INTRODUCTION TO THE ESSENTIALS OF TENSOR CALCULUS
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|. Basic Principles
We shall treat only the basic ideas, which will suffice for much of physics. The objective is to
analyze problems in any coordinate system, the variables of which are expressed as

qj(xi) or qi(qi) where %: Cartesian coordinates, i=1,2,3, ...N

for any dimension N. Often N=3, but in special relativity, N=4, and the results apply in any

dimension. Any well-defined set of gill do. Some explicit requirements will be specified later.
An invariant is the same in any system of coordinates. A vector, however, has components
which depend upon the system chosen. To determine how the components change (transform) with

system, we choose a prototypical vector, a small displacemeht (®f course, a vector is a
geometrical object which is, in some sense, independent of coordinate system, but since it can be
prescribed or quantified only as components in each particular coordinate system, the approach here is

the most straightforward.) By the chain rule, ' dq (aq' / oxl ) dx¥ , where we use the famous
summation convention of tensor calculus: each repeated index in an expression, here j, is to be
summed from 1 to N. The relation above gives a prescription for transforming the (contravariant)

vector dx to another system. This establishes the rule for transforming any contravariant vector from
one system to another.

A'(q)-( )Al(x)
A'(q)—(q,)AJ(q) q, qJ)Ak<x)—(¢)Ak(x>

[
/\ (q,x) = g% Contravariant vector transform

The (contravarlant) vector is a mathematical object whose representation in terms of components

transforms according to this rule. The conventional notation represents only the O‘E).JemthAut
indicating the coordinate system. To clarify this discussion of transformations, the coordinate system

will be indicated by /K(x) but this shoulghot be misunderstood as implying that the components in

the "x" system are actually expressedlagtions of the i (The choice of variables to be used to
express the results is totally independent of the choice coordinate system in which to express the

components K. The Ak(q) might still be expressed in terms of tHe or AK (x) might be more
conveniently expressed in terms of sorh} q

Distance is the prototypical invariant. In Cartesian coordinate%,:déij dxl dx , where
6ij is the Kroneker delta: unity if i=}, O otherwise. Using the chain rule,
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I = (==
dX = (5q) dd
oxi | oxl
4 = 3 (gok) () ek dd = gd (@ deod

= (&) (e (definition of the metric t
okl (a) = (aqk)(aq|) ij  (definition of the metric tensor)

One is thus led to a new object, the metric tensor, a (covariant) tensor, and by analogy, the covariant
transform coefficients:

/_\Ji ax)= ( %Ji )  Covariant vector transform

{More generally, one can introduce an arbitrargasure (a generalized notion of 'distance’) in
a chosen reference coordinate system 8y=dg<| (0) d? d and that measure will be invariant if
gk| transforms as a covariant tensor. A space having a measure is a metric space.}

Unfortunately, the preservation of an invariant has required two different transformation rules,
and thus two types of vectors, covariant and contravariant, which transform by definition according to
the rules above. (The root of the problem is that our naive notion of 'vector' is simple and well-
defined only in simple coordinate systems. The appropriate generalizations will all be developed in
due course here.) Further, we define tensors as objects with arbitrary covariant and contravariant
indices which transform in the manner of vectors with each index. For example,

] n
THA) = Ay @OAL@X) M@0 T ()
The metric tensor is a special tensor. First, note that distance is indeed invariant:
ds?(@) = & (g dak dg

= (@0 g @ CIar (2% ad

G @ (oei (5 “ ("qﬂ ) t)doﬁdd

O O
agl
ags =0is Sit

=gj (@) ddd = d¥(q)

There is also a consistent and unique relation between the covariant and contravariant
components of a vector. (There is indeed a single 'object’ with two representations in each coordinate
system.)

dg = gj dd
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A
0

daj = gji () da’

dgK _ agK
oqi ) K@ ad = (5 deg

Thus it transforms properly as a covariant vector. _
These results are quite general; summing on an index (contraction) produces a new object
which is a tensor of lower rank (fewer indices).

u k _ j
kG =R
The use of the metric tensor to convert contravariant to covariant indices can be generalized to
'raise’ and 'lower" indices in all cases. Singe=ggjj in Cartesian coordinates, 'dxdy; ; there is

no difference between co- and contra-variant. Herlte= @jj , too, and one can thus defindi o

other coordinates. {More generally, if an arbitrary measure and metric have been defined, the
components of the contravariant metric tensor may be found by inverting the [N(N+1)/2] equations

(symmetric g) of 4§ (0) gk(0) gnj(O) = okn(0). The matrices are inverses.}
Al(g) = d! (0) Aj(@)

6= d<ayg = aXm)(axnmmn (o) (o) 3rs

| I
O

6”’]

(aXS) (aq] ) 6Ij

Thus g} Is a unique tensor which is the same in all coordinates, and the Kroneker delta is sometimes

written as 6} to indicate that it can indeed be regarded as a tensor itself.

Contraction of a pair of vectors leaves a tensor of rank 0, an invariant. Such a scalar invariant
is indeed the same in all coordinates:

Al(q)Bj(q) = an )AJ(q) (aq.. ) Bi(@) = ik Al(q) Bk(a)
= A(g) Bj(a)

It is therefore a suitable definition and generalization of the dot or scalar product of vectors.
Unfortunately, many of the other operations of vector calculus are not so easily generalized.
The usual definitions and implementations have been developed for much less arbitrary coordinate
systems than the general ones allowed here.
For example, consider the gradient of a scalar. One can define the (covariant) derivative of a
scalar as

3
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0D 00 0D ox

00i= i BEN= 5 =(5) (o)

The (covariant) derivative thus defined does indeed transform as a covariant vector. The comma
notation is a conventional shorthand. {However, it does not provide a direct generalization of the
gradient operator. The gradient has special properties as a directional derivative which presuppose
orthogonal coordinates and use a measure of physical length along each (perpendicular) direction. We
shall return later to treat the restricted case of orthogonal coordinates and provide specialized results for
such systems. All the usual formulas for generalized curvilinear coordinates are easily recovered in
this limit.} A (covariant) derivative may be defined more generally in tensor calculus; the comma
notation is employed to indicate such an operator, which adds an index to the object operated upon, but
the operation is more complicated than simple differentiation if the object is not a scalar. We shall not
treat the more general object in this section, but we shall examine a few special cases below.

[I. Three Dimensional Spaces

For many physical applications, measures of area and volume are required, not only the basic
measure of distance or length introduced above. Much of conventional vector calculus is concerned
with such matters. Although it is quite possible to develop these notions generally for an
N-dimensional space, it is much easier and quite sufficient to restrict ourselves to three dimensions.
The appropriate generalizations are straightforward, fairly easy to perceive, and readily found in
mathematics texts, but rather cumbersome to treat.

For writing compact expressions for determinants and various other quantities, we introduce
the permutation symbol, which in three dimensions is

ellk = 1 forijk=1,2,3 or an even permutation thereof, i.e. 2,3,1 or 3,1,2

-1 for i,j,k= an odd permutation, i.e. 1,3,2 or 2,1,3 or 3,2,1
0 otherwise, i.e. there is a repeated index: 1,1,3 etc.

The determinant of a 3x3 matrix can be written as
la] =ellk aqj apj agi
Another useful relation for permutation symbols is

elk elm = & &m- &m 8«

Furthermore,
ijk ijk _
6Imn = g'lk glmn and 6Ijk =3
where 6||Jrl]<m Is a multidimensional form of the Kroneker delta which is 0 except when ijk and Imn

are each distinct triplets. Then itis +1 if Imn is an even permutation of ijk, -1 if it is an odd

permutation. These symbols and conventions may seem awkward at first, but after some practice they

become extremely useful tools for manipulations. Fairly complicated vector identities and

rearrangements, as one often encounters in electromagnetism texts, are made comparatively simple.
Although the permutation symbol is not a tensor, two related objects are:

L . 1
gi =vg elK and ek =— elk  where g= |g;
ik =Vg 79 9= |gijj |

with absolute value understood if the determinant in negative. This surprising result may be confirmed
by noting that the expression for the determinant given above may also be written as
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elMn [a| =ellk & anj ank

which is certainly true for I,m,n=1,2,3, and a little thought will show it to be true in all cases. The
transformation law for g may then be obtained as

elmng(@)l =K g(@) 9(@)mj 9(@nk

= eijk (99 (941 (904

) (29
aql 7 taqgl / togm

d d
aqi ) (aqn) (gak)

g,q(q) ors(a@) ayv (9) (tensor transform of metric tensors)

_ 0dq ,oqP |, aq" |, doqu
_gqsvD 5q° 0 o ) (aq'm ) (aq'n ) 9pq Irs uv

(considering the terms with indices i,j,k)

_ Apru 0oq. | [/ 3q'm U/ agn
ePru g(aq) g Ekaqp/aq )(og" /ag™ )(aqU/agn)

(considering the terms with indices q,s,v in constituting a determinant as above)

=elmn g(q) Baa?] B (forming another determinant as above)

thus establishing that g transforms with the square of the Jacobian determinant. For the putatively
covariant form of the permutation tensor,

. = rst
eijk (@) =V9(@) ™t (i) (a7 ) (ggk)
= ellk Ba% EV_Q(Q) =ellK 7g(q'), the form desired.
Raising indices in the usual way will produce the contravariant form by arguments similar to those
applied above.

The permutation tensors enable one to construct true vectors analogous to the familiar ones.
The vector or cross product becomes

Aj = Ejjk BJ CK

although again we have both co and contravariant forms.
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The invariant measure of volume is easily constructed as

o
AV = Eijk dq' dg dot g(,j) dd(

which is explicitly an invariant by construction and can be identified as volume in Cartesian
coordinates. ( This is a general method of argument in tensor calculus. If a result is stated as an
equation between tensors [or vectors or scalars], if it can be proven or interpreted in any coordinate
system, it is true for all. That is the power of tensor calculus and its general properties of
transformation between coordinates.)

Note that the application of this relation fAV in terms of dhand transforming directly from
Cartesian dx gives immediately the familiar relation

- _ 09X -
AV=J dddgded J= 5aq g the Jacobian.

For the volume integrals of interest, note thﬁtl Eijk dcf dd dd< , for | invariant, is

invariant, but ITV gjjk dd dd deK isnot avector, because the transformation law f¥rifT
general changes over the volume.

The operators of divergence and curl require more care. Just as the gradient has a direct
physical significance, these operators are constructed to satisfy certain Green's theorems, Gauss' an
Stokes law. These must be preserved if their utility is to continue. One can prove a beautiful general
theorem in spaces of arbitrary dimension, from which all common vector theorems are simple
corollaries, but the proof requires extensive formal preparation. Instead, we shall provide
straightforward, if lengthy, proofs of the two specific results desired.

For Gauss' law, we require a relation which is a proper equation between invariants and
further reduces to the usual result in Cartesian coordinates,

J divrm) e def df dof g,d dof¢ JTids

the choice dS= €ijk dd dcf< is explicitly a (covariant) vector, making the right integral invariant,
and it gives the correct result in Cartesians. On the left, we require a suitable operator. We shall next

prove that
1 9[(vo )]
Vg ogj

is such an invariantlt certainly gives the usual Cartesian divergence, but the inspiration for this
guess must remain obscure, for it is deep in the development of general covariant differentiation and
Christofel symbols. Fortunately, that need not concern us. Proof that this expression is indeed
invariant requires proving that the form is the same in any two systems:

| Nk (99 \O
1 (e )T] _ 1 0 {797 )T Couk ) -
79" o - Yy o i
o[(vg )T Jg= Jv
LA s G
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as shown above, introducing J for the Jacobian determinant. The expression in the new coordinates
can then be written

i
1 go[(e )™ DJ(Gq L @Eﬂ k%
Ng U ogj J Oog O

where the first term is simply the desired expressioniibyxhe chain rule, and we must show that
the second term, the portion in brackets [], is then zero. That term may be written

a9X0 _
9r0q0 aq " 02 g (ax!
o gl ‘oxkK xK ax| “aql
1
and the first term converted using J%E =1/J to %
B g 2
X [
P U__pmPao 0449 (6

Ox0 oxK axl aq'

thereby canceling the second term and proving the assertion. The last step requires some algebra t
confirm, but it is straightforward using the methods used above for writing a determinant, considering
all the terms present, and inserting a

= (%% )(aq,>

(with appropriate choice of indices), the inverse of the usual procedure. The 'tensorial’
form of the divergence theorem is therefore an equality of invariants:

0 ™ I da doK . .
= [(“a%rﬂ ey o o o - iy oq ack

Furthermore, the familiar result, divfg = @diviA) + OSBA , remains as

div(@n) = BdivA) +90 ‘M

Fortunately, Stokes theorem is somewhat easier; there is only one subtlety. The naive
generalization is

o 0Tk ,
Jeilk g eistdePad = [T dd
which again obviously reduces to the usual result in Cartesian coordinates and would be explicitly a
good 'tensor' equation between |nvar|antéTi</6q were indeed a covariant tensor of rank two. Itis

not, but the portion used in the equation above is. In general,

7
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Rii +Rjj Rii - Rij
Rij — 12 | + 12 |

the sum of a symmetric and antisymmetric part. For contractions with the anti-symmetric permutation
symbol as used above, only the anti-symmetric part contributes; replacing

ATk 9Tj
0Tk _ PG  0gkD
ogj 2

is equivalent and gives the identical Cartesian reduction. The antisymmetric expression is easily
shown to be a tensor as follows:

o _OTi 0T , = OTi Ty
Ri=ag ~aq 3 Ri= 5q - ag
but by the laws of tensor transformation, this should also be

axk axK
- 0 Jiag; )1 ] agrk(afﬁ ) r %) @,
' oqj oa Rl (g aqj
0Tk laTk 92xK 92xkK
_ i T
G ) (??ql \ag (??qj Tk agjogi ™ T agaq

where the last two terms cancel and the first two, using the chaina/atﬁ):((alaxk)(axk/aqi), give
the required tensor transform ofj R We therefore have the desired tensor form of the divergence and

curl operators and the corresponding integral theorems. Note also that the important results curl ( grad
@) = 0 and div ( curl A = 0 both follow easily from these forms by symmetry

. 92
jk Y- -o.
€ agjag; ~°

[1l.  Physical Vectors

The distinction between covariant and contravariant vectors is essential to tensor analysis, but it
is a complication which is unnecessary for elementary vector calculus. In fact, the usual formulation
of vector calculus can be obtained from tensor calculus as a special case, that being one in which the
coordinate system is orthogonal. Most practical coordinate systems are of this type, for which tensor
analysis is not really necessary, but a few are not. (For example, in plasma physics, the natural
coordinates may be ones determined by the magnetic geometry and not be orthogonal.) In orthogonal
systems with positive metric, one can define 'physical' vectors, which are neither covariant nor
contravariant. Nevertheless, they have well-defined transformation properties among orthogonal
systems, and they have simple physical significance. For example, all components of a displacement
vector have the dimensions of length. They are the vectors of traditional vector calculus. For
orthogonal systems of this type,

gj = % g (his not a vector; no summation)
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A
A(G) = hAl = WII (no summation)

for the components of the ‘physical’ vector. The usual dot or scalar product is simply A(i)A(i) and
produces the same result as given above. (In this special case, the metric tensor can be 'put into’ the
vector in a natural manner.)

All the usual vector formulas can be obtained from the preceding tensor expressions by

consistently converting to physical vectors. Note that g kptig)2 andgjjc =h ellk. using h=
(hgh2hg).

C(i) = AG) X B(k) =ellk A() B(K)

(grad @)(i) =(1/h)(@ Doc;)

div A = (1/h}{a[hA(i)/h;)/da;}

(curl A)Gi) = (hy/h) eIk afhiAK)]/ag

Volume: (dv)=h elK dgdgdg = d3l = ellk didljdly
Integrations are over physical volumes, areas, and lengths. If the integrals are set up in coordinates
like dg, the necessary factors must be inserted to give the physical units as illustrated here for volume.
IV. Examples

Cylindrical coordinates _
A simple example to illustrate the ideas is provided by cylindrical coordinates:

Xx=rcos® r=vVxZ+y2
y=rsin® 0 =tan1(y/x)

=27
i\j= 1 2 3
. g ] cos®6 sin 0 0 Qg
A =5 = Besineyr (coseyr o O
0 H 0 0 1%
i\
: ] cos® sin@ 0 Qg
N E%J, = Ho(sin®) r(cosB) 0 -
H o 0o 10
gl 0 0p gl 0 0g
gj =p0 2 0 ¢l = g0 rz o0g
00 0 10 bo o0 10
g=r hj = (1,r,1)
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Spherical Coordinates
A second example of broad utility is spherical coordinates:

X =1 Sin@ cos@ r=vVx2 + y2 + 22
x2 + y2

0
5

y =rsin@sing 0 :tarrlg
Z=rcosh @ =tan-1(y/x)

[] sinB coseg sin@ sing cos6 []
[ _aqi _ [](cosB cos@)/r (cosb sin@)/r -(sin®)/r []

] ox ] -sin @ cosQ 0 ]
L] rsin® r sin@ L]
i\j

, i [] sinB cosg sinB sin@ cos® []
/_\Ji E(Tq' = [Jrcosbcose rcosOsing -rsin® []
[]-rsine sing@ rsinB coso 0 []
nl ¢ 0 g .ot 9 0 g
gIJ = DO r O |:| g'J = D O r O |:|
Ho o0 rsinke H Ho o rZin2e H

g=rsin20 hi = (1,r,r sinB) h = Zsin 8

V. Application: Special Relativity

Special relativity is generally introduced without tensor calculus, but the results often seem
ratherad hoc Einstein used the ideas of tensor calculus to develop the theory, and it certainly
assumes its most natural and elegant formulation using tensors. The arguments are easily stated. Th
use of tensors is natural, for it guarantees that if the laws of physics are properly formulated as
equations between scalars, vectors, or tensors, a result or equality in one coordinate system will be
true in any.

Special relativity is based on only two postulates. The first is that all coordinate systems
moving uniformly with respect to one another are equivalent, i.e. indistinguishable from one another.
The second is that the speed of light is constant in all such systems. (The first was a long-standing
principle. The second was the implication of the Michelson-Morley experiment.) These are easily
phrased in tensor calculus. The first implies thatmetric tensor must be the same in all equivalent
systems, otherwise the differences would provide a basis for distinguishing among them. The second
is achieved by introducing a space of four dimensions with Cartesian coordinates (x,y,z,ct) and
choosing the metric tensor to be

[ |
[ |

o

[This is one of many equivalent choices, none of which has become standard. Sometimes the
time is placed first, the indices may run from 0-3 instead of 1-4, and the factors of ¢ can be put into g
instead of into the coordinates.]

10
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The resulting invariant measure "length” #&ck gy dxHdxV =- s + @dt, introducing
the usual convention that Greek indices range 1-4, whereas Latin indices range only over 1-3, the

spatial dimensions: 28 = didxi; xH = (x,y,z,ct) = (X,ct). It is this measure of "length”, sometimes
called 'proper distance’, no better a choice of words, which makes c a unique constant. (You may be

more familiar with this invariant called 'proper tima = do/c.) Specifically, a disturbance
propagating at c in one system (ds/dt=c in that system) will produce events in that system for which

d20 = 0. Since this "length” is invariant, it will be the same in all systerde: =0 for the events
transformed to any other system, and they will thus also appear to move at ds'/dt'=c. For all
equivalent uniformly moving systems, which have the metric above, a speed of ¢ will be invariant.
(This argument is carefully phrased to avoid "the speed of light", although "the speed of light in
vacuum" would suffice. If light is observed in a medium, which is difficult to avoid, the medium
introduces a preferred reference frame and the speed is nodtilyrinvariant.)

It remains only to obtain the transformation law between uniformly moving coordinate systems
which will preserve the metric. Let the origins coincide at t=0 and the origin of one system (0,ct)

move with velocity v in the other along x. If one looks for the simplest (covariant) transform which
could accomplish this

A 00B ;
aO_=0100 . _ AQ
AH-D0010D S =4, A Gp
Hc 0 0 pH
[]B2-A2 0 0 BD-AC []

] p— O '1 O 0
dw =0 o 0 -1 o U
ep-Aac 0o o0 D2-c2 [

where one must be careful if one does the tensor contraction as matrix multiplication; transposes must
sometimes be used to obtain the proper index matching. The requirements are thus

AC = BD B2-A2 =1 D2-C2=1

(O,ct) - (- Bct,0,0,Dct) O B/D =v/c =3, where the signs come from using covariant
displacements to employ the transform law above, but one is not concerned about the sign of v. Note

that co and contravariant vectors differ, but only in sign of the spatial part.) The unigue solution to
these four equations in four unknowns is

[]Y 0o 0 pBY []

0 10 0

Do 0 1 oD:Aau
Hev 0 o v O

(Y o o Y[

0 1 0 0

U8 6 9 8 H=nay
Hev 0 o v O

11
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_ 1
V1-82

which give the rules for transforming tensors between uniformly moving systems.

(Note that the metric is not positive definite here. The notion of physical vectors introduced in
Section Il cannot be employed to disguise a difference between co and contravariant. An attempt to
do so introduceg(-1), the origin of the ubiquitous i's which permeate non-tensor treatments of special
relativity. It is ironic that the attempt to "hide" the metric by introducing "physical” vectors should
result in the rather unphysical appearance of imaginary dimensions.)

Because the metric does not depend upon position, we have the useful generalization, already

employed above, that not only is the displacemert, dxcontravariant vector, as it always must be,

but the coordinates or vector position of a point, K, is also a vector which is not true
in general and constitutes a major conceptual subtlety in tensor calculus. This is a great simplification

for special relativity, and it means that the law above for transformation of contravariant vectors is
alsothe law for coordinate transformations.

Finally, note that B = gyv, which can be confirmed by direct calculation. (As noted earlier,
the two must be matrix inverses of one another.)

All the usual relativistic effects follow in a straightforward manner from these equations. An
event at ¥, Clg occurs atY (Xg- Bctg ), Y(Ctg - BXg) in the moving system. The origin of the initial
coordinates appears to be moving at -v in the new system, whereas the origin in the new system
appears to be moving at v in the initial system. Events at the pgjtiut separated ity occur at

different points and different times, the time difference bginty, the well-known time dilation. A
stationary bar with ends Ogcand L,cf appears at

Y

-BYcty , Yty and  Y(L-Bctg ),Y(ct1- BL)

Expressed in terms of a new t', Yt and t' =/(t1- BL/c)
—Bct', ct’ and (LY) -Bct, ct'

which implies that the ends appear separated by a distantehe ¢ontraction of length, if they are

observed (measured) simultaneously in the new system. The velocity addition formula follows simply
by applying two successive transformations:

[1 (1+BB)YY 0 0 -B+p)YY  [] ]y o o Y []
N o 1 o d=H%8 797 § 4
E-(B+B')W‘ 0 0 (143p)YY H E-B"V' o o Y E
. BB C _
= Lgp Y'=(1+BRYY =Y'(B")

but note that the addition of two velocitiedifferent directions gives much more complicated results;
the transformations do not even commute.

If the physical laws are expressed in terms of relativistic vectors and tensors, they will
transform properly with coordinate system and have the same form in any system, as desired. The
analog of velocity is

vH = dxM/dt a =cdr

12
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vH = (YviYc) pH=mw =(pl, E/c)
These relations for the four-velocity follow directly if svit, dxi = v2d2t
d2t = d2t - dxi /c2 = (1P2)d2t= d2t /Y2

This is a well-formed vector which reduces to the usual velocity for v << c; it is the only useful
relativistic expression for velocity, and thus momentum. The fourth component of the momentum

vector is identified as E because it becomesZ m¢1/2)m?Z = K.E. + constant in the usual limit.

Because of the tensor transformation law, ift ppoH in one system, g% =p2H1 in any other,

and only momentum defined in this way will be conserved in all systems if it is conserved any
system. Because the conserved momentum is that given by these expression, the relativistic equation:
are often described as giving a mass incréase because 'p= Ymvl. The generalization of energy

is E =Ymc2. (Since only the rest mass ever appears, we shall ogianeh keep all factors of
explicit.)
The equations of mechanics are

fl = dp“:vdél’tLl = Y(F Plc) F=dp/dt (Newtonian force) P gTE
dt
_dvd  dwM
= TV

Example: 'Uniform Acceleration’
To illustrate the use of these equations, consider a particle subjected to a constant force, e.g. an

electron in a constant electric field, starting from rest. The spatial part of Newton's law, cafgeling

: [
is simply % =H = dO/r(Ttv) . For motion in one dimensiony= % and% S%B= Og.
0/1-820
This may be integrated directly to gi#t) = Oot >y which has the necessary v=at behavior
1 +ay4t

at small t ang® ~ 1 at large t, and/(t) =\/1 + a,2t2 . This is a solution for the motion in a fixed

reference frame in which the particle was originally at rest. From the view of the patrticle, things are
more complicated, for the particle does not define an inertial frame. At best, one can consider a
succession of inertial frames in which the particle is instantaneously at rest. From the solution,

vH =Y(v,0,0,c) and B = VC(O(O,O,O,C?—:/) =Yc(a,,0,0,Ba,), the (contravariant) vector transform to

the particle 'rest' frame (at v) givedt\# (0,0,0,c), as it should, andlat= c(0,,0,0,0). The
constant force in the laboratory frame implies a constant acceleration in the instantaneous rest frame;

the powert(;—tE , Is always zero in that frame becatise = 0 there.

13
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Another very useful four-vector is the wave vectoy :k(ki,- w/c), such that I}fxli is an
invariant, ko - wt, the phase of a wave. (The formal argument is just the reverse: The phase of a

wave must be an invariant--all observers can identify a peak. qjv(ékaiskthe phase,l_kxk1 must be

an invariant, and hencgll{nust transform as a [covariant] vector.) Transforming this as a four-vector

easily gives the Doppler shift of frequency and the change in wavelength in a new system, accurate for
all values of v.

Maxwell's equations and the equations of electromagnetism are comparatively straightforward
in four-vector form. The current vector is

) ik
jH = (j',pc) aju = divj +dp/dt =0,
)4

the natural form of a conservation law. [Compare discussion above for case here/|glwdreand
therefore there are no contributions from g to the derivatives. For a constant metric, covariant
differentiation reduces to partial differentiation in the senseatdat simply adds a well-formed
covariant index.] This the unique well-formed tensor equation which guarantees that if charge is
conserved in one reference frame, it is conserved in all. Charge conservation medrsgeas an

invariant, e.g. all observers agree on e for the electron, but notd thaigforms as a vector and that
different observers measure different currents and charge densities.
The potentials also make a natural four-vector,

AH = (Al @/c) Ay = (-AL@lc)
The argument is straightforward: A tensorial differential operator (an invariant)zis easily formed as
-gHv 9 9 which is familiar as the operator of the wave equamﬂl,-% . The usual
oxH axV cot
equations for the potentials (in the Lorentz gauge) can therefore be expressed as
o R TR alagiy
oxH 6XVH oxH

with the choice of M above, and these are proper tensor equationdtifsAa four-vector.
Furthermore,

0A 0A
Ty = el
OXy oxy
is, by the arguments above, also a good tensor, whose components are in fact

14
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p\v
|:| 0 BZ - By ExlC D
] -Bz 0 B Byle [
|:| By - BX O Ez/C D UV
D_Exlc _Ey/C _Ezlc 0
\\Y

|:| 0 BZ - By - ExlC |:|

|:| 'BZ 0 BX _Ey/C |:| - TMV
|:| By - BX 0 - Ezlc |:|
UEde Eyle Eje 0

oTHV
OXy

= Ho M

expresses the two Maxwell's equations with sources, Gauss and Ampere's Laws, directly. Since the
fields are constructed from the potentials using the usual equations, the other two Maxwell's equations
are automatically satisfied, but they can also be expressed as

noting that the simple permutation symbols are tensors when ||g||=1 (absolute value of the determinant
of the metric tensor), a simple generalization of the arguments of Section II. One can construct two
interesting invariants from the fields as

THV Ty, = BR- |E/cP and €9BYOTqg Ty5=2EB

These have important physical consequences, implying that if the field is purely electric in one frame,
there will be a dominant electric field in all frames, and vise versa. Conversely, if there are both
electric and magnetic fields in some frame, it is possible to find a frame in which one vanishes. An
important consequence of the second invariant is that if the fields are transverse in one frame
(perpendicular to one another), they will be so in all frames.

The Lorentz force expressions may also be constructed:

f\) = Tu\) ju = -Tvu ju and f\} = C]Tuv vH = -q-r\}u vH
The covariant forcelensity £, appropriate to a continuous system with a current-density, charge-

density four-vectort, is to be distinguished from the four-vector forgevihich acts on a particle of

charge q. These expressions are explicitly formed as invariant (tensor) expressions and may be
directly computed to verify that they give the familiar results of electromagnetism (for the contravariant
form):

W= (pE +jx B, j-Elc) fl = gV(El +v x B, v-Elc)

The four-vector forcelf, which appears here has the same factdnofltiplying the familiar terms as
did the corresponding four-vector in the tensor form of Newton's law.

15
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These constructions of the tensor equivalents of mechanics and electromagnetism may appear
to lack rigor, but that is not the case. If an equation is written as a proper equation among tensors,
tensor calculus guarantees that it will remain true in all coordinate systems. Therefore an equation of
the proper form which is correct in one coordinate system will be universal. You may find more
detailed arguments helpful in understanding relativistic effects, but they are not necessary. For

example, to prove thalijis a four-vector, it is not necessary to examine current densities and charge
densities in one coordinate system and determine their complex transformations as velocities and
volumes transform between systems. It suffices to declare that charge conservation is a physical law.
ojH . r . . . . .
Only J“ = 0 with P = (j',pc) being a genuine four-vector is a proper tensor equation which
ox

provides the usual form of the charge conservation equation in a reference system. THerefmte |
be a four-vector. (It is a symptom of the Lorentz invariance of electromagnetism that the equation of
charge conservation indeed has the familiar forralinnertial coordinate systems. However, the

tensor equations for mechanics involvikigetc. include factors of and reduce to the familiar forms

only for low velocity,Y~ 1.)

The most important application of this argument is to the electromagnetic field, the tensor and
transformation character of which would otherwise require considerable, tedious argument. The
argument above shows that the fields are thoroughly linked, being components of a single tensor.
SinceE andB are conventionally vectors, one might have expected analogous four-vectors, but that
would create a conceptual difficulty in expressing a four-vector force coupling four-vector fields and
the four-vector velocity, a difficulty which is obviated by the tensor force expressions above. The
field tensor transforms normally; for reference, the result is shown here:

s\
0 V(BZ - BEy/C) 'y(By + BE2/C) ExlC
-Y(B5 - BEy/c 0 B Y(-BB, + Ey/c
D(sz) X (Bzy)ETW
V(By + BE,/c) By 0 V(BBy + E;/c)
—-Exlc -Y(-BBz + Ey/c) -Y(BBy + Ez/c) 0

The familiarvxB contribution to the new E is present, but there are factdtamd contributions to B
as well.

The tensor form of energy conservation may be obtained by similar arguments, or it can be
obtained as follows using methods analogous to those of the classical argument. (Since momentum-
energy conservation already involves tensors, the four-vector analog is not particularly easy to
construct.)

, 1 oTHOA
fv=TuvjH =" Ty
! Ho : 0Xqy
— l Tuv GTUG + 1 g’(T“V Tua) ) Tpcx aTuV
2o OXo  2Ho[0 OXq 0Xa [
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Since = 0(if the indices are distinct, this is one of Maxwell's
0Xq dXy OXyy
. aT[}.y . .
equationseoByo e 0, otherwise is it true by the antisymmetry of T),
X3
1 oTHO 1 B(Tuy THO) E0 ap , 9Tya OH
fv="—— T + 5 + Hot 0
2lo 0Xq 2Uo OXq D OXy) OXy
_ ot Bp(Ty THO o(THO T aT |
- 1 Tow oTHY 1 LB(Tpy THY) 1§ ( ap) +pa 2Tva
2o 0Xq 2lg 0Xq OXy oXyy @
1 oTHa 1 DB(Tpv T“a) 1 0(THO Tau) 0(THA Tyq) oTHO O
- T ¥ T2 - Tva
2“0 aXG 2'.10 aXa OXV aXu aX“

By changingdummy indices and using the antisymmetry of T, the first and last terms cancel, and the
second and fourth terms are identical, leaving

aGH
fy = 1 B(Tpy THO) 16(T“0‘ T|.10() g v
vz &
Ho OXq 4 @ axli
1 g
cM Tap - L Tap T4g) 5
b= o oy TH -3 (0B Tag) 8} 0

for the relativistic stress tensor. It can be converted to other forms, for example:
1o 1 O
GHV = EEQGB TBY Tap - 7 (TaB Tqp) gHVs
0

which is clearly symmetric, but the elements remain complicated functions of the fields. This
completes the fundamental formulation of mechanics and electrodynamics in relativistic form.

VI. Covariant Differentiation

Differentiation of tensors is not simple. The partial derivatives of an invariant form a good
(covariant) vector, and certain antisymmetric forms have been shown above to be tensors, but
generally speaking, the partial derivatives of vectors (and perforce tensors) introduce derivatives of the
transform law and metric. Only for constant g.g. Cartesian coordinates and special relativity, but

not even cylindrical or spherical coordinates, do partial derivatives produce tensors. The formulation
of derivatives (i.e. finding definitions for derivatives of a tensor - absolute and covariant
differentiation) which do behave properly is subtle. Several approaches are possible; the one here is
‘geometric’ rather than formal and strives to provide a basis for and understanding of the complications
which arise. Nevertheless, not all steps can be well motivated, and certain choices will become clear
only in retrospect.

Since only derivatives of invariants have tensor character, we begin by considering a simple,

fundamental object, the tangent to a cur'\(a)q

17
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=44 )

This is a well-formed contravariant vector, from which an invariant kapg may be constructed.
Its derivative must likewise be an invariant

dw _ d[j k 2

du=29P' gy aqk Ppp @
which can be written in this simple, symmetric form because of the definitioh aliqve. A
fundamental (and rather obvious) theorem of tensor calculus, sometimes called the quotient rule,
implies that if AB! = @ (an invariant) andiBs an arbitrary contravariant vector, thepmust be a
covariant vector. One can thus factor out a tein‘rqm this expression and conclude that the
remainder is a good covariant vector. However, i is a dummy index; any of the three p factors in the
final product could be extracted. In fact, a particular combination is particularly useful: the sum of the
two symmetric forms in ij, minus the form using k:

C_dp L 199k , 99ik _99ij
fi =gj g, * ki plpK K =_Hog * ag ~agc 0 @

where the bracket defines a famous object, the Christoffel symbol of the first kind. It is clear that this

fi is not the only covariant vector invoIviP%, but the special symmetry of the Christoffel symbol
makes it an advantageous choice. There is an obvious corresponding contravariant vector

i=d L) o {i¢ =d" ik @)

which employs the Christoffel symbol of the second kind. These objectsoatensors, their
transformation law remaining to be inferred from the known transformation character of the other
terms in the equation, but raised and lowered indices are used to indicate the indices with which they
are to be summed in the usual convention.

This leads one to define a derivative, the absolute derivativéaeftbe contravariant vector

3 _ K 5
- k} aip (5)

The significance of the Christoffel symbols may be l_Jnderstood as follows: If u is chosen to be length

. . op! . . .
s, then a 'straight line' would have a constant tan%%nt: 0 as an invariant property. In Cartesian
S

coordinates, that is equivalentg%I = 0, but this definition implies otherwise if the Christoffel
symbols are non-zero. In fact, in ‘curved' coordinates, even ones as simple as cylindrical or spherical
systems, % # 0 for a straight line, and@nstant tangent vector has varyirjapmponents along

the line in general. The Christoffel symbols embody this curvature and introduce it into the equations,

|
guaranteeing that only the propﬁfz will produc 5;

= 0. (Very similar equations and calculations

to those here appear in the rigorous generalization of a straight line, which is a geodesic, a curve of
variationally stationary length or simply the 'shortest distance' if the metric is positive definite.)

As mentioned above, the transformation laws for Christoffel symbols may be adduced from the
tensorial form of the terms in (3) and (4). Specifically from (4),
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d<q! | dogl doK _ dq' d2x] j dxl dxm 0
+{JK} du du ~gx Ddzu +{ | du du [ (6)

o9l 1d2xl o_ gl d Hoxl ddl _ ag ox d2q|+aq' 02 dd doP
o] Dd2u 0 ox dumaql du 0 oxiaq d2u * axi aqlagP du du

_ d2qi +6q' 92xt dql qu
" d2u  oxt agiagk du du

The second derivatives of opatch, leaving

{@k} "'dg doK _ ag 92t dd doK | aq t oxl oxM dd doK
]

du du ~ ot agiagk du du T gxt a9 agk du du
aq' 62xn oxl oxm aqgl
{Jl} ~ 9xN agiagK { n} og ogK axn (7)

This implies that the Christoffel symbols transform like tensors, but with an additional term, which
involves the second derivatives of the coordinate transformations. They therefore remain zero for all
linear transformations like rotation and the Lorentz group. They are non-zero in cylindrical and
spherical coordinates, and the transformation law (7) from Cartesian can be as convenient for
calculation as the definition (4). The same procedure may be applied to (3) to give

_ oxl 92xm oxI axm gxn
[i.K" =am 5 oq agiack + ['m,n]a?. o agk (8)

. i
An absolute derivative was defined for the contravariant ved:ler%%, but the calculation

depended on the special properties of p. However, a straightforward generalization is possible, based
on the invariant @ =gp!Tl, for any vector field Tdefined along the curve(q):

dTJ
= 0j dﬂTJJ'gJ Pt 6qk pTIpk
using (3),
4§wwwm+gd@+ pTipk
J aqk
dg
du - fJTJ = Gj pI ﬁ + [jk,i] piTipk (9)

Since the quantity on the left in an invariant, so is the right, and factorirpﬂ; ioytlies that

ar | .
Oj gy * [kl Tipk =i

a covariant vector. The corresponding contravariant vector is the appropriate absolute derivative:

zzm”{gwq (10)
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[The vector character of (10) may also be confirmed by direct transformation using (7) and the
procedure used to obtain (7).]
A similar procedure gives the form for the absolute derivative of a covariant vgctémR

invariant may be formed with any, and an additional derivative invariant likewise as

d(RiT) dR. dTi _ dRj _; D&ST dgk D
du “du "*Rgy T au* k} T du (11)
: i :
Choosing the arbitrary!Buch thatée_;r = 0 means that the coefficient dfi§ a vector:
u
oRi _ dRy Jk} R4 qu (12)
ou

By forming an invariant with a collection of arbitrary vectors, each of which has zero absolute
derivative, the absolute derivative of any tensor, defined by analogy with the form below, is easily
shown to have the same tensor character as the tensor itself:

6T dT ;
_ k lj do {Jr} il dgf { r} ] dq” 13
6u_ {T}deu+l Tk du - Ti 13)
(This one could be proved using @ %Ai BjCk.)

Mathematicians typically strive for the greatest generality, meaning minimal assumptions. In
this case, the vectors and tensors need only be defined along the curve(le.gH®&vever, we are
generally concerned with vector and tel?"mdds, meaning obj?(cts which are defined at all points in

. d _dg¢ o dg . .
space. In this case, one can We = qu @R and since—3 - du is now an arbitrary contravariant

vector factor in the absolute derivative, its coefficient must be a tensor and covariant in that index. One
thereby defines the covariant derivative

Ti, = %‘ i3 (14)

Ti= g {3 ™ (1)

with the obvious generalization to tensors of higher rank. (Other common notatioh,is and 'If|j.)

These results are susceptible to some helpful and intuitive interpretation. In general, if the
derivative of a function is zero, the function is constant in some sense. This idea may be pursued by
noting that gk = 0. [Verlflcatlon is straightforward using the extension of (15) for two covariant
indices with the definitions (3) and (4) of the Christoffel symbols; it is a further illustration of the
advantage of choosing the particular symmetry foimf(3).] The sense in whlch ghaving zero
covariant derivative, is constant is both special and significant. S]nseagather arbltrary symmetrlc

tensor, it certainly varies with position in general, and none of its partial derivatives with respect to q
need be zero. In fact, its covariant derivative, through the Christoffel symbols, has been implicitly
constructed to be zero. The metric tensor defines the space; 'changes' in the metric tensor are change
in the space itself. The tensor derivatives show changes with respect to the space. Almost by
definition, the space does not change with respect to |tself,,Ja1>1abg|Id be a constant with respect to

the space defined by g
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The concept of ‘constancy’ may be developed by noting that (11) may be written as

dRT) _ o 3T, SR

Ti 16
du du du (16)

o . BT : .
Applying this to a single vector, |t56 = 0, then the length of! Tremains constant along u.
u

Furthermore, the angle between two vectors may be defined in the usual sen'Eie;as*,Hﬂﬂcose,
|Ti| =yTiTl . If both vectors have zero absolute derivative along u, then their lengths and the angle

) ) oT! - .
between them remain constant. For this reason,if = 0, the vector Tis considered to be

Su
propagated parallel to itself along u. Parallelism is easily defined at a point in the usual sende that R
=+ |Rj||T!, but vectors at different points cannot generally be compared. This offers a generalization
which preserves most of the usual properties. [Unfortunately, uniqueness is not one of them; different
curves u between a pair of points (A, B) may lead to differeat B starting from a given! &t A.]

. . . . . . . T!
An interpretation of Christoffel symbols can again be given from noting their role%r_)lﬂra =0
u

i .
condition as that of driving%—Tu, causing Tto change to compensate for the 'curvature' of the space.

VIl. Geodesics and Lagrangians
As noted above, the concepts of parallelism, straight line, and really all non-local (global)
comparisons require some specialization in general metric space. They cannot be carried over with all

: . : o , . - ég' : . dgl
their familiar properties. A primitive (if 'correct’) notion of straight lin ol 0 Pp= ds ) was
S

introduced in the previous section in interpreting the meaning of absolute differentiation, but a more
general formulation is useful. The fundamental formulation is based on a variational principle, and
such principles are also important for mechanics.

To review, if a definite integrdl, whose value is expressed as a functional of functions of a
parameter u between fixed end points, is to have an extremum (maximum, minimum, or possibly an
inflection point),

O 0
i :5DJ LS diw),u) =0 (1)
[dq []

By the usual argument in calculus of variations, if the set of functi'g(me ¢ a solution, then for a

small variation about that,] o 0'0 + 6qi, ol must be second ordermi, and the first order variation

is zero. (This is simply a generalization of the fact that the first derivative of a function is zero at
extrema.) If L is then regarded as a function of the functions listed aégaeled as independent,

Up : .
_ OoL d@q') oL 0 ., _dd
ol —ufldu qu,l dqu t oq 6q'H =0 where ¢ =du 2

and a sum over the index i i_s unders_tood. The first term may be integrated by parts, and if the end
points are prescribed so thad'(uy) = 8g'(up) = 0, the condition may be written as
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aL aL -
d n%= 0. Usgl =0 3
Jumdumq'm oqi o ®)

since thef)qi are arbitrary, the integral will be zero only if all its coefficients zero, which are the well-
known Euler-Lagrange equations for the variational problem.

— 0 ——0--— =0 (4)

The application to straight lines arises because a straight line is, among other things, the
shortest distance between two points, and this criterion can be formulated in any metric space. A
geodesic is defined as a curve for which

H, agn . O
ol :5%[1 Q i B ddqdmd“ =0 ()

1
and in cases like special relativity for which the metric is not positive definite and there are curves of
zero length, the integral may be a maximum. In any case, the solufi@nsarg geodesics and the
best generalization of a "straight line" in a general metric space. The Euler equations are thus

d (ywp VW _g_d gl dw o 1 9w _ dddd

duldqi O aq =0 _du% i T ywoq for — w=gj gy du
and if u is chosen to be the measure of distarke cg;J gﬂ (:g dw, w=1 ano‘L 0 leaving

dpw g ow _ o_dp ddp 99k dd dok

dstgi Fag - 0= ds9i dst aqi ds ds ©)

as the equation of the geodesic. Computing the derivative throughctepe(mdence and rearranging
dummy indices produces

g ag,, dd dok 0gik dd dok gk dd dok

29j g * ds ds "ggqi ds ds “gqi dsds " 0 (1)
which, through no accident, can be written
g dd deK d2q' dd doK _
9i d<? + Dk] ds ds =0 or k} ds ds (8)

which are the standard forms for these equations.
Variational principles are also used to form the Lagrangian and related equations of motion.
The familiar results may be extended to construct relativistically proper forms, but somewhat

indirectly. The normal construction of L = T-V wiit has no clear tensor equivalent. Instead, we
must try to find an invariant L such thfitdu generates the correct equations of motion. For example,
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dx% dxPB
L:mcggdﬁdudu ()

is manifestly invariant and also independent of position (only derivatives enter) and thus a possible
starting point as the Lagrangian for a free particle. The Euler equations are

L
mcé’—uD S TR (10)

D? deBD
QGB%%D

If u is now chosen to be the invariant parameténe radical becomes the invariant constant ¢, and the
equations reduce to the standard equation of motion for a free particle:

20
mdx :O:@
dr2 dt

(11)

With this start, the Lagrangian for a particle in an electromagnetic field could be

dxa dxPB dxd
=me\foop 5 50 +aap S AP (12)

which is again an invariant and linear in ¢, and AB: one can argue the second term as the only
plausible one. The equations of motion thereby implied are

0 (13)

and with the same choice of umand extraction of thedependence ofﬂ\through the K,

g C _quu% AP . dAB 0_ o DAL 0Aq O
a =0 OB - %B - O7 ]
P 2 dt D“B axa P axH % dt %xo‘ axH %
_dxH _
=4, Ta=Ta (14)

the same equation as obtained previously, thus confirming the choice of L above.
The procedures of classical mechanics may be continued to construct a Hamiltonian from the
conjugate momenta
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dxB
MC %GB gy

Py = oL _
xaQd

?L dxO dxB

PHdu Q 9aB du du

(The partials of L are always taken with respect to a contravariant quantity and generate a covariant
index in consistent analogy with the usual tensor derivatives with respect to coordinateshéiregdq
contravariant, although no real tensor character can be ascribed to the partial derivatives associated witr
the derivation of the Euler-Lagrange equations.)

The Hamiltonian is then

raqp AP e, m=mMigat (15

H=1(Pave-L)  where mit=puogan 4o

is to be used to eliminatélyn favor of L. Straightforward algebra produces the Hamiltonian as

mc2

=998 (P g A@) (PB- g AB) - (17)

|_|_2m

and the Hamiltonian equations of motion:

dx, a a . a
o _OH _ 9B p By o - PE-aA (18)
dt  gpa m dt m
dR,
oo 0K G008 g ) O 19)
dt oxH oxH

of
The first is the trivia% =W, and the second, after elimination of P from (15) on both sides,

. . . . AH
leaves the same equation of motion as that obtained above from the Lagrangian (14), %CieTeause

expands into the remaining portion of the E-M coupling term.
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