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The beta function of a two-dimensional massless Dirac Hamiltonian subject to a random scalar
potential, which, e.g., underlies theoretical descriptions of graphene, is computed numerically.
Although it belongs to, from a symmetry standpoint, the two-dimensional symplectic class, the beta
function monotonically increases with decreasing conductance. We also provide an argument based on the
spectral flows under twisting boundary conditions, which shows that none of the states of the massless

Dirac Hamiltonian can be localized.
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The single parameter scaling theory of Anderson local-
ization [1] predicts that the quantum transport of noninter-
acting disordered conductors is characterized by the beta
function
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which encodes the variation of the dimensionless conduc-
tance g with respect to the system size L. Once the value of
the conductance at some length scale is known, the quan-
tum transport at all length scales is constructed [2]. The
property of the beta function depends on the dimension-
ality, and also on the symmetry class of the microscopic
Hamiltonian, such as spin rotation and time-reversal (TR)
symmetries [3]. In addition, the topological nature of wave
functions also has a significant effect on quantum
transport.

In this Letter, we discuss the problem of Anderson
localization for the two-dimensional (2D) two-component
Dirac Hamiltonian subject to a random scalar potential,

H = —itwpo -V + V(r). )
Here, r € R2, Oyyz denote the standard Pauli matrices,
and vy the constant velocity. The details of the random
scalar potential V(r) will be specified later.

The random Dirac Hamiltonian (2) is of direct relevance
to the quantum transport of disordered graphene [4].
Although the band structure of clean graphene has two
flavors (valleys) of two-component Dirac fermions, the
intervalley scattering is rather weak since spatial profile
of disorder in graphene is supposed to be smooth on an
atomic scale [5,6]. A two-component single-flavor Dirac
fermion can be realized, without doubling, on a surface of a
three-dimensional Z, topological insulator [7-9].

The properties of the eigenfunctions for the ideal Dirac
Hamiltonian [Eq. (2) without V] are well known: The
degeneracy point in the momentum space serves as a
Dirac monopole for the Berry connection and wave func-
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tions in the momentum space pick up a 7 phase shift when
transported around the Dirac cone [10].

From the symmetry point of view, the random
Hamiltonian (2) belongs to the symplectic symmetry class,
as it possesses an “‘effective” TR symmetry [11]

ia'y,’]-[*(—iay) =H. 3)

The beta function of the 2D symplectic class shows the
weak antilocalization for large g, and there is a metal-
insulator transition at g* ~ 1.4 [12-14].

Although being a member of the symplectic symmetry
class, there is growing evidence that the beta function of
the random Dirac Hamiltonian (2) is qualitatively different
from the conventional one for the 2D symplectic class:
(i) Localization of nonrelativistic electrons for strong dis-
order can be understood in a picture in which bound states
localized at potential minima overlap with each other.
However, a Dirac fermion cannot be trapped by a potential
well irrespective of the well depth [15,16], and hence is
naively expected to have a strong tendency not to be
insulating. This makes a physical picture for the strongly
disordered regime of the Dirac fermions different from the
conventional case, although physics of Anderson localiza-
tion cannot fully be understood in terms of potential trap-
ping. (ii) As observed by Ando et al., the Berry phase 7
that is accumulated around the Dirac cone in the momen-
tum space leads to a destructive interference between a
back scattering process and its TR counterpart, leading to
the complete absence of back scattering [10]. (iii) The
nonlinear sigma model (NLoM, a field theory for diffusion
modes) for the random Dirac Hamiltonian (2) has a Z,
topological term [17-19]. It has a little effect in the metal-
lic regime, but should change the renormalization group
flow in the strongly disordered regime. Ostrovsky et al.
[18] conjectured the NLoM with the topological term has
three fixed points (metallic fixed point, metal-semimetal
transition, and semimetal attractive fixed point). (iv) There
are numerical studies that indicate the increase of the
conductance with system size even for g < 1.4 [20,21].
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The purpose of this Letter is to compute the beta func-
tion of (2) numerically, and compare it with the conven-
tional system of the 2D symplectic class. We find that the
beta function of the Dirac model is always larger than or
equal to zero, showing that all states are delocalized even
in the strong disorder regime, in contrast to the conven-
tional case. We also provide a spectral-flow argument that
clearly shows that the localization of Dirac fermions is
forbidden.

We compute the diagonal conductance (conductivity) of
the random Dirac Hamiltonian (2) by evaluating the Kubo
formula
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where v is the velocity operator, v = i[H, r]/h = vpo,
f(E) is the Fermi-Dirac function at zero temperature, 7 in
the energy denominator is a smearing factor, and |n) de-
notes an eigenstate with energy E, of the Dirac equation in
the presence of the random potential.

The massless two-component Dirac equation cannot be
regularized, without breaking the TR symmetry, by putting
the system on a lattice. We thus work in the momentum
space by introducing a hard cutoff at a sufficiently large
momentum A. The eigenstates {|n)} and energies {E,} are
then obtained by numerically diagonalizing the Dirac
Hamiltonian with disorder in the momentum-pseudospin
basis. Typically, we take A ~ 20 X 27/L, where about
2000 k points are included. We assume that the disorder
potential is sufficiently weak so that the level broadening
caused by disorder around the Dirac point is much smaller
than the cutoff energy o« A.

The smearing factor n in the denominator of Eq. (4)
accounts for the finite switch-on time of the electric field
required for a dissipative current response. Physical argu-
ments suggest that 17 has to be at least as large as #/T,
where T, is the escape time from the system of interest.
The escape time can be estimated from the Thouless
energy (AE) by the uncertainty relation (AE)T; = h,
where AE is the eigenvalue difference between periodic
and antiperiodic boundary conditions and () is the geo-
metric mean over disorder realizations [22,23]. Indeed, it is
reported in Ref. [20] that g is reasonably insensitive to 7
when n =~ (AE).

We assume that the scalar potential disorder V(r) is
generated by randomly distributed impurities centered at
R;, each of which contributes to V(r) with a scattering
potential U(r — R;),

N;
V(r) = Z U — R)). (5)
=1

We considered two types of scattering potentials U(r): the
Gaussian correlated potential U(q) = u exp(—¢*13/2), and
the Thomas-Fermi potential U(q) = u/(q + I;!), where
U(q) is the Fourier transform of U(r), u represents the
disorder strength, and [, the range of the potential.

Typically 5000 disorder configurations were used for aver-
aging. The conductance was calculated for various sets of
parameters, N;, u, ly and filling (Er). The number of
scatterers N; was 1-10 times as large as the maximum
number of carriers at each size. The range of the potential
was changed up to 1/30 of the minimal system size.

We note that typical length scales are hardly determined
from naive considerations at the Dirac point (E,;l — 00),
Indeed the mean free path at the Dirac point, estimated by
the golden rule, diverges for uncorrelated short-range scat-
tering (Il — 0) [5], while it vanishes for long-range
Coulomb scattering (I, — o0) [20]. Nevertheless we do
not need the specific length scale since the beta function
is defined as a logarithmic derivative in Eq. (1).

To compare our results with the conventional 2D sym-
plectic class, we compute, by the same method, the beta
function of the random spin-orbit (SO) coupling model
given by

H = (—inV)?/2m + V(r) + V,,

— _1 ; 5 (6)

Vio = —5{Ar), =iV} X o - 2.
Note that the velocity operator in this model is
spin dependent. We assume an uncorrelated short-range
distribution for A(r) and V(r).

Figure 1 shows the beta function of the Dirac model
(filled circles) and the random SO coupling model (open
circles). The latter agrees with the known behavior of the
beta function of the 2D symplectic universality class: there
is a metallic phase with weak antilocalization effect
[B(g) ~ 1/mg] when g is large, whereas there is a local-
ized phase for small g; there is a metal-insulator transition
at g* ~ 1.5 that separates the two phases.

For large g, the beta function of the random Dirac model
behaves similarly as that of the random SO model; this is as
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FIG. 1 (color online). The beta functions of the random Dirac
Hamiltonian (2) (closed circles) and the random spin-orbit
model (6) (open circles). The broken line represents the one-
loop beta function of the conventional 2D symplectic class,

B(g) ~ 1/mg [12].

146806-2



PRL 99, 146806 (2007)

PHYSICAL REVIEW LETTERS

week ending
5 OCTOBER 2007

expected since when g is large, the Z, topological effect in
the NLoM is small.

We observe that the single parameter scaling holds
reasonably well in both models as shown in Fig. 1 [24].
In a sharp contrast to the conventional case, the beta
function of the Dirac model monotonically increases with
decreasing g well below g* ~ 1.4: a 2D massless Dirac
fermion cannot be localized by a random scalar potential
[25]. The numerical beta function of the Dirac model is
well fitted by the one-loop beta function of the symplectic
class even in the strongly disordered regime g < 1.

The absence of localization in the Dirac model can
intuitively be understood by examining the spectral flow
induced by twisting boundary conditions. Let us con-
sider a finite and disordered system described by Eq. (2),
and impose the boundary conditions in both x and y
directions, with phase factors exp(i¢,) and exp(i¢,), re-
spectively. For simplicity we set ¢, = 0 and discuss the
energy levels as a function of ¢, = ¢. The TR symmetry
holds at ¢ = 0, 7r, where exp(i¢) is real, leading to the
Kramers degeneracy. We assume the cutoff to be infinity
(the effects of the finite cutoff will be discussed later).
Figure 2(a) shows an example of spectral flow obtained
for the 2D Dirac model with a specific disorder configura-
tion. An essential observation is that Kramers pairs al-
ways change their partners as the energy spectrum evolves
from ¢ = 0 to 7; if the energy eigenvalues {E,} are paired
as ---, (En’ En+l); (En+2’ En+3): ceeoat d) = 0’ then they
are paired as - - -, (E,,_, E,), (E 41, Eq12), - - - at ¢ = 1.
Here eigenvalues E,, are ordered in ascending order [26]. In
contrast, the nonrelativistic electron system with SO cou-
pling has a different type of the “bandline topology™ as
shown in Fig. 2(b); energy eigenvalues do not change their
partners as the spectrum evolves from ¢ = 0 to .

We can find the origin of this topological structure in the
ideal spectrum. In the absence of disorder, the Dirac model
has a set of eigenvalues E, , ((¢) = (27/L)hvps[(n, +
#)* + n2]'/2, where s = =1 and n,, n, € Z. For example,
two degenerate states at ¢ = 0 with zero energy (s = *1
and n, = n, = 0) become apart as ¢ increases and never
stick together; each couples with other partners at ¢ = 7r.
As we introduce disorder, energy eigenvalues move around
but the way eigenvalues are paired between ¢ = 0 and 7
can never be altered, since each Kramers doublet remains
intact at ¢ = 0 and 7. In other words, it is impossible to
change the topology of the “‘bandline”’ continuously from
the type of Fig. 2(a) to 2(b) without breaking the TR
symmetry.

If a state is exponentially localized, its eigenenergy must
be insensitive to the boundary phase factor; i.e., the ““band-
width” of E,(¢) is exponentially small compared with the
average level spacing [23]. In the Dirac model, however, it
is impossible because all the band lines are connected
through the Kramers doublets at ¢¢ = 0, 7 so that the
bandwidth cannot be smaller than the level spacing. We
thus conclude that there are no localized states in the
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FIG. 2 (color online). The evolution of energy spectra as a
function of the twist angle ¢ for the random massless Dirac
model (left) and the random spin-orbit model (right).

Hamiltonian (2). In the nonrelativistic electron system, in
contrast, the structure of the spectrum in Fig. 2(b) does not,
at least, prohibit localization, and states indeed tend to be
localized for strong disorder.

We note that, in order for the above argument to be valid,
we have to assume that the energy band continues from
—o0o to oo, Indeed, if we have a finite cutoff, the TR
symmetry must be broken either at ¢ =0 or .
Although this may alter the bandline topology around the
band edges, the low-energy states around the Dirac point
are hardly affected as long as the disorder potential is long
ranged and the cutoff is large enough. With increasing the
disorder strength, one would naively expect Anderson
localization first takes place at band edges (cutoff) and
the Dirac point (can be viewed as a point at which two band
edges meet accidentally). The former goes away as we
send the cutoff to infinity, while the latter is protected
from localization by the topology of the spectral flow.

Although the honeycomb lattice system involves a cou-
pling of the two valleys (flavors), a similar delocalization
effect should manifest itself when intervalley scattering is
negligibly weak. On the other hand, when atomic-scale
scatterers dominate, the intervalley scattering randomizes
the Berry phase and the nature of interference is changed to
enhance localization [10]. In the Dirac band, the inter-
valley scattering time depends on the Fermi energy as
«1/|Ep| [5], and thus is more important in the highly
doped regime.

The present calculation suggests that the Dirac fermion
system exhibits the positive magnetoresistance. On the
other hand, the recent graphene experiments indicate
somewhat complicated situations: A magnetoresistance
study [27] clarified that highly doped epitaxial graphene
exhibits a crossover between positive and negative magne-
toresistance induced by changing the temperature as ex-
pected theoretically in Refs. [6,28]. For isolated single
graphene sheets [4], however, experiments show that
(i) the conductivity hardly changes in a wide range of
temperature near the Dirac point, while (ii) the magneto-
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resistance is weakly positive at low carrier densities [29].
Although a number of theoretical scenarios have been
proposed, including effects of microscopic ripples
[29,30], trigonal warping terms [28], and edges [31], there
is no consensus at this moment. Taking into account these
effects in addition to the random scalar potential in Eq. (2)
will be done elsewhere.

Although our focus in this Letter is on 2D, the argument
based on the topology of the spectral flow applies equally
well to the 1D and 3D two-component massless Dirac
fermion with the effective TR symmetry: A two-
component massless Dirac fermion cannot be localized
by a random scalar potential in all 1D, 2D, and 3D [32].
Since d-dimensional two-component massless Dirac fer-
mion can be viewed as a gapless boundary mode of Z,
topological insulators in (d + 1)D (d = 1, 2, 3) [7-9], our
discussion above concludes that a surface of a (strong) Z,
topological insulator is always metallic, robust against dis-
order. This is consistent with the speculation in Ref. [7] in
the context of quantum spin Hall effect. Such metallic
surface states can be called a ““topological metal” [7].

After completion of this work, we became aware of a
similar numerical result at the Dirac point, obtained inde-
pendently in Ref. [24].
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