)
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Setting the sum of (5.18), (5.19) and (5.20) equal to zero and invoking

the usual thermodynamic relations between internal energy and pressure and

temperature,

ps = (msns)
2 ∂Us
∂(msns)

and Ts =
∂Us
∂ss

(5.21)

results in the well-known (non-dissipative) two-fluid equations of motion

msns

(
∂vs
∂t

+ vs · ∇vs
)

= esns

(
E +

1

c
vs ×B

)
−∇ps (5.22)

Further analysis, see e.g. [60, 155], of these equations usually involves

the addition and subtraction of the two-fluid equations and a change of variable

transformation to

V =
1

ρm
(minivi +meneve)

J = e (nivi − neve)

ρm = mini +mene (5.23)

ρq = e (ni − ne) .

The resulting equations are then simplified by making certain assump-

tions such as quasineutrality, v << c, etc. and suitable orderings to obtain two

new one-fluid equations – one of these is commonly described as the one-fluid

momentum equation and the other serves as the generalized Ohm’s law.

5.2 The new one-fluid action

Before proceeding onwards to model-building, we must identify the vari-

ables of interest, i.e. the Eulerian observables that make up our new model.
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Since we want to derive the two-fluid model of Lüst [155] and various reduc-

tions, our Eulerian observables are going to be the set {n, s, se, V, J, E,B},

where s = (misi + seme)/m, with m = me + mi, and n is a single number

density variable.

Next we have to define our Lagrangian variables and also construct

the action. We shall implement all assumptions, and orderings, solely on the

level of the action, which preserves the Hamiltonian nature of the underlying

physical theories. Varying the new action will then result in equations of

motion that, using properly defined Lagrange-Euler maps, will Eulerianize to,

e.g., Lüst’s equation of motion and the generalized Ohm’s law.

5.2.1 New Lagrangian variables

We will start by defining a new set of Lagrangian variables, inspired by

(5.23), as follows,

Q(a, t) =
1

ρm0(a)
(mini0(a)qi(a, t) +mene0(a)qe(a, t))

D(a, t) = e (ni0(a)qi(a, t)− ne0(a)qe(a, t))

ρm0(a) = mini0(a) +mene0(a) (5.24)

ρq0(a) = e (ni0(a)− ne0(a)) .

Here Q(a, t) can be interpreted as the centre-of-mass position variable and

D(a, t) as a local dipole moment variable, connecting an ion fluid element to

an electron fluid element. Upon taking the partial time derivatives of Q and
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D, we arrive at the center-of-mass velocity Q̇(a, t) and the Lagrangian current

Ḋ(a, t), respectively. Using appropriately defined Lagrange-Euler maps, we

can ensure that Q̇(a, t) will map to the Eulerian velocity V (x, t) and Ḋ(a, t)

to the Eulerian current J(x, t) as defined by (5.23).

We will also need the inverse of this transformation,

qi(a, t) =
ρm0(a)Q(a, t) + me

e
D(a, t)

ρm0(a) + me

e
ρq0

qe(a, t) =
ρm0(a)Q(a, t)− mi

e
D(a, t)

ρm0(a)− mi

e
ρq0

ni0(a) =
ρm0(a) + me

e
ρq0(a)

m
(5.25)

ne0(a) =
ρm0(a)− me

e
ρq0(a)

m
.

5.2.2 Ordering of fields and quasineutrality

Before commencing our ordering procedure, we emphasize that our

method is rather novel, as most reductions are obtained by imposing an aux-

iliary ordering on the equations of motion. On the other hand, we perform

orderings directly in the action, which has the chief advantage of preserving

the variational formulation.

To construct the action, we will start with the two-fluid action of (5.1)

and change variables to Q and D, we will first make two simplifying assump-

tions to recover models that are of interest to us. Firstly, we order the elec-

tromagnetic fields in the action so that the displacement current in (5.16) will
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vanish. Secondly, we shall enforce an ordering that automatically leads to

quasineutrality. We shall now describe this field ordering in detail and discuss

quasineutrality in the Lagrangian variable context, which as far as we know

has not been done before.

We can neglect the displacement current in Ampére’s law when the

time scale of changes in the field configuration is much longer when compared

to the time it takes for radiation to “communicate” these changes across the

system [93, 156]. We transition to non-dimensional variables by introducing a

characteristic scale B0 for the magnetic field and a characteristic length scale

` for gradients. We normalize the q̇s’s by the Alfvén speed vA = B0/
√

4πρ and

the times by the Alfvén time tA = `/vA, resulting in the following form for the

sum of the field and interaction terms of the Lagrangian:

B2
0

8π

∫
dt

∫
d3r̂

∣∣∣∣∣−vAc ∂Â∂t̂ − φ0

B0`
∇̂φ̂

∣∣∣∣∣
2

−
∣∣∣∇̂ × Â∣∣∣2


+
∑
s

B2
0

[∫
dt

∫
d3â n0n̂s0(a)es

∫
d3r̂ δ (r̂ − q̂s)×

(
vA`

B0c
ˆ̇qs · Â−

φo
B2

0

φ̂

)]
,

where φ0 and n0 are yet to be specified scales for the electrostatic potential

and the densities of both species, respectively. We also require that the two

species’ velocities are of the same scale.

Now, we demand that the two terms in the interaction play an equally

important role, i.e. we require them of the same order. This automatically

results in a scaling for φ; viz., φ0 ≡ B0`vA/c. Thus, both parts of the |E|2

term are of order O (vA/c). Neglecting this term and varying with respect to
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Â results in

∇̂ × B̂ =
4πen0vA

c

`

B0

(∫
d3a δ(r̂ − q̂i)n̂i0(a) ˆ̇qi −

∫
d3aδ(r̂ − q̂e)n̂e0(a) ˆ̇qe

)
,

which can be written as

B0

`
∇̂ × B̂ =

4πj0
c
Ĵ , (5.26)

where j0 = en0vA is the appropriate scale for the current.

Varying the scaled action with respect to φ̂ yields

0 =

∫
d3âδ(r̂ − q̂i)n̂i −

∫
d3âδ(r̂ − q̂e)n̂e ≡ ∆n̂ (5.27)

The above equation states that the difference in the two densities is zero, i.e.,

the plasma is quasineutral, and this is an property that holds true locally, i.e.

it amounts to ni(r, t) = ne(r, t). Using (5.6), this statement would correspond

to the following in the Lagrangian variable picture:

ni0(a)

Ji(a, t)

∣∣∣∣
a=q−1

i (r,t)

=
ne0(a)

Je(a, t)

∣∣∣∣
a=q−1

e (r,t)

. (5.28)

In the Lagrangian picture we will make the additional assumption of

homogeneity: ni0(a) = ne0(a) = constant. This statement implies that, at

t = 0, all fluid elements are identical in the amount of density that they carry.

Therefore, we can replace ni0 and ne0 with a constant n0. Equation (5.28)

then reduces to a statement about the two Jacobians

Ji(a, t)
∣∣∣
a=q−1

i (r,t)
= Je(a, t)

∣∣∣
a=q−1

e (r,t)
, (5.29)

which will play a central role in our development below.
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At first glimpse, it may appear as though we cannot describe plasmas

with density gradients, as we have used the term ‘homogeneity’ in our descrip-

tion. But, it is important to recognize that this assumption is only on the

Lagrangian level. In moving to the Eulerian picture, the presence of the Jaco-

bians ensures that density gradients and inhomogeneity can exist, and evolve

over time. Furthermore, we can select our labeling scheme, and hence the

Jacobian, to suitably reflect the initial density gradient of the configuration.

Thus, it is clear that there is still a considerable amount of freedom in this

regard.

5.2.3 Action functional

We are now ready to implement the change of variables discussed in

Section 5.2.1. Because of the homogeneity assumption ni0(a) = ne0(a) = n0,

the new variables of (5.24) reduce to

Q(a, t) =
mi

m
qi(a, t) +

me

m
qe(a, t)

D(a, t) = en0 (qi(a, t)− qe(a, t))

ρm0(a) = mn0 (5.30)

ρq0(a) = 0

and the inverse transformation of (5.25) to

qi(Q,D) := qi(a, t) = Q(a, t) +
me

men0

D(a, t)

qe(Q,D) := qe(a, t) = Q(a, t)− mi

men0

D(a, t) , (5.31)
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where we choose the notation qs(Q,D) to emphasize that the Lagrangian vari-

ables qs should not be thought of as ion/electron trajectories any more but

as specific linear combinations of Q(a, t) and D(a, t). In addition, we will

need the ion and electron Jacobians, Ji(Q,D) and Je(Q,D), which must now

expressed in terms of Q and D.

The resulting action functional has the form:

S =− 1

8π

∫
dt

∫
d3r |∇ × A(r, t)|2

+

∫
dt

∫
d3r

∫
d3a n0

{
δ(x− qi(Q,D))

×
[
e

c

(
Q̇(a, t) +

me

men0

Ḋ(a, t)

)
·A(x, t)− eφ(x, t)

]}

+

∫
dt

∫
d3r

∫
d3a n0

{
δ(x− qe(Q,D))

×
[
−e
c

(
Q̇(a, t)− mi

men0

Ḋ(a, t)

)
·A(x, t) + eφ(x, t)

]}

+
1

2

∫
dt

∫
d3a n0

[
mi|Q̇|2(a, t) +

mime

me2n2
0

|Ḋ|2(a, t)

]

−
∫
dt

∫
d3a n0

[
miUi

(
min0

Ji(Q,D)
, (ms0 −mese0)/mi

)

+meUe

(
men0

Je(Q,D)
, se0

)]
, (5.32)

where we recall that s0 = (misi0 +mese0)/m.
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5.2.4 Nonlocal Lagrange-Euler maps

Hitherto, we have introduced Q and D and worked with them exten-

sively, but we have not specified their Eulerian counterparts. Now we define

the Lagrange-Euler maps that connect the Eulerian observables V and J to the

new Lagrangian variables Q and D. Referring to Section 5.1.2, the Lagrange-

Euler map was specified as a relationship between a Lagrangian quantity and

some Eulerian observables, which holds only when it is evaluated on a trajec-

tory r = qs(a, t). If we apply the inverse Lagrange-Euler maps from Eqs. (5.6)

and (5.8) to (5.23) and assume quasineutrality, we get

V (r, t) =
mi

m
q̇i(a, t)

∣∣∣
a=q−1

i (r,t)
+
me

m
q̇e(a, t)

∣∣∣
a=q−1

e (r,t)

J(r, t) = e

(
n0

Ji(a, t)
q̇i(a, t)

) ∣∣∣∣∣
a=q−1

i (r,t)

− e
(

n0

Je(a, t)
q̇e(a, t)

) ∣∣∣∣∣
a=q−1

e (r,t)

n(r, t) =
mi

m

(
n0

Ji(a, t)

) ∣∣∣∣∣
a=q−1

i (r,t)

+
me

m

(
n0

Je(a, t)

) ∣∣∣∣∣
a=q−1

e (r,t)

(5.33)

s(x, t) =
mi

m
si0

∣∣∣
a=q−1

i (r,t)
+
me

m
se0

∣∣∣
a=q−1

e (r,t)
(5.34)

se(x, t) = se0

∣∣∣
a=q−1

e (r,t)
. (5.35)

The definitions of Q(a, t) and D(a, t) in (5.30) are strongly indicative

that their time-derivatives should be associated with V and J , respectively.

However, it is important to recognize both Q̇ and Ḋ are nonlocal objects, as

they relate the velocities of electrons and ions which are located at different

points in space. This implies that neither Q̇ nor Ḋ, when evaluated at the
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inverse maps for a, can Eulerianize to a purely local velocity or current, since,

in general, r = qi(Q,D) and r′ = qe(Q,D) with r 6= r′. In other words, Q̇

and Ḋ are simultaneously evaluated at different trajectories. Therefore, we

have two different inverse functions where the Lagrangian quantities are to be

evaluated, namely, a = q−1
i (r, t) and a = q−1

e (r′, t) which should be thought of

as the inverse functions of r = qi(Q,D) and r′ = qe(Q,D).

Thus, by taking these factors into account, we define our Lagrange-

Euler maps, with r = r′ chosen to ensure locality, as follows

V (r, t) =
mi

m

(
Q̇(a, t) +

me

men0

Ḋ(a, t)

)∣∣∣∣
a=q−1

i (r,t)

(5.36)

+
me

m

(
Q̇(a, t)− mi

men0

Ḋ(a, t)

)∣∣∣∣
a=q−1

e (r,t)

J(r, t) =
en0

Ji(a, t)

(
Q̇(a, t) +

me

men0

Ḋ(a, t)

)∣∣∣∣
a=q−1

i (r,t)

− en0

Je(a, t)

(
Q̇(a, t)− mi

men0

Ḋ(a, t)

)∣∣∣∣
a=q−1

e (r,t)

.

Due to (5.29), the two Jacobian determinants are equal provided that they

are evaluated at their respective inverse functions, and can be replaced by a

common Jacobian determinant, J .

The maps just defined are straight-forward to apply for mapping an

Eulerian statement to a Lagrangian one, but for our purpose, we have to

invert them. To keep careful track of the two inverse functions, we shall carry
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out an inversion of the intermediate quantities:

V (r, t) +
me

men(r, t)
J(r, t)

=

(
Q̇(a, t) +

me

men0

Ḋ(a, t)

)∣∣∣∣
a=q−1

i (r,t)

(5.37)

V (r, t)− mi

men(r, t)
J(r, t)

=

(
Q̇(a, t)− mi

men0

Ḋ(a, t)

)∣∣∣∣
a=q−1

e (r,t)

, (5.38)

where we have used (5.6). The inverse Lagrange-Euler maps are now given by

Q̇(a, t) =
mi

m

(
V (r, t) +

me

men(r, t)
J(r, t)

)∣∣∣∣
r=qi(Q,D)

+
me

m

(
V (r′, t)− mi

men(r′, t)
J(r′, t)

)∣∣∣∣
r′=qe(Q,D)

Ḋ(a, t) = en0

(
V (r, t) +

me

men(r, t)
J(r, t)

)∣∣∣∣
r=qi(Q,D)

− en0

(
V (r′, t)− mi

men(r′, t)
J(r′, t)

)∣∣∣∣
r′=qe(Q,D)

. (5.39)

Note that the construction of the maps of Eqs. (5.36) and (5.39) could be

undertaken with any invertible linear combination of the time derivatives of

our Lagrangian variables. The only restriction, albeit a very stringent one, is

that the final action should comply with the Eulerian Closure Principle, i.e., it

should be expressible entirely in terms of the Eulerian observables. By using

the above relations, it is easy to verify that such is indeed the case.

5.2.5 Lagrange-Euler maps without quasineutrality

Had we not assumed quasineutrality, we would have had to proceed

in a completely different manner - (5.23) implies that the proper Lagrangian
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variables that would Eulerianize to the velocity and current would now be

V (r, t) =

mi

(
ni0

Ji q̇i(a, t)
)∣∣∣

a=q−1
i (r,t)

mi

(
ni0

Ji

)∣∣∣
a=q−1

i (r,t)
+ me

(
ne0

Je

)∣∣∣
a=q−1

e (r,t)

+
me

(
ne0

Je q̇e(a, t)
)∣∣∣

a=q−1
e (r,t)

mi

(
ni0

Ji

)∣∣∣
a=q−1

i (r,t)
+ me

(
ne0

Je

)∣∣∣
a=q−1

e (r,t)

,

J(x, t) = e

(
ni0
Ji
q̇i(a, t)

)∣∣∣∣
a=q−1

i (x,t)

− e

(
ne0
Je

q̇(a, t)

)∣∣∣∣
a=q−1

e (x,t)

.

The above equations indicate that, in the absence of quasineutrality, the defi-

nitions for Q̇, Ḋ, etc. should be modified to the following:

Q̇(a, t) =
1

ρm0(a)

(
miJeni0(a)q̇i(a, t) +meJine0(a)q̇e(a, t)

)
Ḋ(a, t) = e

(
Jeni0(a)q̇i(a, t)− Jine0(a)q̇e(a, t)

)
ρm0(a) = miJeni0(a) +meJine0(a)

where Q̇/ (JiJe) maps to V (r, t) and Ḋ/ (JiJe) to J(r, t). In this case, how-

ever, both Q̇ and Ḋ can only be implicitly defined, since the definitions of Ji

and Je cannot be simplified as before. This problem is absent when one is

manipulating the Eulerian equations of motion. The difficulties encountered

appear to suggest that a one-fluid description cannot emerge when there is no

quasineutrality. Although this is only a hypothesis, it is borne out by the most

general case derived by Lüst in [155]. The resulting equations of motion in V

and J still contain terms explicitly referring to ion/electron quantities, e.g., ni

and ne. It indicates that a complete one-fluid description of non-quasineutral

extended MHD may not exist; if it does, it is likely that the corresponding
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action would be somewhat complicated. In constructing our action, and the

Eulerian Closure Principle, we relied quite heavily on quasineutrality and it is

not evident how this can be bypassed. In order to preserve the closure prin-

ciple, one would need a means of distinguishing between integrations over ion

and electron labels, to take into account the different factors of Js floating

around.

5.2.6 Derivation of the continuity and entropy equations

Before we derive the equations of motion for several different models

in the next section, we derive here the continuity equation, which all of the

models below have in common, and the entropy equations.

Due to the identity of the Jacobians from (5.29), the equation for n

(5.33) reduces to

n(r, t) =

(
n0

Ji(a, t)

)∣∣∣∣
a=q−1

i (r,t)

=

(
n0

Je(a, t)

)∣∣∣∣
a=q−1

e (r,t)

, (5.40)

where the factors of q−1
s are the inverse functions of qs(Q,D). Inverting the

equation for the ions and taking the time derivative yields

dn

dt

∣∣∣∣
x=qi(Q,D)

=
d

dt

n0

Ji(a, t)
= − n0

J 2
i (a, t)

∂Ji
∂t

.

To Eulerianize the equation above, we use the well-known relations d/dt =

∂/∂t+ v · ∇ and ∂J /∂t = J∇ · v. The key here is to use the correct Eulerian

velocity, in this case the ion velocity, in terms of the one-fluid Eulerian variables

V and J . The result is

∂n

∂t
+
(
V +

me

men
J
)
· ∇n = −n∇ ·

(
V +

me

men
J
)
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which can be further reduced to

∂n

∂t
+∇ · (nV ) +

me

me
∇ · J = 0 .

However, we already know from (5.26) that ∇ · J = 0. Therefore, no matter

which equality we choose in (5.40), the same continuity equation will follow,

∂n

∂t
+∇ · (nV ) = 0 (5.41)

Similarly, from (5.34), we obtain

∂s

∂t
+ V · ∇s = 0

and from (5.35)

∂se
∂t

+
(
V − mi

men
J
)
· ∇se = 0 ,

which, to leading order in me/mi, is

∂se
∂t

+

(
V − 1

en
J

)
· ∇se = 0 .

5.3 Derivation of reduced models

If we vary the action functional (5.32) with respect to Q and D and

subsequently apply the Lagrange-Euler maps, we successfully obtain the mo-

mentum equation and generalized Ohm’s law of Lüst1 in the non-dissipative

1Note, there are typos in Eqs. (2.9) and (2.10) of Ref. [155] that prevent the term N1

from vanishing when imposing quasineutrality.
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limit:

nm

(
∂V

∂t
+ (V · ∇)V

)
−∇p+

J ×B
c
− mime

me2
(J · ∇)

(
J

n

)
(5.42)

E +
V ×B
c

=
mime

me2n

(
∂J

∂t
+ (J · ∇)V + (∇ · V ) J − (J · ∇)

(
J

n

))
+
mime

me2
(V · ∇)

(
J

n

)
+

(mi −me)

menc
(J ×B)

+
mime

mn2e2
J (V · ∇)n− mi

men
∇pe +

me

men
∇pi . (5.43)

The details behind this derivation have not been presented, since we show

them for extended MHD, which entails one further ordering in (5.32); the

terms that arise for both models and the steps involved are virtually identical.

5.3.1 Extended MHD

At this point we will make one more simplification - let us define the

mass ratio µ = me/mi and order the action functional by keeping terms up to

first order in µ. The resultant model is referred to as extended MHD, and we

observe that an associated action principle was studied via the Euler-Poincaré

formalism in [157]. After making such a choice, we arrive at

qi(Q,D) = Q(a, t) +
µ

en0

D(a, t)

qe(Q,D) = Q(a, t)− 1− µ
en0

D(a, t) (5.44)

104



and the action takes on the form

S = − 1

8π

∫
dt

∫
d3r |∇ × A(r, t)|2

+

∫
dt

∫
d3r

∫
d3a n0

{
δ(r − qi(Q,D))

×
[
e

c
Q̇(a, t) +

µ

cn0

Ḋ(a, t)·A(r, t)− eφ(r, t)

]}

+

∫
dt

∫
d3r

∫
d3a n0

{
δ(r − qe(Q,D))

×
[
−e
c
Q̇(a, t) +

(1− µ)

cn0

Ḋ(a, t)·A(r, t) + eφ(r, t)

]}

+
1

2

∫
dt

∫
d3a n0mi

(
(1 + µ)|Q̇|2(a, t) +

µ

e2n2
0

|Ḋ|2(a, t)

)

−
∫
dt

∫
d3a n0

(
Ue

(
n0

Je(Q,D)
, se0

)
+ Ui

(
n0

Ji(Q,D)
, si0

))
. (5.45)

where the internal energy per unit mass Us has been duly replaced by Us, the

internal energy per particle. The pressure is obtained from the latter according

to ps = n2∂Us/∂n.
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Varying the action with respect to Qk yields

0 = −n0mi(1 + µ)Q̈k(a, t)− ∂kp

+ n0

[
e

c

(
Q̇j(a, t) +

µ

en0

Ḋj(a, t)

)
∂Aj(r, t)

∂rk

−e∂kφ(r, t)− e

c

d

dt
Ak(r, t)

] ∣∣∣∣∣
r=qi(Q,D)

+ n0

[
−e
c

(
Q̇j(a, t)−

(1− µ)

en0

Ḋj(a, t)

)
∂Aj(r, t)

∂rk

+e∂kφ(r, t) +
e

c

d

dt
Ak(r, t)

] ∣∣∣∣∣
r=qe(Q,D)

. (5.46)

The variation of the internal energy term proceeds by varying qs through

Eqs. (5.44), giving a contribution δqs = δQ (in addition to δD contributions

as well) . We also make use of Eqs. (5.44) in the variation of the Jacobians

Js. We have directly given the Eulerian result for the internal energies since

the Lagrangian counterpart has two terms of the form of (5.20), and it is cum-

bersome to carry this through the rest of the calculation. For an alternative

treatment on the Lagrangian level, we refer the reader to [57]. Consistent

with Dalton’s law, the total single fluid pressure is p = pi + pe and both these

pressures are present at the zeroth order of µ. It is important to recognize

that the two time derivatives of A do not cancel, because they are advected

by different flow velocities. In the the Lagrangian framework, it is equivalent

to stating that they are evaluated at different arguments.

To find the Eulerian equations of motion, we start with (5.39), (up to

first order in µ and impose locality, i.e., r = r′, such that Q̇ maps to V (r, t)
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and Ḋ to J(r, t). However, the time derivatives of Q̇ and Ḋ have to be treated

with care as they each consist of two terms that are advected with different

velocities. We will now provide the details of how the Eulerianization of the

equations of motion is carried out.

The Q̈ in the first term of (5.46) can be re-written as

Q̈(a, t) = (1− µ)
d

dt

(
V (r, t) +

µ

en(r, t)
J(r, t)

)∣∣∣∣
r=qi(Q,D)

+ µ
d

dt

(
V (r, t)− (1− µ)

en(r, t)
J(r, t)

)∣∣∣∣
r=qe(Q,D)

= (1− µ)

(
∂V

∂t
+
∂qi
∂t
· ∇V +

µ

en

∂

∂t

(
J

n

)
+
µ

e

∂qi
∂t
· ∇
(
J

n

))
+ µ

(
∂V

∂t
+
∂qe
∂t
· ∇V −(1− µ)

en

∂

∂t

(
J

n

)
− (1− µ)

e

∂qe
∂t
· ∇
(
J

n

))
. (5.47)

From Eqs. (5.44), we can compute the explicit expressions for the time deriva-

tives of the qs(Q,D),

∂qi
∂t

= Q̇+
µ

en0

Ḋ −→ V +
µ

en
J (5.48)

∂qe
∂t

= Q̇− 1− µ
en0

Ḋ −→ V − 1− µ
en

J . (5.49)

Inserting these expression into (5.47), after some algebra, we arrive at

Q̈(a, t) −→ ∂V

∂t
+ (V · ∇)V +

µ(1− µ)

ne2
(J · ∇)

(
J

n

)
. (5.50)

Next we Eulerianize the interaction terms of (5.46) using (5.39), up to
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first order in µ, and (5.44). The result is

ne

c

[(
Vj +

µ

en
Jj

) ∂Aj
∂rk
− c∂kφ−

∂Ak
∂t
− ∂qi

∂t
· ∇Ak

]

+
ne

c

[(
−Vj +

(1− µ)

en
Jj

)
∂Aj
∂rk

+ c∂kφ+
∂Ak
∂t

+
∂qe
∂t
· ∇Ak

]
, (5.51)

which, after substitution using Eqs. (5.48) and (5.49), yields

1

c

(
Jj
∂Aj
∂rk
− Jj

∂Ak
∂rj

)
=

(J × (∇× A))k
c

. (5.52)

The full Eulerian version of the equation of motion for the velocity of

(5.46), also referred to as the momentum equation is

nm

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+

J ×B
c
− me

e2
(J · ∇)

(
J

n

)
. (5.53)

In Ref. [57], the last term on the RHS of (5.53) was shown to be absolutely

necessary for energy conservation.

Next, varying the action with respect to Dk yields

0 =
miµ

n0e2
D̈k(a, t) +

(1− µ)

en
∂kpe −

µ

en
∂kpi

+ µ

[(
−1

c

d

dt
Ak(r, t)− ∂kφ(r, t) +

1

c

(
Q̇j(a, t)

+
µ

en0

Ḋj(a, t)

)
∂Aj(r, t)

∂rk

)]∣∣∣∣
r=qi(Q,D)

+ (1− µ)

[(
−1

c

d

dt
Ar(x, t)− ∂kφ(r, t) +

1

c

(
Q̇j(a, t)

−(1− µ)

en0

Ḋj(a, t)

)
∂Aj(r, t)

∂xk

)]∣∣∣∣
r=qe(Q,D)

. (5.54)
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This time, the Jacobians of the internal energies are varied using the fact

the variations contribute as follows: δqe → −(1 − µ)δD/(en0) and δqi →

µδD/(en0), which again follow from Eqs. (5.44). It is precisely for this reason

that only the electron pressure appears, to leading order, in the generalized

Ohm’s law for extended MHD.

Eulerianizing the D̈ term in (5.54) is carried out in an analogous manner

to that of Q̈, and it yields

miµ

n0e2
D̈(a, t) =

miµ

e2n

(
∂J

∂t
+ (J · ∇)V + (∇ · V ) J − (J · ∇)

(
J

n

))
+
miµ

e2
(V · ∇)

(
J

n

)
+
miµ

e2n2
J(V · ∇)n (5.55)

where the continuity equation (5.41) was used to eliminate the time derivative

of n; we also retained terms that were leading order in µ. The interaction

terms in (5.54) reduce to

E +
V × (∇× A)

c
− (1− 2µ)

enc
J × (∇× A) . (5.56)

In Eqs. (5.55) and (5.56) we see the presence of some terms involving µ, in

front of D̈ and J × B, respectively. However, in the latter case it occurs

only through the factor (1 − 2µ) and since our ordering is µ << 1, we can

drop the µ-dependence in Eq. (5.56), to lowest order. However, in Eq. (5.55),

we cannot throw out all the terms that depend on µ to lowest order, as this

would amount to a clear case of throwing out the baby along with the bath

water, i.e. we lose a large number of crucial terms if we perform this operator.

Moreover, the factor µmi/(ne
2) cannot be cast into a dimensionless form in
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a straightforward manner, and hence one cannot invoke the ordering µ <<

1 here. On the other hand, in (1− 2µ), observe that the factor of ‘1’ is

already (trivially) in a dimensionless form, faciliating an easy comparison.

Post-variation, the discrepancy in the order of the derived terms, i.e. the

existence of these anomalous terms has also been observed in other contexts;

see e.g. [158].

The Eulerian version of the equation of motion of the current (5.54) is

obtained after retaining terms to lowest order in µ. It is commonly referred

to as the generalized Ohm’s law, and has the form

E +
V ×B
c

=
me

e2n

(
∂J

∂t
+ (J · ∇)V + (∇ · V ) J − (J · ∇)

(
J

n

))
+

(J ×B)

enc
− ∇pe

en
+
me

e2
(V · ∇)

(
J

n

)
+

me

e2n2
J(V · ∇)n . (5.57)

The last two terms on the right hand side of (5.57) can be combined to yield

a single term (me/(e
2n)) (V · ∇)J . Since we also know that ∇ · J = 0, we can

add a V (∇·J) term without changing the result, and combine most terms via

the divergence of the tensor V J + JV to obtain the following equation:

E +
V ×B
c

=
me

e2n

(
∂J

∂t
+∇ · (V J + JV )

)
− me

e2n
(J · ∇)

(
J

n

)
+

(J ×B)

enc
− ∇pe

en
. (5.58)

Equations (5.53) and (5.58) constitute the extended MHD model, which is in

agreement with the results obtained in [57, 155].
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5.3.2 Hall MHD

Hall MHD is a limiting case of extended MHD, and we observe that

certain action principle formulations of Hall MHD already exist [159, 160].

Here, we obtain the actional functional by expanding it, and retaining only

terms up to zeroth order in µ. In other words, it amounts to neglecting the

electron inertia, i.e. we set (me → 0), and we see that the action of (5.32)

reduces to

S = − 1

8π

∫
dt

∫
d3r |∇ × A(r, t)|2

+

∫
dt

∫
d3a n0

[
1

2
m|Q̇|2(a, t)− Ui

(
n0

Ji(Q)
, si0

)
− Ue

(
n0

Je(Q,D)
, se0

)]
+

∫
dt

∫
d3r

∫
d3a n0

{
δ

(
r −Q(a, t) +

1

en0

D(a, t)

)
×
[
−e
c

(
Q̇(a, t)− 1

en0

Ḋ(a, t)

)
· A(r, t) + eφ(r, t)

]}
+

∫
dt

∫
d3r

∫
d3a n0

{
δ (r −Q(a, t))

[e
c
Q̇(a, t) · A(r, t)− eφ(r, t)

]}
.

(5.59)

and Eqs. (5.44) simplify to

qi(Q,D) = Q(a, t)

qe(Q,D) = Q(a, t)−D(a, t)/(en0) (5.60)

Observe we have also replaced mi by m in the kinetic energy term, which is

correct to leading order in µ.

The inverse maps required for Eulerianizing the equations of motion
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are now given by

Q̇(a, t) = V (r, t)

∣∣∣∣
r=qi=Q

Ḋ(a, t) = en0V (r, t)

∣∣∣∣
r=qi=Q

− en0

(
V (r′, t)− J(r′, t)

en(r′, t)

)∣∣∣∣
r′=qe(Q,D)

.

Following the procedure outlined in the previous section for extended MHD,

we arrive at the dynamical equations for the model commonly referred to as

Hall MHD,

nm

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+

J ×B
c

(5.61)

E +
V ×B
c

=
J ×B
nec

− 1

ne
∇pe , (5.62)

and these constitute the usual forms of the momentum equation and Ohm’s

law for Hall MHD. Before moving ahead, it is worth mentioning that Hall

MHD has proven to be very successful in modeling fusion and astrophysical

plasmas in a wide range of contexts [161, 162, 163, 164].

5.3.3 Electron MHD

Electron MHD [59, 161, 157, 165] is another widely used model in both

astrophysics and fusion. It represents another limiting case of our treatment,

where we neglect the ion motion completely. Electron MHD is often used to

model the motion over short time scales during which the ions are essentially

assumed to be at rest. Since the ions are immobile, we require q̇i = 0 and

qi = qi(a). Also, we impose the condition that there be no electric field and,

consequently, we neglect φ from the action. In this case, using the Q, D
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formulation of the previous sections is redundant since there is only a single

fluid. From q̇i = 0 we find Ḋ = − (en0m/me) Q̇. The same relation also holds

between Q and D, up to an additive constant which represents the constant

position of the ion. In addition, the Lagrange-Euler map takes on the simple

form

ve(r, t) =

(
1 +

1

µ

)
Q̇(a, t)

∣∣∣∣
a=q−1

e (r,t)

, (5.63)

where

qe(a, t) = (1 +
1

µ
)Q(a, t) . (5.64)

After using our ordering, the remaining terms in the action are given by

S = − 1

8π

∫
dt

∫
d3r |∇ × A(x, t)|2

+

∫
dt

∫
d3a n0

[
1

2
me|q̇e|2(a, t)− Ue

(
n0

Je(Q)

)]
−
∫
dt

∫
d3r

∫
d3a δ (r − qe)

en0

c
q̇e · A(r, t) , (5.65)

which is essentially the same action as that of [157]. It is also straight-forward

to express this action in terms of Q using Eqs. (5.63) and (5.64).

Upon varying the action, either in terms of qe or Q, and Eulerianizing

the resultant expressions, we arrive at the following dynamical equations:

me

(
∂ve
∂t

+ ve · ∇ve
)

+
e

c

∂A

∂t
=
e

c
(ve ×B)− ∇pe

n

∇×B =− 4π

c
enve ,

which are the usual equations of electron MHD [165].
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5.4 Noether’s theorem

We shall end this Chapter by presenting a brief synopsis of the invari-

ants of the quasineutral Lüst and the extended MHD actions, described by

(5.32) and (5.45) respectively. We obtain these invariants by using Noether’s

theorem [49, 50].

Before proceeding further, let us recollect that the two actions can be

expressed either in terms of (Q,D) or in terms of (qi, qe), which are related

through a simple linear transformation; see for e.g. (5.30). Furthermore, both

sets of variables obey the Eulerian Closure Principle. Hence, it is equivalent

to work with an action expressed in terms of either set of variables. For

convenience, we shall work with the latter set, as the Euler-Lagrange maps

are easier to apply. Noether’s theorem states that if an action is invariant

under the transformations

q′s = qs +Ks (qs, t) ; t′ = t+ τ (t) , (5.66)

i.e.,

S =

∫ t2

t1

dt

∫
d3z L (qs, q̇s, z, t) =

∫ t′2

t′1

dt′
∫
d3z′ L (q′s, q̇

′
s, z
′, t′) ,

then there exist constants of motion given by

C =

∫
d3z

[
τ

(
∂L
∂q̇s
· q̇s − L

)
−Ks ·

∂L
∂q̇s

]
, (5.67)

and the variable z can denote a or x, as our actions are comprised of both

Lagrangian and Eulerian components.
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A Noetherian approach was also undertaken in [166] to determine in-

variants for reduced fluid models. The difference between the two is that we

obtain invariants by investigating symmetries of the Lagrangian through suit-

able transformations of (Q,D), which serve as our fields; consequently, our

approach is entirely Lagrangian in nature. The approach employed in [166]

is complementary as it introduces variations induced by space-time transla-

tions, and investigates the ensuing symmetries; everything is undertaken on a

Eulerian level.

1. Time translation

It is easy to verify that the action is invariant under time translation

with

Ks = 0; τ = 1 .

The corresponding constant of motion, the energy, is found to be

E =

∫
d3r

[
|∇ × A|2

8π
+
∑
s

∫
d3a

(
1

2
n0ms|q̇s|2 + n0 Us

(
n0

Js
, ss0

))]
.

Using suitable Lagrange-Euler maps to express our answer in terms of the

Eulerian variables {n, V, J}, we obtain

E =

∫
d3r

[
|B|2

8π
+ nUi + nUe +mn

|V |2

2
+
memi

mne2

|J |2

2

]
(5.68)

for the quasineutral Lüst model and

E =

∫
d3r

[
|B|2

8π
+ nUi + nUe +mn

|V |2

2
+
me

ne2

|J |2

2

]
(5.69)
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for the extended MHD model. It is seen that the two energies are different

since the extended MHD model includes an additional mass ratio ordering.

In both models, the third term is very important, and is mostly neglected in

extended MHD treatments; the reader is referred to [57] for a discussion of

this issue.

2. Space translation

Space translations correspond to

Ks = k; τ = 0 ,

where k is an arbitrary constant vector. Under space translations, our actions

are invariant, and the constant of motion is the momentum, which is found to

be

P = k ·
∫
d3a (n0miq̇i + n0meq̇e)

+ k ·
∫
d3r

e

c
A

{∫
n0 [δ (r − qi)− δ (r − qe)] d3a

}
,

Using the Lagrange-Euler maps, and the condition for quasineutrality, we find

P = k ·
∫
d3r nmV

is the conserved quantity. Note that k is entirely arbitrary, and hence we see

that the total momentum

P =

∫
d3r ρV (5.70)
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is conserved. This is also evident from the corresponding dynamical equation

for V .

3. Rotations

The actions are also invariant under rotations which corresponds to

Ks = k × qs; τ = 0 ,

Following the same procedure as before, we have

L = k ·
∫
d3r nmr × V ,

and since we know that k is arbitrary, we conclude that the angular momentum

given by

L =

∫
d3r ρ r × V (5.71)

is a constant of motion.

4. Galilean boosts

When discussing boosts, we have to consider that the action may remain

invariant even when the following holds

S =

∫ t2

t1

dt

∫
d3z L (qs, q̇s, z, t)

=

∫ t′2

t′1

dt′
∫
d3z′ (L (q′s, q̇

′
s, z
′, t′) + ∂µλ

µ) ,
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because the second term, in the second equality, vanishes identically. In our

previous investigations of the invariants of the models, the infinitesimal trans-

formations did not involve time explicitly.

When we perform a boost on the other hand, it corresponds to

Ks = ut; τ = 0 ,

where u is an arbitrary constant velocity. For a Galilean boost in a one-fluid

model, the corresponding invariant quantity is given by

B =

∫
d3a mn (q − q̇t) ,

and since we have two different species, the statement generalizes to

B =
∑
s

∫
d3a msns (qs − q̇st) .

Using the corresponding Lagrange-Euler maps, the Eulerianized expression is

given by

B =

∫
d3r ρ (r − V t) . (5.72)
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Chapter 6

Two-dimensional inertial

magnetohydrodynamics

We shall work again with SI units for the rest of this Chapter. Our

model constructed via the HAP formulation is 2D in nature with translational

symmetry, i.e. z serves as an ignorable coordinate. One of the chief results

presented herein is the emergence of the widely used Ottaviani-Porcelli model

of reconnection [61], which is shown to be a limiting case of our model. The

contents presented in this Chapter have been published in [167].

6.1 Magnetic Reconnection: the need for extended MHD
models

The process of reconnection is a ubiquitous one, and entails the modifi-

cation of magnetic topology, i.e. we break the flux-freezing constraint of ideal

MHD. By doing so, the stored magnetic energy is converted into other forms of

energy, which could manifest as thermal or kinetic energies, for instance. Mag-

netic reconnection has been proposed as a solution for an enormously diverse

range of issues, many of which have astrophysical connotations. The reader

is referred to several excellent reviews on the subject [168, 169, 170, 171] for

further information.
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Early treatments of the subject relied on (ideal) MHD with resistivity

added to the mix. However, it was shown that the reconnection rates thus ob-

tained were much smaller than those observed/predicted in high-temperature

plasma environments. As a result, extended MHD models began to play an

increasingly important role as including effects such as the Hall term gave

rise to models that were consistent with predictions. For an overview of Hall

MHD reconnection, we refer the reader to [172, 173]; see also the works of

[174, 175, 176, 177, 178, 179, 180].

However, Hall MHD still suffers from a crucial limitation, as it fails

to take electron inertia into account. It was shown in several crucial works,

such as [181, 182, 183, 184, 185], that electron inertia played in a key role in

regulating the reconnection rates. Hence, one must take into account electron

inertia effects when constructing a viable model of reconnection. At the same

time, it is advantageous if our model is Hamiltonian in nature, as it avoids the

possibility of producing spurious dissipation and/or instabilities; such effects

can lead to potentially misleading results as observed in [57, 58].

Thus, we see that it is advantangeous to look for Hamiltonian models

of reconnection. One of the first, and most influential, models in this area was

developed by Ottaviani & Porcelli [61]. Hamiltonian models of reconnection

include were also studied in [88, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195].

Our investigations fall under this category, and we shall show that our model

gives rise to a 6-field model that can be used to model fast reconnection.
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6.2 The Inertial MHD action

In this section, we shall present a new dynamical variable, one that

determines a frozen flux for our model. An action principle in terms of this new

variable is developed, and the equations of motion are obtained and analysed.

6.2.1 The inertial magnetic field: a new dynamical variable

In Section 2.2.2, we discussed the implications of magnetic flux freezing

in ideal MHD, which leads to the flux serving as a 2-form. Extended MHD

lacks this feature, which implies that the magnetic flux can no longer be in-

terpreted as a 2-form. From a purely geometric point-of-view, it would be

logical to look for a new dynamical variable, but not B · dS, which could play

a similar role. We shall drop the dS henceforth, and refer to B as a 2-form,

although this statement is not (strictly) true.

Hence, we introduce the variable Be and its corresponding attribute

Be0. The relation between the two is akin to that obeyed by the magnetic

field in ideal MHD, viz. JBi
e = q i, j B

j
e0. Since we claim that our new theory is

still a magnetofluid model, it is necessary for Be to be a function of the MHD

variables v, B, n and s. We shall work with the choice

Be = B +
me

e2
∇×

(
J

n

)
= B +

me

µ0e2
∇×

(
(∇×B)

n

)
. (6.1)

In other words, this is also equivalent to stating that we replaced the vector

potential A by Ae, the latter of which is given by

Ae = A+
me

e2

(
J

n

)
= A+

me

µ0e2

(
∇×B
n

)
. (6.2)
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Although the expressions (6.1) and (6.2) may appear ad hoc, there are several

good reasons that justify the choices of these expressions. The first stems

from the inclusion of electron inertia, which is exemplified by the presence of an

additional factor involving me and it also satisfies the consistency requirement,

i.e. in the limit me/mi → 0, we recover the usual magnetic field and vector

potential. A crucial reason arises from the fact that Be serves as a natural

dynamical variable in extended MHD theories; for instance, if one takes the

curl of equation (20) in [57] and uses Faraday’s law, we recover a dynamical

equation for Be. It is possible to carry out a similar procedure for the extended

MHD models presented in [60, 196] and arrive at the same conclusion.

Lastly, the statement of flux freezing in ideal MHD is equivalent to

stating that
∮
A ·dl serves an invariant, which is now altered in our model. To

understand the alteration, consider the canonical momentum for the electrons,

which is proportional to A− (meve/e). Assuming ve � vi permits the approx-

imation J ≈ −enve which is identical to the ordering used in electron MHD

[165]. As a consequences, we see that the canonical momentum is (approxi-

mately) equal to Ae. If we let me/mi → 0, the canonical momentum reduces

to A. This can be understood in a different manner as well. Note that this

is a 2D theory, with z serving as the ignorable coordinate, which implies that

the corresponding canonical momentum in the z-direction is conserved. This

yields
∮

(Ae)z dz, which is akin to the condition
∮
A · dl is conserved in ideal

MHD. Later, we shall show that even better reasons can be advanced, albeit

a posteriori, that further justify the choice of Be.
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Before we proceed to the next section, we introduce the nomenclature

‘inertial magnetic field’ to refer to Be. The choice is natural since Be plays

the role of a magnetic field, whilst also incorporating the effects of electron

inertia. Hence, we refer to this theory as inertial MHD (IMHD).

6.2.2 The IMHD action

We introduce the action for IMHD below, and then comment on its

significance and interpretation. Our variables are chosen to be the density

(3-form) ρ, the inertial magnetic field (2-form) Be, the entropy (0-form) s and

the velocity v. Observe that, as per the Lagrange-Euler maps, we are endowed

with two components of the velocity vx and vy.

We present the Eulerianized version of the action; the Lagrangian ver-

sion is obtained by noting that it must satisfy the closure principle and give

rise to the following action:

S =

∫ ∫ [
ρv2

2
− ρU (ρ, s)− Be ·B

2µ0

]
d2r dt. (6.3)

The first term in (6.3) is the kinetic energy, which was already shown to obey

the ECP in Chapter 2. The second term in (6.3) is the internal energy density,

and is the product of density and the specific internal energy (per unit mass).

This term generates the temperature and the pressure, given by ∂U/∂s and

ρ2∂U/∂ρ respectively. The third term in the above expression is the unusual

part, as it deviates from the expression for the magnetic energy density of ideal

MHD. In the limit where me/mi → 0 we have noted that Be → B, which in

turn reduces the last term of (6.3) to the conventional magnetic energy density.
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Although (6.3) is expressed in terms of the Eulerian variables, the ECP

and the Euler-Lagrange maps, discussed in Chapter 2, allow us to express (6.3)

purely in terms of the Lagrangian coordinate q and the attributes. In order to

do so, we express the magnetic field B in terms of the inertial magnetic field

Be as follows

B (r, t) =

∫
K (r, t | r′, t′)Be (r′, t) d2r′ dt′, (6.4)

where K is a complicated kernel. Using the kernel is quite complex, but we

note that the self-adjoint property is preserved. Alternatively, one can use the

Euler-Poincaré approach, a discussion of which can be found in [38, 71, 137];

see also Chapter 4 for additional details.

Before proceeding to the next section, a couple of remarks regarding

(6.3) are in order. Firstly, the only term involving q̇ is the kinetic energy

term. Hence, one can perform a Legendre transformation, and recover the

Hamiltonian (in Lagrangian variables). Upon Eulerianizing the Hamiltonian,

we arrive at

H =

∫ [
ρv2

2
+ ρU (ρ, s) +

Be ·B
2µ0

]
d2r. (6.5)

We can use the definition of Be, given in (6.1), and simplify the above expres-

sion. The result is

H =

∫ [
ρv2

2
+ ρU (ρ, s) +

B2

2µ0

+
me

ne2

J2

2

]
d2r. (6.6)

The above expression is identical to equation (23) of [57]. We also note that the

same expression was derived in Section 5.4. Furthermore, we see that (6.6) is

identical to the MHD Hamiltonian, except for the last term. As a consistency
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check, we verify that the last term does vanish in the limit me/mi → 0. These

facts lend further credence to our choice of Be and the action (6.3).

6.2.3 The IMHD equations of motion

The Lagrange-Euler maps outlined in Section 2.2.2 permit us to obtain

the corresponding dynamical equations for the observables by applying ∂/∂t

on both sides of the map. We obtain

∂s

∂t
+ v · ∇s = 0, (6.7)

∂ρ

∂t
+∇ · (ρv) = 0, (6.8)

∂Be

∂t
+Be (∇ · v)− (Be · ∇) v + (v · ∇)Be = 0. (6.9)

The equations (6.7), (6.8) and (6.9) correspond to the Lie-dragging of zero,

three and two forms respectively; see Section 2.2.2 for more details regarding

the geometric interpretation of these dynamical equations. From the definition

of (6.1), we see that ∇ ·Be = 0, and this implies that one can rewrite (6.9) as

follows

∂Be

∂t
= ∇× (v ×Be)

= ∇× (v ×B) +
me

e2
∇×

[
v ×

(
∇×

(
∇×B
n

))]
. (6.10)

The equation of motion is obtained by extremizing the action in Lagrangian

variables, or by extremizing the Eulerian action via the Euler-Poincaré ap-

proach [137]. It is found to be

ρ

(
∂v

∂t
+ (v · ∇) v

)
= −∇p+ J ×B − me

e2
(J · ∇)

(
J

n

)
. (6.11)

125



Equations (6.10) and (6.11) constitute the heart of our model of inertial MHD.

Let us first consider the latter expression. We see that it is nearly identical

to the usual ideal MHD momentum equation, except for the presence of the

last term, which can be neglected in the limit me/mi → 0. However, this term

represents more than a correction - in the extended MHD models, which also

possess electron inertia, this term is absolutely crucial for energy conservation,

as pointed out in [57]. Secondly, we note that our equation of motion is exactly

identical to equations (2) and (19) of [57], thereby lending further credence to

our choice of the inertial magnetic field and action.

We turn our attention to (6.10), which represents the extended Ohm’s

law. It is instructive to compare this against the inertial Ohm’s law of [57],

represented by their equation (20). We find that our expression is exactly iden-

tical to equation (20) of [57], when the 2D limit of their model is considered

and Bz → const (constant guide field) is assumed. Under these assumptions,

the two results are exactly identical, irrespective of whether the fluid is com-

pressible or incompressible. A few comments on the 3D generalization of this

model are presented in Section 6.3.3.

To summarize thus far, we find that the momentum equations of our

model and that of [57] are identical. The generalized Ohm’s laws are also in

perfect agreement with one another in the 2D, constant guide field limit. In

addition, we have shown that both our model as well as [57] yields the same

(conserved) energies and momenta. Collectively, it is self-evident that these

represent ample grounds for justifying the form of the inertial magnetic field
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Be and the IMHD action.

6.3 The Hamiltonian formulation of inertial MHD

In this section, we describe the methodology employed in recovering the

(Eulerian) noncanonical Hamiltonian picture from the (Lagrangian) canonical

action. After obtaining the bracket–Hamiltonian pair, we comment on poten-

tial extensions of this framework.

6.3.1 Derivation of the inertial MHD bracket

Our first step entails the determination of the Hamiltonian, which is

done via a Legendre transformation and Eulerianizing the resultant expression.

The exercise was already performed in Section 6.2.2, and the Hamiltonian is

given by (6.5). An alternative route is to invoke Noether’s theorem, which also

leads to the same result.

Next, we need to obtain the noncanonical bracket. A detailed descrip-

tion of this procedure can be found in [64, 65] and in Chapter 2. Before

proceeding on to the derivation, we reformulate our observables in the follow-

ing manner. We replace the velocity v by the momentum M c, and the entropy

s by the entropy density σ = ρs. The new set of observables result in a sim-

pler and compact noncanonical Poisson bracket, which is of the Lie-Poisson

form. Let us recall from Section 2.2.2 that the Lagrange-Euler maps can be

represented in an integral form. We present them below
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ρ =

∫
d2a δ (r − q(a, t)) ρ0(a), (6.12)

σ =

∫
d2a δ (r − q(a, t))σ0(a), (6.13)

Bj
e =

∫
d2a δ (r − q(a, t)) qj,kB

k
e0(a), (6.14)

M c =

∫
d2a δ (r − q(a, t)) Π(a, t). (6.15)

The last expression is also equivalent to M c = ρv, which can be found by

computing Π from the Lagrangian, and then obtaining the Eulerian equivalent.

We drop the subscript c henceforth, since the canonical momentum M c is the

same as the kinetic momentum M = ρv. Although much of our analysis

mirrors the derivation outlined in Section 2.5, we shall summarize the salient

details to keep the discussion self-contained.

Next, we note that a given functional can be expressed either in terms

of the canonical momenta and coordinates, Π and q, or in terms of the observ-

ables. Hence, we can denote the former by F̄ and the latter by F , and note

that F̄ ≡ F . As a result, we find that∫
d2a

δF̄

δΠ
· δΠ +

δF̄

δq
· δq (6.16)

=

∫
d2r

δF

δM
· δM +

δF

δB
· δB +

δF

δρ
δρ+

δF

δσ
δσ.

From (6.12), we can take the variation on the LHS and RHS, thereby obtanin-

ing

δρ = −
∫
d2a ρ0∇δ (r − q(a, t)) · δq. (6.17)
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A similar procedure can also be undertaken for (6.13), (6.14) and (6.15) as well.

We substitute (6.17) into the second line of (6.16) and carry out an integration

by parts, and a subsequent interchange of the order of integration. This process

is repeated for the rest of the variables. By doing so, we can determine the

functional derivatives δF̄ /δq and δF̄ /δΠ in terms of the functional derivatives

of the observables. Next, we note that the canonical bracket is given by

{F̄ , Ḡ} =

∫
d2a

(
δF̄

δq
· δḠ
δΠ
− δḠ

δq
· δF̄
δΠ

)
. (6.18)

We can now substitute the expressions for δF̄ /δq and δF̄ /δΠ, obtained as per

the procedure outlined above, into (6.18) and derive the noncanonical bracket.

It is found to be

{F,G} = −
∫
d2r

[
Mi

(
δF

δMj

∂j
δG

δMi

− δG

δMj

∂j
δF

δMi

)
+ ρ

(
δF

δMj

∂j
δG

δρ
− δG

δMj

∂j
δF

δρ

)
+ σ

(
δF

δMj

∂j
δG

δσ
− δG

δMj

∂j
δF

δσ

)
+Bi

e

(
δF

δMj

∂j
δG

δBi
e

− δG

δMj

∂j
δF

δBi
e

)
+Bi

e

(
δG

δBj
e

∂i
δF

δMj

− δF

δBj
e

∂i
δG

δMj

)]
. (6.19)

The inertial MHD bracket, derived above, possesses a couple of remarkable

features. Firstly, we note that the bracket is precisely identical to the ideal

MHD bracket of [28], if we replace Be in (6.19) with B everywhere. Secondly,

it is interesting to note that one can replace M by M c in the above expression.
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By doing so, we can obtain an expression for the gyroviscous inertial MHD

bracket, yielding results identical to those of [64, 65].

We must reiterate the importance of the bracket, because it further

highlights the merits of Be as a dynamical variable. Our simple postulate in

Section 6.2.1, that Be behaves as a two form, ensures that inertial MHD and

ideal MHD are identical to each other under the exchange Be ↔ B. Not only

does Be yield equations of motion that are highly similar to those of extended

MHD, but it also maintains a close connection with ideal MHD via its notion

of flux freezing. We have established that the inertial and ideal MHD brackets

are near-identical to each other, which ensures that an independent analysis

of the former is not necessary; instead, one can simply migrate the results

pertaining to the Casimirs, equilibria and stability of ideal MHD models, by

replacing B by Be in the suitable places. In particular, we note that the

Casimir

C1 =

∫
d3r ρf(s), (6.20)

still remains an invariant in inertial MHD. On the other hand, the counterpart

of the magnetic helicity of ideal MHD is

C2 =

∫
d3r Ae ·Be (6.21)

=

∫
d3r

[
A · (∇× A) +

2me

µ0ne2
B · (∇×B) +

m2
e

e4

(
J

n

)
·
(
∇×

(
J

n

))]
,

and it is seen that each of the three terms is of the form W · (∇×W ). Notice

that the second and third terms in the second line vanish when me/mi → 0,
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thereby reducing to the ideal MHD magnetic helicity. The cross helicity of

ideal MHD morphs into

C3 =

∫
d3r v ·Be =

∫
d3r v · (∇× Ae) (6.22)

=

∫
d3r

[
v ·B +

me

e2
v ·
(
∇×

(
J

n

))]
,

and we see that it reduces to the ideal MHD cross helicity if we assume

me/mi → 0. It is easily seen that the ideal and inertial MHD cross helici-

ties are both expressible as v · (∇×W ).

6.3.2 The six-field model and its subcases

Although our model is 2D in nature, we have not fully exploited its

nature - the choice was deliberate since the bracket and the equations of motion

could be expressed in a relatively compact form. However, it comes at the cost

of obtaining a narrower class of Casimirs, and an inability to clearly demarcate

the behaviour of the different fields. We shall now exploit this 2D symmetry.

First, let us consider Be, defined via (6.1). We see that it is divergence

free. As z serves as our ignorable coordinate, we can immediately express it

as

Be = Bez ẑ +∇ψe × ẑ. (6.23)

Next, we consider the momentum, recognizing that it involves two components.

Hence, the most general possible representation is

M = ∇Γ +∇ϕ× ẑ. (6.24)

131



We note that a similar analysis, albeit in terms of B instead of Be, was carried

out in [70, 86]. The advantage of inertial MHD is that the bracket is identical

in structure to that of ideal MHD under the interchange Be ↔ B. Upon

substituting (6.23) and (6.24) into (6.19) and using the functional derivative

chain rule, we obtain a bracket identical to that of equation (98) in [70], except

for two differences. The bracket obtained involves an integration over d2r, as

opposed to d3r in [70] since our model is 2D in nature. Secondly, we must

impose Mz = 0 in equation (98) in [70] as our model lacks the z-component of

the velocity.

In summary, we have a reduced model with scalar fields, and our ob-

servables given by (Γ, ϕ,Bez, ψe, ρ, σ). Although we have sacrificed the com-

pactness, this comes at the advantage of writing out model solely in terms of

scalar fields. We can whittle the model down to a 5-field model by assuming

it to be isentropic, a common enough assumption, which eliminates σ. If we

assume incompressibility, we eliminate ρ and Γ - the second relation follows

from the condition ∇ · v = 0. Lastly, we can eliminate the guide field Bez by

making it constant, and our resultant model now involves just two fields, i.e. ϕ

and ψe. We introduce the notation ω = ∆ϕ, implying that the two functional

derivatives are related via ∆Fω = −Fϕ, and the final bracket is given by

{F,G} = −
∫
d2r
[
ω[Fω, Gω] + ψe

(
[Fω, Gψe ]− [Gω, Fψe ]

)]
, (6.25)

and the corresponding Hamiltonian takes on the form

H =

∫
d2r

1

2

[
d2
e(∇2ψ)2

µ0

+
|∇ψ|2

µ0

+
|∇ϕ|2

ρ

]
, (6.26)
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where B = ∇ψ × ẑ, and the relation between ψe and ψ is determined by

using (6.1). We note that de represents the electron skin depth. The bracket

and Hamiltonian, given by (6.25) and (6.26) are of high importance, as they

give rise to the well known Ottaviani-Porcelli model [61], used in modelling

collisionless magnetic reconnection. Thus, we see that a (highly) simplified

limit of 2D inertial MHD gives rise to the Ottaviani-Porcelli model, and may

point towards obtaining more complex models such as [197, 198].

6.3.3 Extensions of the inertial MHD bracket

In the preceding subsection, we have obtained the inertial MHD non-

canonical bracket, with the corresponding expression given by (6.19). A crucial

feature of inertial MHD was also identified, namely, the close affinity with the

ideal MHD bracket, as one can be transformed into the other via Be ↔ B.

The analogy between B and Be also makes it possible to import the re-

sults of 2D gyroviscous MHD, and recast them in an inertial MHD framework.

As noted in the previous subsection, the noncanonical brackets derived in [65]

and Section 3 can be adapted for such a purpose. They are easily distinguish-

able from the non-gyroviscous brackets owing to the presence of the canonical

momentum M c in place of the kinetic momentum M . If the same methodology

is employed herein, we can obtain a model for 2D gyroviscous inertial MHD

[133, 187, 188]. It must be cautioned, however, that these methods are only

applicable to the inertial and ideal brackets, as they are fully equivalent under

Be ↔ B. Modifying the Hamiltonians is a trickier task, as it requires us to
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explicitly use the relation (6.1) in determining the gyromap.

As we have stated thus far, our model of inertial MHD possesses an

ignorable coordinate, thereby rendering it 2D. A natural generalization of the

procedure is to undertake the same work in a 3D framework. Our central

results thus far were the equation of motion (6.11) and the Ohm’s law (6.10).

We find that the former is unmodified, and is identical to that of [57]. However,

in the 3D limit, we find that the Ohm’s law of [57] and our model are not in

agreement, although most of the terms are identical to one another. In fact,

we find that the generalized Ohm’s law of [57] reduces to our Ohm’s law (6.10),

when the flow is irrotational, or if the condition J ‖ ω is met.
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Chapter 7

Connections between Hamiltonian extended

MHD models

The work undertaken in Chapter 5 strongly indicates that most variants

of extended MHD could be extracted via a common action principle. In [199],

it was shown that these models possessed a unifying noncanonical Hamilto-

nian structure. In this Chapter, we explore the common properties of several

extended MHD models in greater detail, and speculate on their connections.

We also present a detailed proof of the Jacobi identity for the noncanonical

bracket of Hall MHD.

7.1 On the similarities and equivalences between ex-
tended MHD models

In this section, we analyse Hall MHD and demonstrate its equivalence

with inertial MHD. We exploit this equivalence to determine the helicities,

which are Casimir invariants, of these models in a straightforward manner.

7.1.1 Hall MHD: an analysis

Hall MHD represents one of the most widely used extended MHD mod-

els, and also ranks amongst the simplest. In Hall MHD, it is assumed that the

135



two species drift with different velocities (as opposed to ideal MHD), but it is

assumed that the electrons are inertialess (akin to ideal MHD). We commence

our analysis with the Hall MHD bracket of [160, 199], expressed as

{F,G}HMHD = −
∫
D

d3r

{
[Fρ∇ ·GV + FV · ∇Gρ]−

[
(∇× V )

ρ
· (FV ×GV )

]
−
[
B

ρ
· (FV × (∇×GB)−GV × (∇× FB))

]
+di

[
B

ρ
· ((∇× FB)× (∇×GB))

]}
, (7.1)

where di = c/ (ωpiL) is the normalized ion skin depth and the likes of Fρ,

FV , etc. represent the functional derivatives with respect to the corresponding

variables. We can re-express (7.1) as

{F,G}HMHD = {F,G}MHD + {F,G}Hall, (7.2)

where {F,G}MHD is the ideal MHD bracket, first obtained in [28] and {F,G}Hall

is the term in (7.1) that involves the ion skin depth di. As a consequence, we

conclude that any Casimir of ideal MHD that is independent of B will auto-

matically serve as a Casimir of Hall MHD. Next, observe that

C1 =

∫
D

d3r A ·B, (7.3)

is a Casimir of ideal MHD. Furthermore, it also satisfies {F, C1}Hall = 0 as

well. Together, they ensure that (7.3) is a Casimir of Hall MHD. Next, let us

suppose that we introduce a new variable

Bi = B + di∇× V, (7.4)

136



and re-express the bracket in terms of the new set of observables. We find that

{F,G}HMHD ≡ {F,G}HMHD [Bi] = {F,G}MHD [Bi]− {F,G}Hall [Bi] , (7.5)

and the notation ‘Bi’ indicates that the respective components of (7.5) are the

same as (7.2) except that B is replaced by Bi. Thus, by following the same

line of reasoning, we conclude that

C2 =

∫
D

d3rAi · Bi = (A+ diV ) · (B + di∇× V ) , (7.6)

is a Casimir of ideal MHD, withB → Bi and it also satisfies {F, C1}Hall [Bi] = 0.

Hence, we conclude that C2 is also a Casimir of Hall MHD.

The transformation B → Bi exhibits two very special properties:

• We see that it preserves the form of the Hall MHD bracket, i.e. it is

evident that (7.2) and (7.5) are identical to one another upon carrying

out this transformation, apart from the change in sign. The latter can

be absorbed simply via di → −di as well.

• It allows us to quickly determine the second Casimir of Hall MHD, with-

out going through the conventional procedure of solving a set of con-

straint equations. In fact, we see that (7.3) and (7.6) possess the same

form.

Thus, it is evident that such transformations play a crucial role, both in expos-

ing the symmetries of the system and in determining the Casimirs. In Section

7.2, we shall explore this issue in greater detail.
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7.1.2 Hall MHD and inertial MHD

Both ideal MHD and Hall MHD assume that the electrons are iner-

tialess, i.e. this is undertaken by taking the limit me/mi → 0 everywhere.

However, there are several regimes where electron inertia effects may be of

considerable importance, such as reconnection [170, 171]. To address this is-

sue, a new variant of MHD, dubbed inertial MHD, was studied in [57] and

the Hamiltonian and Action Principle (HAP) formulation of two-dimensional

inertial MHD was presented in [167].

We shall now turn our attention to inertial MHD, whose noncanonical

bracket is given by

{F,G}IMHD = {F,G}MHD [B?]+d2
e

∫
D

d3r

[
∇× V
ρ
· ((∇× FB?)× (∇×GB?))

]
,

(7.7)

and the bracket {F,G}MHD [B?] constitutes the ideal MHD bracket with B →

B?. The variable B? is the ‘inertial’ magnetic field, and was first introduced

in [167]. It is given by

B? = B + d2
e∇×

(
∇×B
ρ

)
, (7.8)

where de = c/ (ωpeL) represents the normalized electron skin depth. We shall

now apply the transformation

Be = B? − de∇× V, (7.9)

and re-express our bracket in terms of the new set of observables. Upon doing
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so, we find that

{F,G}IMHD = {F,G}MHD [Be]

−2de

∫
D

d3r

[
Be
ρ
· ((∇× FBe)× (∇×GBe))

]
. (7.10)

The second term in the above expression can be compared against the last

term in (7.1) - we see that the two are identical under di → 2de and B → Be.

Thus, we arrive at one of our central results:

{F,G}IMHD ≡ {F,G}HMHD [2de;Be] . (7.11)

In other words, the inertial MHD bracket is equivalent to the Hall MHD

bracket when the transformations di → 2de and B → Be are applied to the

latter. As a result, we are led to a series of remarkable conclusions:

• As the inertial and Hall MHD brackets are identical under a change of

variables (and constants), proving the Jacobi identity for one of them

constitutes an automatic proof of the other.

• We can obtain the Casimirs of inertial MHD since the equivalent Casimirs

were determined for Hall MHD. In particular, two helicities emerge:

CI =

∫
D

d3r (A? − deV ) · (B? − de∇× V ) , (7.12)

CII =

∫
D

d3r (A? + deV ) · (B? + de∇× V ) , (7.13)

where B? = ∇ × A?, and the LHS of this equation is determined via

(7.8).

139



• By taking the difference of (7.13) and (7.12), we obtain a Casimir:

CIII =

∫
D

d3r V ·B?, (7.14)

which is identical to the cross-helicity invariant of ideal MHD, after per-

forming the transformation B → B?. The existence of this invariant has

also been documented in [167].

We observe that (7.13) and (7.14) were obtained as the Casimirs for inertial

MHD in [199], but the authors do not seem to have realized that inertial MHD

has not one, but two Casimirs (helicities) of the form
∫
D
d3r P · (∇× P ), as

seen from (7.12) and (7.13). As a result, this allow us to emphasize a rather

unique feature of inertial MHD:

• One can interpret inertial MHD as consisting of two helicities akin to the

magnetic (or fluid) helicity, cementing its similarity to Hall MHD and

the 2-fluid models [200].

• Alternatively, we can view inertial MHD as being endowed with one

Casimir resembling the magnetic helicity and the other akin to the cross

helicity. Such a feature renders it analogous to ideal MHD, which pos-

sesses similar features [28].

To summarize thus far, we have shown an unusual correspondence between Hall

MHD (inertialess, finite Hall drift) and inertial MHD (finite electron inertia,

no Hall drift) by showing that the two brackets are equivalent under a suitable
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set of transformations. We shall explore their origin in more depth in Section

7.2.

7.1.3 Comments on extended MHD

Hitherto, we have discussed models that incorporate the Hall drift and

those that possess a finite electron inertia. Extended MHD clubs these effects

together, giving rise to a more complete model. The noncanonical bracket for

this model is

{F,G}ExMHD = {F,G}IMHD + {F,G}Hall [B?] , (7.15)

and the second term on the RHS denotes the Hall term with B → B?, and

the latter is defined in (7.8).

It is evident that a clear pattern begins to emerge:

1. The Jacobi identity for the Hall bracket can be proven in a simple manner

as it represents the sum of two components, one of which already satisfies

the Jacobi identity (the ideal MHD component). The details are provided

in Appendix 7.3.

2. The Jacobi identity for inertial MHD automatically follows as per the

discussion in Section 7.1.2.

3. It is easy to see from (7.15) that the extended MHD bracket will then

be composed of a component (inertial MHD) that already satisfies the

Jacobi identity, apart from a second component that represents the Hall
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contribution. As a result, the calculation mirrors the proof of the Jacobi

identity for Hall MHD, and the similarities are manifest upon inspecting

(7.2) and (7.15).

As per the reasoning outlined above, we shall not delve too deeply into ex-

tended MHD, as it clearly shares close associations with the rest of the ex-

tended MHD models - Hall MHD and inertial MHD, which have been explored

in detail in the previous sections.

Since we have argued that each of the extended MHD models shares a

degree of commonality, it also follows that extended MHD must possess two

helicities akin to the magnetic helicity (in form), and that they should involve

the variables B? and V . Thus, we postulate Casimirs of the form

CExMHD =

∫
D

d3r (V + λA?) · (∇× V + λB?) , (7.16)

and solve for λ. A quadratic equation for λ emerges, given by

d2
eλ

2 + diλ− 1 = 0, (7.17)

whose solutions are

λ =
−di ±

√
d2
i + 4d2

e

2d2
e

, (7.18)

and one of these solutions was obtained in [199]. However, it is important to

recognize that there exist two helicities akin to the fluid (or magnetic) helicity,

since this is a feature that the extended MHD models inherit from the parent

two-fluid model.
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In fact, we can recover these two helicities by following the same spirit

of variable transformations introduced previously. Hence, we shall introduce

the variable(s):

Bλ = B? + λ−1∇× V, (7.19)

where λ satisfies (7.17). Upon doing so, we find that

{F,G}ExMHD ≡ {F,G}HMHD
[
di − 2λ−1;Bλ

]
, (7.20)

where the RHS indicates that the extended MHD bracket is equivalent to

the Hall MHD bracket, when the latter is subjected to di → di − 2λ−1 and

B → Bλ. It must be borne in mind that there are two such variable trans-

formations since there are two choices for Bλ, which stem from (7.17) - the

quadratic equation for λ. We find that these two variable transformations

naturally allow us to determine the two helicities of the model. We recover

(7.16) successfully, thereby confirming the power of variable transformations.

Furthermore, we conclude from (7.20) that a proof of the Jacobi identity for

Hall MHD automatically ensures that the extended MHD bracket also satisfies

the same property.

In summary, we have established the remarkable result that a proof

of the Jacobi identity for Hall bracket suffices to establish the validity of the

inertial and extended MHD brackets as well.
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7.2 The Lagrangian origin of the equivalence between
the extended MHD models

In this section, we shall briefly explore the origin of the helicities derived

in the previous sections, and comment on the equivalences between the various

extended MHD models. In order to do so, we appeal to the Lagrangian picture

of fluid models, which envisions the fluid as a continuum collection of particles.

In this picture, laws are built in a priori through the imposition of suitable

geometric constraints; we refer the reader to [18, 65, 154, 167] for further

details.

In ideal MHD, we know that flux is frozen-in, and this translates into

a local statement of flux conservation on the Lagrangian level. When one

works out the algebra, it is shown that the magnetic induction equation of

ideal MHD is just the Lie-dragging of a 2-form - the magnetic field B · dS.

Alternatively, one can interpret it, in 3D, as the Lie-dragging of a vector density

[26, 71]. Now, let us take a step back and consider two-fluid theory, where

one can define a canonical momentum P = msvs + qsA for each species. It

is evident that A represents the electromagnetic component of the canonical

momentum, whilst vs gives rise to the kinetic component. Next, suppose

that we consider a scenario where the kinetic momentum is much ‘smaller’

than its electromagnetic counterpart - this is achieved especially in the case

of electrons, owing to their lower mass. In such an event, we see that the

canonical momentum reduces to A (up to proportionality factors) and we can

interpret B as a certain limit of ∇×P . In ideal MHD, which is a pure one-fluid
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theory, it is easy to view B as being Lie-dragged by the center-of-mass velocity

V .

Now, we shall proceed in the same heuristic manner, through the incor-

poration of two-fluid effects. Firstly, let us suppose that the electrons are iner-

tialess, but not the ions. As a consequence, one finds that the center-of-mass

velocity V and the ion velocity virtually coincide. The corresponding canonical

momenta, after suitable normalization, reduce to B and Bi respectively, after

rewriting them in terms of one-fluid variables. Following the analogy outlined

above, we can choose to Lie-drag them as 2-forms, akin to the magnetic field

in ideal MHD. Next, the question arises: by which velocity must we Lie-drag

these variables? The answer is intuitive: we choose to Lie-drag them by their

corresponding velocities. After some manipulation, it is easy to show that the

resulting equations are equivalent to those of Hall MHD.

Next, suppose that we include the effects of electron inertia. The curls

of the canonical momenta, viz. the canonical vorticities, when written in terms

of the one-fluid variables, correspond to B?±de∇×V , which are the variables

that appear in (7.13) and (7.12) respectively. Following the same prescription,

we can choose to Lie-drag these quantities. We choose to Lie-drag the canonical

vorticities by suitable flow velocities, V ±de∇×B/ρ, which can be determined

by an appropriate manipulation of the inertial MHD equations. It is found,

after some algebraic simplification, that the resulting equations are equivalent

to those of inertial MHD. The generalization to extended MHD is not entirely

straightforward, but it can be done by using the variables from (7.16) as Lie-
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dragged 2-forms, and noting that each is Lie-dragged by the velocity of the

corresponding species.

Thus, we see that our preceding analysis establishes two very important

points. Firstly, the equations for extended MHD can be viewed as the natural

manifestation of underlying (Lagrangian) geometric constraints. Secondly, we

see that the variables Bi, Be, etc. introduced earlier, and the helicities of the

models, are also ‘natural’ - they emerge from the unified view that the canon-

ical momenta are treated as Lie-dragged 2-forms. In both these aspects, we

see that the Lagrangian picture of extended MHD presents a compelling argu-

ment as to why the variable transformations of Section 7.1 are not arbitrary,

and, more importantly, it emphasizes the underlying geometric nature of the

extended MHD models. The latter is all the more useful as it further serves to

emphasize the existence of a unifying structure for the extended MHD models.

7.3 Jacobi identity for Hall MHD

In this section, we shall present a detailed proof of the Jacobi identity

for the noncanonical Hall MHD bracket. The discussion in the preceding

sections ensures that the proof of the Jacobi identity for other versions of

extended MHD can also be established in an analogous manner. For this

section alone, in our entire thesis, we shall introduce the boldface notation to

distinguish vectors explicitly from their scalar counterparts.

In the absence of the Hall term, we see that (7.1) reduces to the ideal
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MHD bracket, first derived in [28]:

{F,G}MHD := −
∫
D

d3r

(
Fρ∇ ·Gv −Gρ∇ · Fv +

∇× v

ρ
·Gv × Fv(7.21)

+
B

ρ
·
[
Fv · ∇GB −Gv · ∇FB

]
+B ·

[
∇Fv

ρ
·Gv −∇

Gv

ρ
· Fv

])
,

which is known to satisfy Jacobi identity on its own [28, 62]. The convention

that we will be using throughout is that ∇ operator acts only on the variable

following it, and dyadics can be written in the coordinate form

B · ∇Fv

ρ
·Gv = Bi∂i

(F j
v

ρ

)
Gj
v. (7.22)

7.3.1 Hall - Hall Jacobi identity

The introduction of the Hall current leads to additional Hall bracket,

identified previously in (7.2). We recollect that it is given by

{F,G}Hall := −di
∫
D

d3r
B

ρ
·
[

(∇× FB)× (∇×GB)
]
, (7.23)

Demonstrating that Hall MHD bracket satisfies Jacobi is important since it

is closely connected to the rest of the extended MHD models, as discussed

previously. The Jacobi identity involves proving that cyclical permutations of

any functionals F,G,H vanish, i.e. we require

0 = {{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} ≡ {{F,G}, H}+ 	
F,G,H (7.24)

Here {, } := {, }MHD + {, }Hall . Because we already know that (7.21) satisfies

Jacobi and according to the bilinearity of Poisson brackets, the general proof
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splits into two pieces

{{F,G}MHD, H}Hall + {{F,G}Hall, H}MHD + 	
F,G,H = 0, (7.25)

and

{{F,G}Hall, H}Hall + 	
F,G,H = 0. (7.26)

This split occurs since (7.25) involves terms that are linear in di, whilst (7.26)

is quadratic in di. We introduce the cosymplectic operator J which depends

on the field variables u in general. It is known that Poisson brackets can be

formally written in the form

{F,G} :=
〈δF
δu

∣∣∣J δG
δu

〉
. (7.27)

The outer brackets in both (7.25) and (7.26) require evaluation of the varia-

tional derivatives of the inner bracket with respect to the field variables:

d

dε
{F,G}[u+ εδu]

∣∣∣
ε=0

:=
〈 δ
δu
{F,G}

∣∣∣δu〉 (7.28)

=
〈 δ2F

δuδu
δu
∣∣∣J δG
δu

〉
+
〈δF
δu

∣∣∣J δ2G

δuδu
δu
〉

+
〈δF
δu

∣∣∣δJ
δu

(δu)
δG

δu

〉
Proving the Jacobi identity for noncanonical Poisson brackets is aided by a the-

orem proven in [62], which states that the first two terms of the above expres-

sion vanish when plugged in the outer bracket, together with the other cyclic

permutations. Thus, we can neglect second variations that appear through-

out the following calculations. Since the outer Hall bracket involves variations

with respect to B, it is enough to consider

δ

δB
{F,G}Hall = −di (∇× FB)×(∇×GB)+ · · · ≡ −di FA×GA+ . . . , (7.29)
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where the second variations that arise implicitly are suppressed because we

have established that they will not contribute to the Jacobi identity. Hence, it

suffices to compute the variations with respect to the field variables that enter

the Poisson bracket explicitly. Note that the last relation in (7.29) arises due

to B =: ∇×A. This is evident through

δF =

∫
D

d3r
δF

δB
· δB =

∫
D

d3r
δF

δB
· ∇ × δA

=

∫
D

d3r∇× δF

δB
· δA =

∫
D

d3r
δF

δA
· δA. (7.30)

A corollary of the above relation is that FA ≡ δF
δA

is divergence-free, i.e.

∇ · FA = 0. Substituting (7.29) into the Hall-Hall part of the Jacobi rela-

tion (7.26), we obtain

d2
i

∫
D

d3rB ·

(
∇
( 1

2ρ2

)
×
[
FA ×GA

]
+

1

ρ2
∇×

[
FA ×GA

])
×HA. (7.31)

This expression can be expanded using vector identities such as X×(Y × Z) =

Y (X · Z)−Z (X ·Y) and ∇×(X×Y) = ∇·
(
Y XT −X YT

)
, which enables

us to collect certain terms together. Since the Jacobi identity involves two

additional cyclic permutations, we are allowed to carry out cyclic permutations

of the above expression and collect similar terms together. Through a suitable

permutation of the variables, and integrating by parts, we arrive at

{{F,G}Hall, H}Hall + 	
F,G,H = d2

i

∫
D

d3r
1

ρ2
FA ×GA · (HA · ∇)B + 	

F,G,H

= d2
i

∫
D

d3r
1

ρ2
εijkF

j
AG

k
AH

l
A∂lB

i + 	
F,G,H

= d2
i

∫
D

d3r
FA ·GA ×HA

ρ2
δli∂lB

i + 	
F,G,H,

(7.32)
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where the last step becomes apparent when we explicitly write down the other

two permutations, and use the antisymmetry of Levi-Civita tensor εijk in

addition to the identity εijkε
ljk = 2δli. Finally, upon invoking the identity

∇ ·B = 0, we see that the Hall - Hall Jacobi identity is satisfied.

7.3.2 Hall - Ideal MHD Jacobi identity

We observe that this part is harder to tackle, owing to the greater

complexity of the resultant expression. Let us first express the first term

in (7.25). As described in the previous section, the outer Hall bracket (7.23)

necessitates only the explicit variational derivatives with respect to B. Hence,

we only need to consider such variations of the inner MHD bracket (7.21):

δ

δB
{F,G}MHD = −Fv

ρ
·∇GB+

Gv

ρ
·∇FB−∇

Fv

ρ
·GB+∇Gv

ρ
·FB+. . . , (7.33)

and we have suppressed the implicit second-order variations, as they do not

contribute to the Jacobi identity. After substitution into the outer Hall bracket,

we get

{{F,G}MHD, H}Hall = −di
∫
D

d3r
B

ρ
·

[
∇×

(Fv

ρ
· ∇GB −

Gv

ρ
· ∇FB

+∇Fv

ρ
·GB −∇

Gv

ρ
· FB

)
×∇×HB

]
(7.34)
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We proceed to use the vector calculus identities ∇×∇f = 0 and X×∇×Y =

∇Y ·X−X · ∇Y, which allows us to simplify the expression as follows

{{F,G}MHD, H}Hall = −di
∫
D

d3r
B

ρ
·
(
∇× Fv ×GA −Gv × FA

ρ
×HA

)
.

(7.35)

In the second term of (7.25) the outer MHD bracket requires evaluation of vari-

ations with respect to both B and ρ. We already have the first one from (7.29),

while the second yields

δ

δρ
{F,G}Hall = di

B

ρ2
· FA ×GA. (7.36)

Upon substituting them into the second term of (7.25), we end up with

−di
∫
D

d3r
B

ρ2
·(FA ×GA) (∇ ·Hv)+

B

ρ
·
(
∇× FA ×GA

ρ
×Hv

)
+ 	
F,G,H (7.37)

Upon combining (7.35) and (7.37), we have

J = −di
∫
d3r

(
B

ρ2
· FA ×GA∇ ·Hv +

B

ρ
·
[
∇× FA ×GA

ρ
×Hv

]
+

B

ρ
·
[
∇× Fv ×GA −Gv × FA

ρ
×HA

])
+ 	

F,G,H

= J1 + J2 + J3, (7.38)

where Ji’s represent the three contributions arising from (7.37) and (7.35)

respectively. Applying the vector identities mentioned previously, and recol-

lecting that variations with respect to A are divergence-free, the third term
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can be manipulated to yield

J3 = di

∫
D

d3r
B

ρ
·HA ×

(
GA · ∇

Fv

ρ
−∇ · Fv

GA

ρ
− Fv · ∇

GA

ρ
− FA · ∇

Gv

ρ

+∇ ·Gv
FA

ρ
+Gv · ∇

FA

ρ

)

= −di
∫
D

d3r

(
− 2B

ρ2
· (FA ×GA) (∇ ·Hv)

−B · (FA ×GA)

[
Hv · ∇

(
1

ρ2

)]
−B ·

(Hv

ρ2
· ∇
)(
FA ×GA

)
+

B

ρ
·
[
FA × (GA · ∇)−GA × (FA · ∇)

]Hv

ρ

)
(7.39)

Here, we have used the freedom to permute F,G,H in a consistent manner.

When combined with the first term J1, this results in

J1 + J3 = di

∫
D

d3r

[
∇ ·
[
Hv

ρ

FA ×GA

ρ

]
·B (7.40)

−B

ρ
·
[
FA × (GA · ∇)−GA × (FA · ∇)

]Hv

ρ

]
.

The second term of (7.38) can be rewritten as

J2 = −di
∫
D

d3r

(
Hv

ρ
·∇
(
FA ×GA

ρ

)
·B−B ·∇

(
FA ×GA

ρ

)
· Hv

ρ

)
(7.41)

Upon using (7.40) and (7.41), we can condense (7.38) into

J = di

∫
D

d3r

(
B ·
(
FA ×GA

ρ

)[
∇ ·
(
Hv

ρ

)]
−B · ∇

(
Hv

ρ

)
· FA ×GA

ρ

−B

ρ
·
[
FA × (GA · ∇)−GA × (FA · ∇)

]Hv

ρ

)
. (7.42)
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The second term has been integrated by parts, by applying ∇·B = 0 to obtain

this expression. We shall not use any further permutations of F , G and H,

as one such permutation was used previously. It can be shown, in coordinates

for instance, or using the vector identities introduced previously, that the first

two and the last two terms collapse into

J = di

∫
D

d3r

(
B

ρ
·
[(

(FA ×GA)×∇
)
× Hv

ρ

]
(7.43)

−B

ρ
·
[(

(FA ×GA)×∇
)
× Hv

ρ

])
≡ 0

As a result, we see that the Hall - MHD Jacobi identity is satisfied.

Hence, from the results derived in Sections 7.3.1 and 7.3.2, we conclude

that the Hall MHD bracket (7.1) satisfies the Jacobi identity, thereby rendering

it a valid noncanonical Poisson bracket. In turn, this ensures the validity of

the inertial MHD bracket, and by applying the same procedures, it is possible

to show that the extended MHD bracket satisfies the Jacobi identity.
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Chapter 8

Conclusions and outline for future work

“Our revels now are ended. These our actors,

As I foretold you, were all spirits and

Are melted into air, into thin air”

- William Shakespeare, The Tempest, Act 4, Scene 1

We have now reached the end of our journey, one which depicted the

use of the HAP formulation of fluids and plasmas to tackle a diverse array of

problems. At this stage, we recall the salient features of each chapter, and

highlight the advantages endowed by the HAP formulation for the specific

problem(s) that we tackled therein.

• In Chapter 2, the necessary mathematical preliminaries were developed.

The advantages of both the action and the Hamiltonian formulations

were highlighted, by using ideal MHD as a trial case.

• In Chapter 3, we emphasized the important of FLR effects. Through

simple physical considerations, a new term was introduced in the action

that was linear in the velocities. Amongst other things, we showed that

it explained the origin of the gyromap. We moved to the associated

154



Hamiltonian model via reduction and used the Casimirs to derive the

generalized Grad-Shafranov equations with flow and gyroviscosity.

• In Chapter 4, we showed that gyroviscous models could be analysed

in a generic model-independent manner through the use of Noether’s

theorem. We also indicated that our formalism was powerful enough to

derive generalized hydrodynamical models, which could describe liquid

crystals and motivate the origins of gyroviscosity.

• In Chapter 5, we used the action principle to perform a set of rigorous

orderings, and obtain a series of extended MHD models, and their con-

served quantities, along the way. We also tackled, for the first time, the

issues of non-local Lagrange-Euler maps inherent in multi-fluid models,

and quasineutrality on a Lagrangian level.

• In Chapter 6, we illustrated the power of Lagrangian constraints to build

a 2D MHD model with electron inertia that gave rise to a 6-field model,

which included the famous Ottaviani-Porcelli model as a special sub-

case. By exploiting the HAP machinery, we also demonstrated the close

connections between inertial and extended MHD.

• In Chapter 7, we established a unique commonality between the non-

canonical brackets of Hall and inertial MHD, and their connections with

extended MHD. Furthermore, we also speculations on the Lagrangian

origins of these connections between several extended MHD models.
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The reader will have observed that three of our chapters were centred around

extended MHD models, and there are several promising avenues for future

work. The first entails the use of the extended bracket from [199] to derive

reduced fluid models of interest in a rigorous manner such as [37, 201, 202]

whilst using the gyroviscous machinery from Chapters 3 and 4. In particular,

the inclusion of gyroviscosity is likely to lead interesting modification of the

equilibria, waves, etc. which have important secondary ramifications. We em-

phasize that the reduced models of extended MHD thus obtained incorporate

electron inertia and FLR effects, which are of great importance in studying re-

connection. Hence, we posit that such models could prove to be of considerable

use in numerical simulations of magnetic reconnection.

On a more fundamental level, the actions introduced in Chapter 5 were

comprised of both Lagrangian and Eulerian variables - a natural improvement

of these actions is to seek ones that involve only the Lagrangian variables. The

derivation of such a Lagrangian action is also likely to confirm, or disprove,

the conjectures introduced in Chapter 7 to explain the surprising connections

between the Hamiltonian formulations of Hall MHD and inertial MHD. Yet

another fundamental use of the HAP formulation is to study the intriguing

connections between several condensed matter systems and plasmas, as ob-

served in [71, 133].

If we move beyond our (fairly vast) world of fluid models, unknown

vistas open up to us. In [31], it was demonstrated that the Maxwell-Vlasov

system possessed a noncanonical Hamiltonian structure. In a recent work
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[203], it was shown that a wide spectrum of collisionless neutral kinetic models

followed from a parent action, akin to the analysis undertaken in [154]. Hybrid

models that combine fluid and kinetic effects have also been shown to possess

a Hamiltonian structure [204], and such models are being increasingly used in

modelling space and astrophysical plasmas; see e.g. the recent work by [205].

Owing to these similarities, we believe that subjecting the above models to a

similar HAP-based analysis is likely to be very beneficial.

And lastly, we observe that our entire analysis has been Newtonian in

nature. However, it is well-known that a strong understanding of relativistic

MHD [206, 207], which is still riddled with ambiguities, would be highly ben-

eficial, especially in astrophysical environments. The HAP approach, with its

inherent rigour, constitutes a promising line of enquiry, and it is possible to

use [26] as a starting point for future work(s) in this area.

To sum up, we have seen that the Hamiltonian and Action Principle

formulation of fluid models is endowed with unique advantages such as a com-

bination of simplicity and rigour, making it amenable both to interpreting

old results and constructing (or deriving) new ones. Hence, these constitute

strong and compelling reasons for applying the HAP approach to the issues

outlined above. It seems not only possible, but quite probable, that interesting

advances will emerge from future investigations of this kind.
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