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Pumping in an interacting quantum wire
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We study charge and spin pumping in an interacting one-dimensional wire. We show that a spatially periodic
potential modulated in space and time acts as a quantum pump, inducing a dc–current component at zero bias.
The current generated by the pump is strongly affected by the interactions. It has a power-law dependence on
the frequency or temperature, with the exponent determined by the interaction in the wire, while the coupling
to the pump affects the amplitudes only. We also show that pure spinpumping can be achieved without the
presence of a magnetic field.
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I. INTRODUCTION

An adiabatic quantum pump is a device that generate
dc current~at zero bias! by a periodic slow variation of som
system characteristic, the variation being slow enough so
the system remains close to its ground state throughout
pumping cycle. The physics of pumping has attracted c
siderable interest in the last two decades: In his original w
Thouless1 studied the integrated particle current on a fin
torus produced by a slow variation of the potential a
showed that the integral of the current over a period can v
continuously, but must have an integer value in a clean i
nite periodic system with full bands. The robustness of
quantization in the latter system with respect to the influe
of disorder, many-body interactions, and system size
shown in Refs. 2 and 3, and spectacular precision of qua
zation of the pumped current has also been achieved
experiment.4 Since then, interest in this phenomenon h
shifted to theoretical5–8 and experimental9,10 investigations
of adiabatic pumping through open quantum dots where
alization of the periodic time-dependent potential can
achieved by modulating gate voltages applied to the st
ture. In this regime, the pumped current is generally
quantized,11,12 and interesting questions are raised on the
ture of dissipation associated with the pumping.13–16 Re-
cently, theoretical studies of quantum pumping have
tended to systems with exotic leads, such as supercondu
wires17,18 and Luttinger liquid quantum wires.19,20 A single-
wall carbon nanotube represents an ideal realization of s
an interacting quantum wire, and parametric pumping can
achieved by applying gate voltages on the sides21 or surface
acoustic wave propagating along the wire.22

In this paper, we report our results on quantum pump
through an interacting one-dimensional wire in the adiab
regime. The pump we propose consists of a spatially perio
potential V extending from2L/2 to 1L/2 and oscillating
wave like with frequencyv0 and momentumq0, acting on
0163-1829/2003/68~16!/165312~11!/$20.00 68 1653
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an interacting clean quantum wire of infinite length; s
Fig. 1. We shall show that dc spin and charge curre
are induced.

The low-energy properties of the quantum wire are d
scribed by a Luttinger liquid, the fixed-point Hamiltonian o
the wire, and we carry out the pumping at low temperatu
and smallv0, staying this way in the neighborhood of th
fixed point. In this regime, the charge is not quantized
expected, and the results reflect the intrinsic properties of
Luttinger liquid. An anomalous response will be observ
since the external periodic potential couples to electr
while the quasiparticles of the interacting systems
Luttinger-like bosons. We will also address the issue o
pure spin pumping through an interacting quantum wire.

The paper is organized as follows. In Sec. II we introdu
our physical setup and the Hamiltonian that describes
pump in a one-dimensional~1D! wire, making use of the
Luttinger liquid description. In Sec. III we introduce the no
equilibrium Keldysh formalism appropriate to calculate t
charge and spin current in the wire. After that we discuss
results for the current at zero and finite temperature. Fin
we draw the conclusions in Sec. IV, discussing further p
spectives of our analysis and the implications for experim
tal realization of a device.

FIG. 1. Quantum wire in presence of a periodic potential e
tending from2L/2 to L/2 and oscillating with frequencyv0.
©2003 The American Physical Society12-1
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II. HAMILTONIAN OF A PUMPED 1D WIRE

There are several experimental realizations of o
dimensional systems, among which are nanotubes, quan
wires, and organic conductors, such as Bechgaard s
These systems are described by interacting one-dimens
Hamiltonians, generally of the form

HT5H01Hel,el , ~1!

H05( ekcks
† cks , ~2!

Hel,el5 (
kPBZ

U (k1 ,k2 ,k3 ,k4)
s1s2s3s4 ck1s1

† ck2s2

† ck3s3
ck4s4

, ~3!

wherecks
† is an electron creation operator with momentumk

and spin components, cj s
† ~its Fourier transform! creates the

electron at lattice sitexj5 ja, andU is an arbitrary electron-
electron interaction.

If we wish to study the low-energy physics of such
model, as in the case ofadiabatic pumping, it suffices to
consider it close to its fixed point—typically the Luttinge
liquid—to which it flows under the action of the renorma
ization group~RG!.23 The low-energy dynamics takes plac
close to the Fermi points6kF and is expressed in terms o
the fermionic low-energy fieldscas(x) describing the right-
moving modes (a5R) with spin s aroundkF and the left-
moving modes (a5L) describing the physics around
2kF . The Luttinger Hamiltonian is

HLL52 ivFE dx@CRs
† ~x!]xCRs~x!2CLs

† ~x!]xCLs~x!#

1gE dxr~x!2, ~4!

wherevF is the Fermi velocity,g measures the strength o
interactions (g.0 for repulsive interactions!, and r5rR
1rL is the sum of the left- and right-moving electron de
sities ra,s5Cas

† Cas , with ra5(sra,s . Note that the
number of left and right movers is conserved by the L
tinger Hamiltonian.

Consider now the wire in the presence of an external
riodic potential. We add then to Eq.~1! the term

Hlatt5(
j

Vs,s8~xj !cj ,s
† cj ,s8 , ~5!

whereVs,s8(xj ) is a periodic external potential ofxj ~with
period l ) acting on a section of lengthL of the wire. A
possible way to realize the periodic potential is to embe
sectionL of the long quantum wire in a semiconductor he
erostructure with a meander line on top~or bottom! of the
sandwich, generating a spatial periodic electric field oscil
ing in time with a fixed frequencyv0 at the interface. The
interfacial electric field would be such that the effective p
tential experienced by the Luttinger-bosonic-like quasipa
cles will result in a sinusoidal potential modulated in spa
16531
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and time.~In such a system magnetized contacts could
used to preferentially inject and detect specific sp
orientation.24,25!

Also the periodic potential will flow under the action o
the renormalization group, and in the low-energy limit it w
be represented by a sum over umklapp operatorsHn,m,ns

U

transferringn electrons andns units of spin from right to left
Fermi points~and vice versa!, while absorbing from the lat-
tice m units of lattice momentumG52p/ l ~Ref. 26!. The
umklapp operators to which Eq.~5! flows under the RG de-
scribe high-energy processes which are irrelevant~in the RG
sense! at low energies when we consider systems close
Luttinger fixed point. However, we shall examine the syst
at small but finite energy scales at which the RG flo
stops and the umklapp terms make the main contribution
pumping.

Leading umklapp terms are of the form

H0,m,0
U 'g0,m,0

U E dx@eiDk0,mx~rR1rL!21H.c.#,

H1,m,0
U 'g1,m,0

U (
s

E dx@eiDk1,mxCRs
† ~x!CLs~x!r2s1H.c.#,

H1,m,1
U 'g1,m,1

U E dx@eiDk1,mxCR↓
† ~x!CL↑~x!r1H.c.#,

H2,m,0
U 'g2,m,0

U E dx@eiDk2,mxCR↑
† ~x!CR↓

† ~x!CL↓~x!CL↑~x!

1H.c.#, ~6!

with the couplingsgn,m,ns
determined from the microscopi

Hamiltonian~including the driving potentialVs,s8) via a full
RG analysis. The quantityDkn,m5n2kF2mG in the expo-
nential ofHn,m,ms

is the momentum transfer associated w

the umklapp processn,m. Note that a commensurability be
tween the electron density and the imposed periodicity
pliesDkn,m50 for somen,m. At commensurate filling some
umklapp operator may become relevant. This is the case
H2,1,0

U at half filling for any value of the couplingg2,1,0
U . This

would also be the case with other commensurate fillings,
with a finite critical value of the coupling. When any of th
umklapp operators is relevant the low-energy behavior is
longer given by the Luttinger liquid. We shall assume
what follows that we are away from half filling and, whe
considering other commensurate filling, that the coupling
below its critical value.

Also boundary terms may be generated under the RG
cess. The periodic potential acts on a section of the wire
we assumed sharp edges at6L/2; hence terms of the form

Hboundary5V0@cRs
† ~L/2!cLs~L/2!

1cRs
† ~2L/2!cLs~2L/2!1H.c.# ~7!

will appear. Such terms were shown by Kane and Fishe
be relevant in the low-energy limit.27
2-2
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We now allow the external periodic potential to oscilla
with frequency v0 and propagate with some momen
$q%,q'q01dq, with dq!q0,

V~x!→V~ t,x!5(
q

Aqcos~v0t2qx!V~x!. ~8!

Again, close to the Luttinger fixed point, the potent
renormalizes to a sum of umklapp terms with time-~and
phase-! dependent coupling constants:

gn,m,ns

U ~ t !5gn,m,ns

U ei (v0t2wn,m). ~9!

The momenta$q% in the driving potential break the mirro
symmetry of the oscillating potential and are reflected in
effective low-energy Hamiltonian by the umklapp phas
wn,m . For very weak periodic potential one expectswn,m
'nq0 /v0. When mirror symmetry is presentwn,m50 ~and
we shall see that no current is induced!. Together with the
periodic potential also the boundary terms will oscilla
and we have, for the leading term,

Hboundary~ t !5V0@eiv0tcRs
† ~L/2!cLs~L/2!

1ei (v0t2w)cRs
† ~2L/2!cLs~2L/2!1H.c.#,

wherew is the temporal phase shift between the two edg
The low-energy effective Hamiltonian

He f f~ t !5HLL1Hpump~ t !, ~10!

Hpump~ t !5Hbulk~ t !1Hboundary~ t !, ~11!

Hbulk~ t !5 (
m,n,ns

Hn,m,ns

U ~ t !, ~12!

describes the time evolution of the system close to the fi
point and is valid therefore~over a cycle! when all energy
scales such asv0 ,T are small. We shall show that the osc
lating potential acts as a quantum pump, inducing spin
charge dc currents. We shall find that both the bulk te
(m,n,ns

Hn,m,ns

U (t) and the boundary termHboundary(t) induce

charge and spin currents. The bulk contribution dominate
the large pump limit, i.e., forL→`, holding v0 fixed but
small. In the other limitv0→0, holdingL large but fixed,
the boundary contribution dominates.

We wish to study the effect of the oscillating terms on t
current operators,

I c~x!5(
s

@cRs
† ~x!cRs~x!2cLs

† ~x!cLs~x!#, ~13!

I s~x!5 (
s,s8

@cRs
† tss8

z
~x!cRs8~x!2cLs

† tss8
z

~x!cLs8~x!#.

~14!

To do so it is convenient to rewrite the problem in terms
bosonic fields fs ,Ps : Defining the chiral component
fRs ,fLs5 1

2 @fs6*xPs(x8)dx8#, the fermionic fields are
given by
16531
e
s
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d
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f

cR,s~x,t !5
1

A2pa
eifRs,

cL,s~x,t !5
1

A2pa
e2 ifLs, ~15!

where a is a spatial cutoff~essentially theelectron lattice
spacing, to be distinguished froml ). Rewriting the interact-
ing Hamiltonian, Eq.~4!, by means of the bosonic fields,
can be brought into a quadratic form by a Bogliub
rotation.28,29 It is convenient to introduce the combination
fc5(f↑1f↓)/A2 and fs5(f↑2f↓)/A2, the spin and
charge bosonic fields, in terms of which

HLL5
1

2p (
n5c,s

vnE dxS KnPn
21

1

Kn
~]xfn!2D , ~16!

where the momentaPn are conjugate tofn , vc,s are the
charge and spin velocities, andKn are the Luttinger param
eters,vc /Kc5vF1g/p andvs /Ks5vF2g/p. The bosonic
version of the umklapp terms is

Hn,m,ns

U ~ t !5
gn,m,ns

U

~2pa!nE dx$ei (v0t2wn,m)eiDkn,mxeiA2(nfc1nsfs)

1H.c.%, ~17!

while the local boundary term is

Hboundary~ t !5
V

~2pa!
$eiv0teiA2[fc(L/2,t)1fs(L/2,t)]

1ei (v0t2w)eiA2[fc(2L/2,t)1fs(2L/2,t)]1H.c.%.

~18!

In terms of bosonic fields the charge current and s
current are given by

I c~x,t !5
eA2

p
] tfc~x,t !,

I s~x,t !5
\A2

p
] tfs~x,t !, ~19!

where e denotes the electric charge. In the following, w
shall consider the oscillating lattice as a perturbation aro
the Luttinger liquid fixed point and compute the current p
turbatively. This is a controlled expansion in the low-ener
limit as noted before. As we will show, the boundary ter
though relevant with respect to the Luttinger liquid, asv0
→0, will lead to a subdominant contribution in the larg
pump limit.

III. NONEQUILIBRIUM TRANSPORT FORMALISM

In the system described above we consider an exte
source pumping energy into it; therefore the general form
ism of this nonequilibrium situation is given by the Keldys
technique.30 Our purpose is to calculate the charge and s
2-3



sh

,

e
to

o-

ty

nly,

R. CITRO, N. ANDREI, AND Q. NIU PHYSICAL REVIEW B68, 165312 ~2003!
currents generated by the pumping. They are given by

^I c,s~x,t !&5 K TCH I c,s~x,t !expS 2 i R dt1Hpump~ t1! D J L ,

~20!

where TC is the time ordering operator along the Keldy
contour. ExpressingTC in terms of the ordering~antiorder-
ing! operatorTK along the upper~lower! Keldysh branches
we adopt the convention31 that the indicesh,h1,256 iden-
tify the upper~lower! branch of the Keldysh contour.

We shall begin by studying the bulk contribution of th
pump. We then expand in the irrelevant umklapp opera
-
ze

a-

;

16531
rs

around the Luttinger liquid fixed point. Expanding the exp
nential to first order we obtain

^I c,s~x,t !& (1)52 i (
hh1

h1K TKH I c,s~x,th!E dt1Hbulk~ t1
h1!J L .

~21!

Starting from the expression~17! of the Hamiltonian in terms
of the bosonic fields and using the identi
limg→0( ig)21] texp@iA2gfc#5A2] tfc , in order to cast the
time-ordered averages into correlators of exponentials o
we have
^I c~x,t !& (1)52 i
e

p (
n,m,ns

gn,m,ns

U

~2pa!n (
e56

(
hh1

h1E dt1E
2L/2

L/2

dx1ei e(v0t12wn,m)

3ei eDkn,mx1 lim
g→0

~ ig!21] t^TK$eigA2fc(x,th)eiA2e[nfc(x1 ,t
1

h1)1nsfs(x1 ,t
1

h1)]%&

5
2e

p (
n,m,ns

S L

aD 2n2Kc/22ns
2Ks/2 gn,m,ns

U

~2pa!n (
hh1

h1E dt1

3E
2L/2

L/2

dx1sin~v0t12wn,m1Dkn,mx1!] tGhh1

fcfc~x2x1 ,t2t1!, ~22!
he

no
ve
ero
eral
where we have introducede56 for the Hermitian conju-
gates, and the bosonic Keldysh Green’s function is

Ghh1

fcfc~x2x1 ,t2t1!

5^TK@A2fc~x,th!A2fc~x1 ,t1
h1!#&

52
Kc

2 (
a56

ln$a1 ihhh1
~ t2t1!@vc~ t2t1!

2a~x2x1!#% ~23!

with a56 for R/L movers, respectively, andh66(t)5
6sgn(t),h67(t)571. The nontrivialL dependence is aris
ing from the correlator of the exponential for a finite-si
system.

Using the definition of the Keldysh Green’s function m
trix elements and the symmetry propertyG(x,t)
5G(x,utu), only the terms withh52h1 can be retained
thus

^I c~x,t !& (1)52
e

p (
n,m,ns

S L

aD 2n2Kc/22ns
2Ks/2

n
gn,m,ns

U

~2pa!n

3(
h

hE dt1E
2L/2

L/2

dx1sin~v0t12wn,m

1Dkn,mx1!] tGh2h
fcfc~x2x1 ,t2t1!. ~24!
A further change of variables leads to a final form of t
first-order contribution to the charge current,

^I c~x,t !& (1)} (
n,m,ns

S L

aD 2n2Kc/22ns
2Ks/2

n
gn,m,ns

U

~2pa!n

3sin~v0t2wn,m1Dkn,mx!, ~25!

and the spin current,

^I s~x,t !& (1)} (
n,m,ns

S L

aD 2n2Kc/22ns
2Ks/2

ns

gn,m,ns

U

~2pa!n

3sin~v0t2wn,m1Dkn,mx!. ~26!

However, as these terms oscillate in space and in time
pumping takes place to first order. As we will show, to ha
a dc current at least two umklapp operators with a nonz
phase difference are required, in accordance with the gen
idea of pumping.

To second order we have

^I c,s~x,t !& (2)52
1

2 (
hh1h2

h1h2K TKH I c,s~x,th!E dt1

3E dt2Hbulk~ t1
h1!Hbulk~ t2

h2!J L . ~27!
2-4
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By using the bosonic expression ofHbulk we find

^I c~x,t !& (2)52
e

2p (
n,m,ns

(
n8,m8,ns8

gn,m,ns

U

~2pa!n

gn8,m8,n
s8

U

~2pa!n8 (
e1,256

(
hh1h2

h1h2E dt1E dt2E
2L/2

L/2

dx1E
2L/2

L/2

dx2

3ei e1(v0t12wn,m)ei e2(v0t22wn8,m8)ei e1Dkn,mx1ei e2Dkn8,m8x2 lim
g→0

~ ig!21] t^TK~eigA2fc(x,th)

3ei e1A2[nfc(x1 ,t
1

h1)1nsfs(x1 ,t
1

h1)]ei e2A2[n8fc(x2 ,t
2

h2)1ns8fs(x2 ,t
2

h2)] !&. ~28!

A dc contribution to the current arises only from the term withe152e2 and a nonzero phase difference. We proceed
calculate it:

^I c~x,t !&dc
(2)52

e

p (
n,m,ns

(
n8,m8,ns8

S L

aD 2(n21n82)Kc/22(ns
2
1ns8

2)Ks/2 gn,m,ns

U

~2pa!n

gn8,m8,n
s8

U

~2pa!n8

3 (
hh1h2

h1h2E dt1E dt2E
2L/2

L/2

dx1E
2L/2

L/2

dx2sin@v0~ t12t2!2Dwn,m
n8,m81Dkn,mx12Dkn8,m8x2#

3e2nn8G
h1h2

fcfc(x12x2 ,t12t2)e2nsns8G
h1h2

fsfs(x12x2 ,t12t2)@n] tGhh1

fcfc~x2x1 ,t2t1!2n8] tGhh2

fcfc~x2x2 ,t2t2!#, ~29!

whereDwn,m
n8,m85(wn,m2wn8,m8) is the phase difference and the Keldysh spin bosonic Green function is given by

Ghh1

fsfs~x2x1 ,t2t1!5^TK@A2fs~x,th!A2fs~x1 ,th1!#&52
Ks

2 (
a56

ln$a1 ihhh1
~ t2t1!@vs~ t2t1!2a~x2x1!#%. ~30!

An expression similar to Eq.~29! will hold for the spin current, except that in this case the derivative of the spin bos
Green’s function will appear, multiplied byns ~the spin umklapp quantum numbers!, instead of charge umklapp quantu
numbersn.

The calculation of the contribution to the current from the boundary terms is carried in an analogous way by cons
Hboundary in Eqs.~21! and ~27! instead ofHbulk.

A. Zero-temperature pumping

1. Bulk current

Evaluating the integral~29! for the charge current and the corresponding one for the spin current~for details see the
Appendix!, we find that the leading-order contribution to the dc currents at zero temperature is

I c
dcbulk~v0!5eKcvc (

n,m,ns
(

n8,m8,ns8
~n2n8!S L

aD 2(n2n8)2Kc/22(ns2ns8)2Ks/2

A
n,m,ns

n8,m8,ns8I
nmns

n8m8ns8~v0 ,@Dk1#n,m
n8,m8!

sin~@Dk2#n,m
n8,m8!

L

2

@Dk2#n,m
n8,m8

,

I s
dcbulk~v0!5\Ksvs (

n,m,ns
(

n8,m8,ns8
~ns2ns8!S L

aD 2(n2n8)2Kc/22(ns2ns8)2Ks/2

A
n,m,ns

n8,m8,ns8I
nmns

n8m8ns8~v0 ,@Dk1#n,m
n8,m8!

sin~@Dk2#n,m
n8,m8!

L

2

@Dk2#n,m
n8,m8

,

~31!

where@Dk6#n,m
n8,m85(Dkn,m6Dkn8,m8)/2 and

A
n,m,ns

n8,m8,ns85
gn,m,ns

U

~2pa!n

gn8,m8,n
s8

U

~2pa!n8
sinDwn,m

n8,m8 ~32!
165312-5
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is the area enclosed in a pumping cycle by the periodic

rametersgn,m,ns

U (t) andgn8,m8,n
s8

U
(t). The expressionI

nmns

n8m8ns8

for vc5vs is given by ~the casevsÞvc is treated in the
Appendix!

I
nmns

n8m8ns8~v0 ,@Dk1#n,m
n8,m8!

5sgn~v0!S a

2v D 2K
nsns8
nn8

G22~Knsns8
nn8 !

3~v0
22v2@Dk1

2 #n,m
n8,m8!K

nsns8
nn8

21

3u~ uv0u2uv@Dk1#n,m
n8,m8u!, ~33!

whereKnsns8
nn8 5nn8Kc/21nsns8Ks/2, Kc and Ks are the Lut-

tinger parameters defined earlier, and the function sgn(v0) is
defined as sgn(v0)50 for v050 in addition to the usua
definition sgn(v0)561 for v0 positive and negative.

The nontrivial dependence of the current on the size of
pump L arises technically from the exponential of th
Keldysh correlators evaluated on the finite size of the pu
with the usual ‘‘charge neutrality’’ violated,nÞn8, ns

Þns8 . This violation is a manifestation of the nonequilibriu
process taking place during the pumping with ‘‘charges’’
the upper part of the Keldysh contour not canceling
charges in lower part. Thus, the pumping can be viewed
the action of the potential on the sectionL of the wire creat-
ing charge unbalance and resulting in a net current in
direction.32

2. Discussion

We now discuss the physical characteristics of our resu
First, the nonlinear dependence on the size of the pump
region strongly suppresses for largeL/a terms with large
un2n8u or uns2ns8u. Therefore, the leading contribution t
the charge current comes from terms withns5ns8 and n
2n8561, and the leading contribution to the spin curre
comes from terms withn5n8 and ns2ns8561. Second,
depending on the lattice having only charge umklapp te
~i.e., n,n8Þ0 but ns ,ns850) or only spin umklapp terms
(n,n850 but ns ,ns8Þ0), a pure charge or pure spin curre
will be induced. This spin pumping takes place without sp
orbit coupling and without magnetic field or spontaneo
symmetry breaking, unlike the mechanisms in Refs. 19
33. This is possible only due to interactions. Third, t
charge and spin pumped per cycle are not quantized bu

pend linearly on the areaA
n,m,ns

n8,m8,ns8 enclosed by the interac

tion. Note that at least two umklapp terms are needed to h
a nonzero dc current. This accords with the observation
at least two umklapp terms are required to represen
lattice26 and also in agreement with the picture that the el
tron pump is induced by the out-of-phase variation of a
pair of independent parameters. The current would vanis
under the RG a single umklapp term is induced, even
associated with several phases. In case of mirror symm
16531
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we havewn,m ,wn8,m850, resulting in a zero dc current. Thu
the breaking of mirror symmetry is a necessary condition
the pumping. Most importantly, the response of the no
Fermi-liquid ~Luttinger! quasiparticles to a fermionic cou
pling produces anomalous frequency dependence in
pumped current. Consider first the commensurate case w
Dk150. Equation~33! reduces to a power law in frequenc

dependence with an exponent 2(Knsns8
nn8 21). In the noninter-

acting limit Kc51,Ks51, the lowest value of the exponen
will correspond toK11

1253/2, giving the expected linearv0

behavior at commensurability. In this case we get charge
spin pumping with a frequency-independent pumping c
ductance

Gc,s5
e2

h

2p

v0
I c,s

dc ,

similar to Refs. 5 and 19. With interaction, the frequen
dependence of the current is generally nonlinear with an
ponent depending on the strength of the Luttinger inter

tion. ForKnsns8
nn8 .1, the current goes to zero smoothly in th

zero-frequency limit, connecting to the expected result of
current when the lattice does not oscillate. In the ran

Knsns8
nn8 ,1, the Luttinger fixed point would become unstab

and a new charge-density-wave~CDW! or spin-density-wave
~SDW! ground state forms, where our considerations do
apply. This RG argument manifests itself as a ‘‘dynam
Stoner instability’’ with I (v0) diverging asv0→0 in this
case. Note, however, that the stable regime includes both
superlinear and sublinear behaviors in frequency dep
dences of the current. Such nontrivial power laws are ne
seen for conventional pumps. In the incommensurate c
the current vanishes in the frequency windowuv0u
,uv@Dk1#n,m

n8,m8u. This reflects the physical requirement th
sufficient ~photon! energy must be supplied from the pum
ing source in order to make the transition. The nontriv
power law appears again immediately beyond the freque
threshold.

3. Boundary current

We still need to examine the boundary contribution. C
rying out the calculation along the lines described above
find that the mixed bulk-boundary contribution to the dc cu
rent vanishes while the pure boundary interference yields~cf.
Ref. 19!

I c
dcboundary5V0

2S L

aD 2Kc2Ks

uv0uKc1Ks21 sgn~v0!sinw.

~34!

We then conclude that forL→` ~holdingv0 fixed so that
no further renormalization ofV0 and gnm

U takes place! the
bulk contribution will dominate due to umklapp terms wi

un2n8u51 andv0.uv@Dk1#n
n8u. The irrelevant terms act

ing over a large distance win over the relevant terms fr
the edges.
2-6
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B. Finite-temperature pumping

Our considerations are easy to extend to small but fi
temperature~which leave the system in the vicinity of th
Luttinger fixed point!. We start by considering the contribu
tion from the bulk first. Using the finite-temperature expre
sion for the correlation functions of the boson operators34,35

the expression forI
nmns

n8m8ns8(v0 ,@Dk1#n,m
n8,m8) in Eq. ~33! will

read

I
nmns

n8m8ns8 ,T
~v0 ,@Dk1#n,m

n8,m8!

5S 2paT

v D 2K
nsns8
nn8

22

sin~pKnsns8
nn8 !

3BS 2
i

2p
s11

Knsns8
nn8

2
;12Knsns8

nn8 D
3BS 2

i

2p
s21

Knsns8
nn8

2
;12Knsns8

nn8 D sinhS v0

pTD ,

~35!

where s65(v06@vDk1#n,m
n8,m8)/2T; B(x,y)5G(x)G(y)/

G(x1y) is the Euler beta function.

When we consider incommensurate fillings@Dk1#n,m
n8,m8

Þ0, assumingT!v@Dk1#n,m
n8,m8 , two interesting regimes oc

cur depending on whetherT!v0, or T@v0. In the first
case, we get

I
nmns

n8m8ns8 ,T
~v0 ,@Dk1#n,m

n8,m8!

.sgn~v0!sin~pKnsns8
nn8 !G2~12Knsns8

nn8 !S a

2v D 2K
nsns8
nn8

22

3~v0
22v2@Dk1

2 #n,m
n8,m8!K

nsns8
nn8

21

3u~ uv0u2uv@Dk1#n,m
n8,m8u!, ~36!

coinciding in the limit with the result atT50. For T@v0

andv0 not too small compared tov@Dk1#n,m
n8,m8 we find

I
nmns

n8m8ns8 ,T
~v0 ,@Dk1

2 #n,m
n8,m8!

.sin2~pKnsns8
nn8 !G2~12Knsns8

nn8 !S a

2v D 2K
nsns8
nn8

22

3~v0
22v2@Dk1

2 #n,m
n8,m8!K

nsns8
nn8

21

3e2
v[Dk1] n,m

n8,m8

2T sinhS v0

pTD , ~37!

where the exponential factor describes the suppressio
processes between the initial and final states of ene
16531
e
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y

vu@Dk1#n,m
n8,m8u/2 involving momentum transfer@Dk1#n,m

n8,m8 .
When v0→0 at low temperature the exponential factor
Eq. ~37! prevails and the processes with the small

@Dk1#n,m
n8,m8 are favored and the current is suppressed.

At a typical commensurate point@Dk1#n0 ,m0

n1 ,m1;0 and tem-

perature not too low, we have to balance algebraic and
ponential suppression in Eq.~37!. In the limit v0!T, the
dominant contribution to the dc current will be given by

I c
dcbulk;eKcvcn0An0 ,m0 ,n0s

n1 ,m1 ,n1sS sinS G

2n0
L D

G

2n0

D
3cos~pKn0sn1s

n0n1 !2B2~Kn0sn1s

n0n1 /2,12Kn0sn1s

n0n1 !

3S 2paT

v D 2K
n0sn1s

n0n1 22 v0

T
sgn~v0!. ~38!

In the noninteracting limit the lowest value of the expone
corresponds toK11

1253/2 and one recovers again the usu
Fermi liquid behaviorI .max(T,v0) for the noninteracting
gas.35 With interactions present, the current behaves a
power law of the temperature with an exponent depending
the interactions, indicating a strong renormalization of t
scattering process due to various fluctuations of a o
dimensional electron gas. A similar expression will hold a
for the spin current with a coefficientKsvsn0s instead of
Kcvcn0.

Figure 2 shows the low-frequency behavior of the cha
current at zero and finite temperature, taking into acco
few umklapp terms.

When considering the bulk-boundary contribution
the dc current the same argument as in Sec. III A holds.
T!v0 we recover the zero-temperature expression~34!, and

FIG. 2. The low-frequency behavior of the charge curre
I c(v0) at T50 andT50.1,0.2, having taken into account umklap
termsg2,0,g2,1,g2,2,g3,1,g3,2,g3,3,g4,1,g4,2,g4,3. We have chosen
gn,m51, Kc50.7, andKs51; v0 and T are measured in units o
vDk20 and I (v0) in units of evF/2.
2-7
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for v0!T we do have

I c
dcboundary}~L/a!2Kc2KsuTuKc1Ks21 sgn~v0!sinw,

so that none of the previous conclusions is invalidated w
L→`, takingv0 or T fixed.

IV. CONCLUSIONS

We have introduced and studied charge and spin para
ric pumps for an interacting quantum wire. We have dem
strated that the pump, consisting of a periodic potential
cillating in space and in time over a sizeL of a long clean
wire, induces dc spin and charge currents. At finite and fi
frequency, the leading contribution to the current arises fr
the interference of two out-of-phase umklapp operators
agreement with the picture of a phase coherent quan
transport, while edges contribution dominates at large
fixed size of the pump in the small frequency limit. We ha
shown that the pumped current is strongly affected by
interaction in the wire, displaying a nonuniversal behav
that depends on the filling and the interaction itself. We ha
16531
n

et-
-
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d

in
m
ut
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also discussed how to realize a pure spin pumping in the w
as an alternative picture to the existing coherent spin tra
port methods, without assuming any magnetic field pres
We have finally addressed the question of the charge
spin transported into a cycle across the section of the w
We have shown that the charge and spin are not quant
even if the adiabatic conditions are satisfied.

It would be interesting to address further questions
garding the thermal current pumped into the system, diss
tion, and noise. However, the most interesting quest
would concern the experimental detection of our propo
pumping effect.
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APPENDIX: EVALUATION OF THE CURRENT INTEGRAL TO SECOND ORDER

1. Calculation at TÄ0

Due to the symmetry properties of the Green’s function, only the terms withe152e2 contribute in the current integral~28!.
Changing variables it can be rewritten as Eq.~29!:

^I c~x,t !& (2)52
ie

p (
n,m

(
n8,m8

gn,m
U

~2pa!n

gn8,m8
U

~2pa!n8 (
hh1

E
2L/2

L/2

dx1E
2L/2

L/2

dx2E
2`

`

dT sin~v0T2Dw1Dkn,mx12Dkn8,m8x2!

3e2nn8G
h12h1

fcfc (x12x2 ,T)e2nsns8G
h12h1

fsfs (x12x2 ,T)E
2`

`

dT8@n]TGhh1

fcfc~x2x1 ,T8!

2n8]TGh2h
fcfc~x2x2 ,T8!#, ~A1!

whereDw5Dwn,m
n8,m8 .

Another variable changex1 ,x2→x5(x12x2),x85(x11x2), so that we must evaluates the integrals over (x,T), x8, and
T8, which we denote byJ1 , J2, andJ3, respectively. The integral overx8 is simply

J252E
0

L/2

dx8cosS Dkn,m2Dkn8,m8
2

x8D .

The integral over (x,T) is

J15(
h1

E
2`

`

dTE
2L/2

L/2

dx

sinS v0T2Dw1
Dkn,m1Dkn8,m8

2
xD

)
a56

@a1 ihh12h1
~vcT2ax!#Kc

nn8
@a1 ihh12h1

~vsT2ax!#K
s

nsns8
, ~A2!

whereKc
nn85nn8Kc/2 andK

s

nsns85nsns8Ks/2.
We first consider the case whenvs5vc and make the variable changes5(vT2x)/v, s85(vT1x)/v, so that Eq.~A2!,

becomes

S v
2D(

h1

E
2`

`

dsE
2`

`

ds8
sin@~v02vDk1!s1~v01vDk1!s8#1Dw

@a12ihh12h1
vs#K

nsns8
nn8

@a12ihh12h1
vs8#K

nsns8
nn8

, ~A3!
2-8
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whereKnsns8
nn8 5Kc

nn81K
s

nsns8 , (Dkn,m1Dkn8,m8)/25Dk1 , indicated as@Dk1#n,m
n8,m8 in the main text.

Use the integrals 3.382.6/7 from Ref. 36,

E
2`

`

~b2 ix !2me2 ipxdx52p
e2bp~p!m21

G~m!
u~p!, E

2`

`

~b1 ix !2me2 ipxdx52p
e2bp~2p!m21

G~m!
u~2p!, ~A4!

we find the final result of the main text, Eq.~33!.
When vsÞvc and vs,vc , we change variables,37 s5(vsT1x)/(vc1vs) and s85(vcT2x)/(vc1vs), permitting us to

rewrite the integral~A2! as

J15(
h1

~vs2vc!

~vs1vc!
E ds

eiDwe2 iVs

@a1 ihh12h1
~vc1vs!s#Ks

nn8
F~s!2~s→2s;s8→2s8!, ~A5!

where

F~s!5E ds8
e2 iV8s8

@a1 ihh12h1
~vc1vs!s8#Kc

nn8
$a1 ihh12h1

@2vcs1~vc2vs!s8#%Kc
nn8

$a1 ihh12h1
@2vss81~vs2vc!s#%K

s

nsns8

and

V5~v01vcDk1!, V85~v02vsDk1!.

We expect singularities inJ1 nearv056vsDk1 andv056vcDk1 . Nearv05vsDk1 , V8.0 andV5(vc2vs)Dk1 . The
integral ins is dominated bys,1/V whereV.(vc2vs)Dk1 , whereas that ins8 is dominated by very large values. Pow
counting does imply that

I ~v0!;Q~v02vsDk1!~v02vsDk1!Kc
nn81K

s

nsns821. ~A6!

Nearv052vcDk1 , the integrand ins8 is dominated bys8,1/V8, whereV8.(vc2vs)Dk1 , and that ins by very large
values. By power counting we obtain the singular form ofI:

I ~v0!;Q~2v02vcDk1!~2v02vcDk1!K
s

nsns81Kc
nn821. ~A7!

The role ofvc andvs will be exchanged ifvc,vs .
In other ranges ofv0, the current may be written in terms of a single integration as shown in Ref. 38. We use int

3.384.7/8 from Gradshteyn to perform first the integral overs:

E
2`

`

~b2 ix !2m~g2 ix !2ne2 ipdx52p
e2bp~p!m1n21

G~m1n!
F„m;m1n;~b2g!p…u~p!,

E
2`

`

~b1 ix !2m~g1 ix !2ne2 ipdx522p
ebp~2p!m1n21

G~m1n!
F„m;m1n;~b2g!p…u~2p!, ~A8!

where F is the degenerate hypergeometric function, and in our caseb5(a2 ihh12h1
s8)/(vc2vs) and g5(a

1 ihh12h1
s8)/(vc1vs). Next, one employs the integral representation of the hypergeometric function:

F~a,b,z!5
G~a!G~b!

G~a1b!
E

0

1

dse2zs~12z!b2a21sa21. ~A9!

The resulting integral overs8 may be written in terms of theG functions by using 3.382.7. In the last step we use the inte
3.197.3 to recast the current in terms of hypergeometric functions.

In the regionvsDk<v0<vcDk we obtain the following result of the integralI
nmns

n8m8ns8(v0):

I
nmns

n8m8ns8~v0!5
2paK

G~K !

~vc1vs!
12K

s

nsns8

~2vc!
Kc

nn811
~v02vsDk1!K

nsns8
nn8

21~v01vcDk1!K
nsns8
nn8

21FS 1,K
s

nsns8 ,Knsns8
nn8 ;

~vc1vs!

2vc

v02vsDk1

v01vcDk1
D ,
165312-9
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whereKnsns8
nn8 5(Kc

nn81K
s

nsns8).

To have the current in its final form we must evaluate the integral overT8 involving ]T8G:

J3
c5(

h1

E
2`

`

dT8@n]T8Ghh1

fcfc~x2x1 ,T8!2n8]T8Gh2h1

fcfc ~x2x2 ,T8!# ~A10!

for the charge current, where

(
h1

E
2`

`

dT8]T8Ghh1

fcfc~x2x1 ,T8!52 i
Kcvc

2 (
a

(
h1

E
2`

`

dT8F hhh1

@a1 ihhh1
a~x2x1!#1 ihhh1

vcT8
G

5
Kcvc

2 (
a

(
h1

lim
Tm→`

ln$a1 ihhh1
@a~x2x1!1vcT8#%u2Tm

Tm

5
Kcvc

2 (
a

(
h1

lim
Tm→`

H 1

2
ln$a21hhh1

2 @a~x2x1!1vcT8#2%2Tm

Tm

1 i tan21S hhh1

~a~x2x1!1vcT8!

a D U2Tm

Tm J
5 iK cvcp, ~A11!

and similarly for*2`
` dT8]TCh2h1

fcfc (x2x2 ,T8) with h1→2h1.

We can perform the same type of calculation for the spin bosonic Green’s function. Thus we finally have

J3
c5 iK cvc~n2n8!p, ~A12!

J3
s5 iK svs~ns2ns8!p. ~A13!

The result shows that whenns8 ,ns50 we have a pure charge currentI s50, while if n,n850 we have a pure spin curren

2. Finite temperature

For simplicity we make the calculation in the casevc5vs . Using the finite-temperature expression for the bosonic Gre
function, we must evaluate the integral:

J15(
h1

FpaT

v G2K
nsns8
nn8

E
2`

`

dTE dx
sin~v0T1Dk1x!

sinhpTFhh12h1S vT2x

v D1 iaGK
nsns8
nn8

sinhpTFhh12h1S vT1x

v D2 iaGK
nsns8
nn8

. ~A14!

We first perform the variable changes5vT2x ands85vT1x and afterwards we use the integral

E
2`

`

dsu@sinh~pTs!#u2K
nsns8
nn8

e2 isz5
2K

nsns8
nn8

22

pT
BS Knsns8

nn8

2
2

iz

2p
,12Knsns8

nn8 D coshS z

2TD F11tanhS z

2TD G , ~A15!

which permits us to writeI (v0) in the final form shown in the text. The integral~A10! gives the same result at finit
temperature and similarly for the spin part.
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