
1

INTRODUCTION TO THE ESSENTIALS OF TENSOR CALCULUS

********************************************************************************
I.  Basic Principles ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
II. Three Dimensional Spaces ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
III. Physical Vectors .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
IV.  Examples:  Cylindrical and Spherical Coordinates.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
V.  Application: Special Relativity, including Electromagnetism.... . . . . . . . . . . . . . . . . . . . . . 10
VI.       Covariant Differentiation .............................................................   17
VII. Geodesics and Lagrangians.............................................................   21
********************************************************************************

I.  Basic  Principles
We shall treat only the basic ideas, which will suffice for much of physics.  The objective is to

analyze problems in any  coordinate system, the variables of which are expressed as

qj(xi)   or  q'j(qi) where  xi :  Cartesian coordinates,  i = 1,2,3, ....N

for any dimension N.  Often N=3, but in special relativity, N=4, and the results apply in any
dimension.   Any well-defined set of qj will do.  Some explicit requirements will be specified later.

An invariant is the same in any system of coordinates.   A vector, however, has components
which depend upon the system chosen.  To determine how the components change (transform) with
system, we choose a prototypical vector, a small displacement  dxi.  (Of course, a vector is a
geometrical object which is, in some sense, independent of coordinate system,  but since it can be
prescribed or quantified only as components in each particular coordinate system, the approach here is
the most straightforward.)  By the chain rule,    dqi  =  ( ∂qi / ∂xj ) dxj ,  where we use the famous
summation convention of tensor calculus:  each repeated index in an expression, here j, is to be
summed from 1 to N.  The relation above gives a prescription for transforming the (contravariant)
vector  dxi  to another system.  This establishes the rule for transforming any contravariant vector from
one system to another.

Ai (q) =  ( 
∂qi

∂xj ) A
j (x)

Ai(q') = ( 
∂q'i

∂qj  ) Aj(q)  =  ( 
∂q'i

∂qj  )  (  
∂qj

∂xk ) Ak(x) ≡ ( 
 ∂q'i 

∂xk  ) Ak(x)

Λi
j (q,x) ≡  ∂qi

∂xj      Contravariant vector transform

The (contravariant) vector is a mathematical object whose representation in terms of components
transforms according to this rule.  The conventional notation represents only the object, Ak, without
indicating the coordinate system.  To clarify this discussion of transformations, the coordinate system
will be indicated by Ak(x), but this should not be misunderstood as implying that  the components in
the "x" system are actually expressed as functions of the xi.  (The choice of variables to be used to
express the results is totally independent of the choice coordinate system in which to express the
components Ak.  The Ak(q) might still be expressed in terms of the xi, or Ak(x) might be more
conveniently expressed in terms of some qi.)

Distance is the prototypical invariant.  In Cartesian coordinates,  ds2  =  δij  dxi dxj , where

δij    is the Kroneker delta:   unity if i=j, 0 otherwise.  Using the chain rule,
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dxi  = ( 
∂xi

∂qj )  dqj

 ds2  =   δij  ( 
∂xi

∂qk ) ( 
∂xj

∂ql ) dqk dql   =  gkl (q) dqk dql

gkl (q) ≡  ( 
∂xi

∂qk ) ( 
∂xj

∂ql ) δij       (definition of the metric tensor)

One is thus led to a new object, the metric tensor, a (covariant) tensor, and by analogy, the covariant
transform coefficients:

Λj
i(q,x) ≡   ( ∂xj

∂qi )      Covariant vector transform

{More generally, one can introduce an arbitrary measure (a generalized notion of 'distance') in
a chosen reference coordinate system by ds2 = gkl (0) dqk dql , and that measure will be invariant if
gkl transforms as a  covariant tensor.  A space having a measure is a metric space.}

Unfortunately, the preservation of an invariant has required two different transformation rules,
and thus two types of vectors, covariant  and contravariant, which transform by definition according to
the rules above.  (The root of the problem is that our naive notion of 'vector' is simple and well-
defined only in simple coordinate systems.  The appropriate generalizations will all be developed in
due course here.)  Further, we define tensors as objects with arbitrary covariant and contravariant
indices which transform in the manner of vectors with each index.   For example,

T
ij
k(q)  ≡  Λi

m  (q,x) Λj
n(q,x) Λl

k(q,x) T
mn
l  (x)

The metric tensor is a special tensor.   First, note that distance is indeed invariant:

ds2(q') =  gkl (q') dq'k dq'l

=  ( 
∂qi 

∂q'k
 )  ( 

∂qj 

∂q'l
 ) gij (q)  ( 

∂q'k

∂qs 
 ) dqs  ( 

∂q'l

∂qt  ) dqt

=  gij (q)  ( 
∂qi 

∂q'k
 )( 

∂q'k

∂qs 
 )   ( 

∂qj 

∂q'l
 )( 

∂q'l

∂qt  ) dqs dqt

   ⇓       ⇓
∂qi

∂qs  = δis      δjt

= gij (q)  dqi dqj    ≡   ds2(q)

There is also a consistent and unique relation between the covariant and contravariant
components of a vector.  (There is indeed a single 'object' with two representations in each coordinate
system.)

dqj  ≡  gji dqi
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dq'j  ≡  gji (q') dq'i  = gkl (q)  ( 
∂qk 

∂q'j
 ) ( 

∂ql 
∂q'i

 ) (
∂q'i

∂qp ) dqp

 ⇓
 δlp

         =  ( 
∂qk 

∂q'j
 )  gkl (q) dql  =  ( 

∂qk 

∂q'j
 ) dqk

Thus it  transforms properly as a covariant vector.
These results are quite general;  summing on an index (contraction) produces a new object

which is a tensor of lower rank (fewer indices).

T
ij
k G

k
l   = R

ij
l

The use of the metric tensor to convert contravariant  to covariant indices can  be generalized to
'raise' and 'lower' indices in all cases.   Since  gij  =  δij   in Cartesian coordinates,  dxi =dxi ;  there is

no difference between co- and contra-variant.  Hence  gij   =  δij  , too, and one can thus define   gij  in
other coordinates.  {More generally, if an arbitrary measure and metric have been defined, the
components of the contravariant metric tensor may be found by inverting the [N(N+1)/2] equations
(symmetric g) of  gij (0) gik(0) gnj(0) = gkn(0).  The matrices are inverses.}

Ai(q)  ≡  gij (q) Aj(q)

g
i
j =  gik gkj  =  ( 

∂qi 

∂xm ) ( 
∂qk

∂xn ) δmn   ( 
∂xr

∂qk )  ( 
∂xs

∂qj  ) δrs

       |                           |
     ⇓
    δrn

=  ( 
∂qi

∂xs ) ( 
∂xs

∂qj  ) =  δij  =  δi
j

Thus  g
i
j is a unique tensor which is the same in all coordinates, and the Kroneker delta is sometimes

written as   δi
j to indicate that it can indeed be regarded as a tensor itself.

Contraction of a pair of vectors leaves a tensor of rank 0, an invariant.  Such a scalar invariant
is indeed the same in all coordinates:

Ai(q')Bi(q') =   ( 
∂q'i

∂qj  ) A
j(q)  ( 

∂qk 

∂q'i
 ) Bk(q)  =  δjk  Aj(q) Bk(q)

        =  Aj(q) Bj(q)

It is therefore a suitable definition and generalization of the dot or scalar product of vectors.
Unfortunately,  many of the other operations of vector  calculus are not so easily generalized.

The usual definitions and implementations  have been developed for much less arbitrary  coordinate
systems than the general ones allowed here.

For example, consider the gradient of a scalar.   One can define the (covariant) derivative of a
scalar as
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Ø(x),i ≡  
∂Ø
∂xi           Ø(q),i ≡   

∂Ø
∂qi  = ( 

∂Ø
∂xj ) ( 

∂xj

∂qi )

The (covariant) derivative thus defined does indeed transform as a covariant vector.  The comma
notation is a conventional shorthand.   {However, it does not provide a  direct generalization of the
gradient operator.  The gradient has special properties as a directional derivative which presuppose
orthogonal coordinates and use a measure of physical length along each (perpendicular) direction.  We
shall return later to treat the restricted case of orthogonal coordinates and provide specialized results for
such systems.  All the usual formulas for generalized curvilinear coordinates are easily  recovered in
this limit.}  A (covariant) derivative may be defined more generally in tensor calculus;  the comma
notation is employed to indicate such an operator, which adds an index to the object operated upon, but
the operation is more complicated than simple differentiation if the object is not a scalar.  We shall not
treat the more general object in this section, but we shall examine a few special cases below.

II.  Three Dimensional Spaces
For many physical applications, measures of area and volume are required, not only the basic

measure of distance or length introduced above.  Much of conventional vector calculus is concerned
with such matters.  Although it is quite possible to develop these notions generally for an
N-dimensional space, it is much easier and quite sufficient to restrict ourselves to three dimensions.
The appropriate generalizations are straightforward, fairly easy to perceive, and readily found in
mathematics texts, but rather cumbersome to treat.

For writing compact expressions for determinants and various other quantities,  we introduce
the permutation symbol, which in three dimensions is

eijk  =   1 for i,j,k=1,2,3  or an even permutation thereof, i.e. 2,3,1 or  3,1,2
-1 for i,j,k= an odd permutation, i.e. 1,3,2  or  2,1,3 or  3,2,1
 0  otherwise, i.e. there is a repeated index:  1,1,3   etc.

The determinant of a 3x3 matrix can be written as

|a| = eijk  a1i  a2j  a3k

Another useful relation for permutation symbols is

 eijk   eilm  =   δjl   δkm -  δjm  δkl
Furthermore,

δijk
lmn  =  eijk  elmn and δijk

ijk  = 3!

where   δijk
lmn   is a multidimensional form of the Kroneker delta  which is 0 except when  ijk  and lmn

are each  distinct triplets.  Then  it is  +1 if lmn is an even permutation of ijk,   -1 if it is an odd
permutation.   These symbols and conventions may seem awkward at first, but after some practice they
become extremely useful tools for manipulations.  Fairly complicated vector identities and
rearrangements, as one often encounters in electromagnetism texts, are made comparatively simple.

Although  the permutation symbol is not a tensor, two related objects are:

εijk   = √ g   eijk    and    εijk    = 
1

 √ g
  eijk        where    g  ≡  | gij  |

with absolute value understood if the determinant in negative.  This surprising result may be confirmed
by noting that  the expression for the determinant given above may  also be written  as
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           elmn |a| = eijk  ali  amj  ank

which is certainly true for l,m,n=1,2,3, and a little thought will show it to be true in all cases.  The
transformation law for  g  may then be obtained  as

 elmn |g(q')| =eijk  g(q')li  g(q')mj  g(q')nk

= e ijk ( 
∂qp 

∂q'l
 ) ( 

∂qq 

∂q'i
 ) ( 

∂qr 

∂q'm
 ) ( 

∂qs 

∂q'j
 ) ( 

∂qu 

∂q'n
 ) ( 

∂qv 

∂q'k
 )

            gpq(q) grs(q) guv (q)        (tensor transform of  metric tensors)

= eqsv 
 


 
 

∂ q  
∂q'   ( 

∂qp 

∂q'l
 ) ( 

∂qr 

∂q'm
 ) ( 

∂qu 

∂q'n
 ) gpq grs guv

(considering the terms with indices i,j,k)

= epru   g(q)  
 


 
 

∂ q  
∂q' ( ∂qp / ∂q'l )( ∂qr / ∂q'm )( ∂qu / ∂q'n )

(considering the terms with indices q,s,v in  constituting a determinant  as above)

= elmn   g(q) 
 


 
 

∂ q  
∂q'  

2
  (forming another determinant as above)

thus establishing that  g  transforms with the square of the Jacobian determinant.  For the putatively
covariant  form of the permutation tensor,

εijk (q') = √g(q)   erst  ( 
∂qr 

∂q'i
 ) ( 

∂qs 

∂q'j
 ) ( 

∂qt 

∂q'k
 )

= eijk  
 


 
 

∂ q  
∂q'   √g(q)   = eijk √g(q'), the form desired.

Raising indices in the usual way will produce the contravariant form  by arguments similar to those
applied above.

The permutation tensors enable one to construct  true vectors analogous to the familiar ones.
The vector or cross product  becomes

Ai = εijk  Bj Ck

although again we have both co and contravariant forms.
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The invariant measure of volume is easily constructed as

∆V =  εijk  
dqi dqj dqk

(3!)

which is explicitly an invariant by construction and  can be identified as volume in Cartesian
coordinates.   ( This is a general method of argument in tensor calculus.  If a result is stated as an
equation between tensors [or vectors or scalars], if it can be proven or interpreted in any coordinate
system, it is true for all.  That is the power of tensor calculus and its general properties of
transformation between coordinates.)

Note that the application of this relation for  ∆V  in terms of dqi and transforming directly  from
Cartesian  dxi  gives immediately the familiar relation

∆V=  J  dq1dq2dq3 J =  
 


 
 

∂ x
∂q   the Jacobian.

 For the volume integrals of interest, note that   ∫ I  εijk  dqi dqj dqk , for  I invariant, is

invariant, but    ∫ Tv  εijk  dqi dqj dqk    is not  a vector, because the transformation law for Tv in
general changes over the volume.

The operators of divergence and curl require more care.   Just as the gradient has a direct
physical significance, these operators are constructed to satisfy certain Green's theorems,  Gauss' and
Stokes law.  These must be preserved if their utility is to continue.  One can  prove a beautiful general
theorem in  spaces of arbitrary dimension, from which all common vector theorems are simple
corollaries, but the proof requires extensive formal preparation.  Instead, we shall provide
straightforward, if lengthy, proofs of the two specific results desired.

For Gauss' law, we require a relation  which  is a proper equation between invariants and
further reduces to the usual result in Cartesian coordinates,

 ∫ div(Tm)  εijk  
dqi dqj dqk

3 !    =  ∫ Ti  dSi

the choice  dSi =  εijk  dqj dqk  is explicitly a (covariant) vector, making the right integral invariant,
and it gives the correct result in Cartesians.  On the left, we require a suitable operator.  We shall next
prove that

 
1

 √ g
   ∂[ ]( )√ g  Ti

∂qi

is such  an invariant.  It certainly  gives the usual Cartesian divergence, but the inspiration for this
guess must remain obscure, for it is deep in the development of general covariant differentiation and
Christofel symbols.   Fortunately, that need not concern us.  Proof that this expression is indeed
invariant requires proving that  the form is the same in  any two systems:

 
1

 √ g '
   ∂[ ]( )√ g '  T'i

∂qi
  =    

1
 √ g '

   
∂ 

 


 
( )√ g '  Tk (  

∂qi

∂xk )

∂qi    =

  
1

 √ g
   ∂[ ]( )√ g  Ti

∂xi
where   √ g' =  

 


 
∂x

∂q  √ g ≡  J √ g
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as shown above, introducing J for the Jacobian determinant.  The expression in the new coordinates
can then be written

 
1

J√ g
  
 



 

 ∂[ ]( )√ g  Tk

∂qi
  J ( 

∂qi

∂xk ) +  
 Tk
J   

 




 


∂

 


 
J  

∂qi

∂xk

∂qi 

where the first term is simply the desired expression in  xi by the chain rule, and we must show that
the second term, the portion in brackets [], is then zero.  That term may be written

∂
 


 
∂x

∂q

∂  qi   
 (

∂qi

∂xk )  +  J 
∂2 qi  
∂xk ∂xl  (

∂xl

∂qi )

and the first term  converted using  J' =  
 


 
∂q

∂x   = 1/J to    
∂ J'-1

∂xk   =

 -J2   
∂
 


 
∂q

∂x

∂xk   = -J2  
 


 
∂q

∂x    
∂2 qi  
∂xk ∂xl  (

∂xl

∂qi )

thereby canceling the second term and proving the assertion.  The last step requires some algebra to
confirm, but it is straightforward using the methods used above for writing a determinant, considering
all the terms present,  and inserting  a

 δi
j= ( 

∂qi

∂xs ) ( 
∂xs

∂qj  )

'
(with appropriate choice of indices), the inverse of the usual procedure.  The 'tensorial'
form of the divergence theorem is therefore an equality of invariants:

 ∫  
1

 √ g
   ∂[ ]( )√ g  Tm

∂qm
  εijk  

dqi dqj dqk 
3!   =  ∫ Ti εijk  dqj dqk

Furthermore, the familiar result, div(ØA) =  Ødiv(A)  +  ∇ Ø⋅A , remains as

div(ØA) = Ødiv(A)  + 
∂Ø
∂qi

  Ai

Fortunately, Stokes theorem is somewhat easier; there is only one subtlety.  The naive
generalization is

∫εijk ∂Tk
∂qj

  εist dqs dqt  =  ∫ Ti  dqi

which again obviously reduces to the usual result in Cartesian coordinates and would be explicitly a
good 'tensor' equation between invariants if  ∂Tk/∂qj  were indeed a covariant tensor of rank two.  It is
not, but the portion used in the equation above is.   In general,
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Rij   = 
 Rij  +Rji  

2    +  
Rij   - Rji  

2

the sum of a symmetric and antisymmetric part.  For contractions with the anti-symmetric permutation
symbol as used above, only the anti-symmetric part contributes; replacing

∂Tk
∂qj

  = 
 


 
∂Tk

∂qj
 -  

∂Tj
∂qk

2

is equivalent and gives the identical Cartesian reduction.  The antisymmetric expression is easily
shown to be a tensor as follows:

Rij   ≡  
∂Ti
∂xj

   -   
∂Tj
∂xi

and R'ij   ≡    
∂T'i
∂qj

   -   
∂T'j
∂qi

but by  the laws of tensor transformation, this should also be

R'ij   =  
∂ 

 


 
Tk(

∂xk
∂qi

 )

∂qj
    -    

∂ 
 


 
Tk(

∂xk
∂qj

 )

∂qi
  = Rkl (

∂xk
∂qi

 ) (
∂xk
∂qj

 )

        =  (
∂Tk
∂qj

 ) (
∂xk
∂qi

 )  -  (
∂Tk
∂qi

 ) (
∂xk
∂qj

 )  + Tk  
∂2xk
∂qj∂qi

     - Tk  
∂2xk
∂qi∂qj

where the last two terms cancel and the first two, using the chain rule  (∂/∂qi)=(∂/∂xk)(∂xk/∂qi), give
the required tensor transform of  Rij  .  We therefore have the desired tensor form of the divergence and
curl operators and the corresponding integral theorems.  Note also that the important results  curl ( grad
Ø) = 0 and div ( curl Ai) = 0 both follow easily from these forms by symmetry

eijk   ∂2
∂qi∂qj

 = 0.

III.  Physical Vectors

The distinction between covariant and contravariant vectors is essential to tensor analysis, but it
is a complication  which is unnecessary  for elementary vector calculus.  In fact, the usual formulation
of vector calculus can be obtained from tensor calculus as a special case, that being one in which the
coordinate system is orthogonal.  Most practical coordinate systems are of this type, for which tensor
analysis is not really necessary, but a few are not.  (For  example, in plasma physics, the natural
coordinates may be ones determined by the magnetic geometry and not be orthogonal.)   In  orthogonal
systems with  positive metric, one can define 'physical' vectors, which are neither covariant nor
contravariant.  Nevertheless, they have well-defined transformation properties among orthogonal
systems, and they have simple physical significance.  For example, all components of a displacement
vector have the dimensions of length.  They are the vectors of traditional vector calculus.  For
orthogonal systems of this type,

gij   = h2i  δij                (hi is not a vector; no summation)
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A(i) ≡   hi Ai  =   
Ai
hi

  (no summation)

for the components of the 'physical' vector.  The usual dot or scalar product is simply  A(i)A(i) and
produces the same result as given above.  (In this special case, the metric tensor can  be 'put into' the
vector in a natural manner.)

All the usual vector formulas can be obtained from the preceding tensor expressions by
consistently converting to physical vectors.  Note that   g = (h1h2h3)2 and εijk   = h   eijk , using   h =
(h1h2h3).

C(i) = A(j) X B(k) = eijk  A(j) B(k)

(grad Ø)(i) =(1/hi )(∂ Ø/∂qi)

div A =  (1/h){∂[hA(i)/hi]/∂qi}

(curl A)(i) =  (hi/h) eijk  ∂[hkA(k)]/∂qj

Volume:   (d3v) = h   eijk  dqidqjdqk  = d3l = eijk  dlidljdlk

Integrations are over physical volumes, areas, and lengths.  If the integrals are set up in coordinates
like dq, the necessary factors must be inserted to give the physical units as illustrated here for volume.

IV.  Examples

Cylindrical coordinates
A simple  example to illustrate the ideas is provided by cylindrical coordinates:

x = r cos θ r = √x2 + y2

y = r sin  θ      θ = tan−1 (y/x)
z = z

      i \ j =        1          2           3

Λi
j   ≡  ∂qi

∂xj   =     
 



 

cos θ sin θ 0

-(sin θ)/r (cos θ)/r 0
0 0 1

             i \ j

Λj
i   ≡  ∂xj

∂qi   =    
 



 

cos θ sin θ 0

-r(sin θ) r(cos θ) 0
0 0 1

gij  =  
 



 

1 0 0

0 r2 0
0 0 1

gij  =    
 



 

1 0 0

0 r-2 0
0 0 1

g = r2 hi = (1,r,1)
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Spherical Coordinates
A second example of broad utility is spherical coordinates:

x = r sin θ cos φ r = √x2 + y2 + z2

y = r sin θ sin φ θ = tan-1
 


 
√x2 + y2

z  

z = r cos θ φ = tan -1(y/x)

Λi
j   ≡  ∂qi

∂xj   =     

 




 


sin θ cos φ sin θ sin φ cos θ

(cos θ cos φ)/r (cos θ sin φ)/r -(sin θ)/r

-sin φ
r sin θ

cos φ
r sin θ

0

             i \ j

Λj
i   ≡  ∂xj

∂qi   =    

 



 

sin θ cos φ sin θ sin φ cos θ

r cos θ cos φ r cos θ sin φ -r sin θ
-r sin θ sin φ r sin θ cos φ 0

gij  =  

 



 

1 0 0

0 r2 0
0 0 r2sin2θ

gij  =    

 



 

1 0 0

0 r-2 0
0 0 r-2sin-2θ

g = r4 sin2 θ hi = (1,r,r sin θ) h = r2sin θ

V.  Application: Special Relativity

Special relativity is generally introduced without tensor calculus, but the results often seem
rather ad hoc.   Einstein used the ideas of tensor calculus to develop the theory, and it certainly
assumes its most natural and elegant formulation using tensors.  The arguments are easily stated.   The
use of tensors is natural, for it guarantees that  if the laws of physics are properly formulated as
equations between scalars, vectors, or tensors, a result or equality in one coordinate system will be
true in any.

Special relativity is based on only two postulates.   The first is that all coordinate systems
moving uniformly with respect to one another are equivalent, i.e. indistinguishable from one another.
The second is that the speed of light is constant in all such systems.  (The first was a long-standing
principle.  The second was the implication of the Michelson-Morley experiment.)  These are easily
phrased in tensor calculus.  The first implies that the metric tensor must be the same in all equivalent
systems, otherwise the differences would provide a basis for distinguishing among them.  The second
is achieved by  introducing a space of four dimensions with Cartesian coordinates (x,y,z,ct) and
choosing the metric tensor to be

gµν  = 
 



 



 

-1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 1

 

[This is one of many equivalent choices, none of which has become standard.  Sometimes the
time is placed first, the indices may run from 0-3 instead of 1-4, and the factors of c can be put into g
instead of into the coordinates.]
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The resulting invariant measure  "length" is d2σ = gµν  dxµdxν  = - d2s +  c2d2t , introducing
the usual convention  that Greek indices range 1-4, whereas Latin indices range only over 1-3, the

spatial dimensions:  d2s = dxidxj;  xµ  = (x,y,z,ct) = (xi ,ct).  It is this measure of "length", sometimes
called 'proper distance', no better a choice of words,  which makes c a unique constant.  (You may be
more familiar with this invariant called 'proper time' dτ  = dσ/c.)  Specifically, a disturbance
propagating at c in one system (ds/dt=c in that system) will produce events in that system for which
d2σ = 0.  Since this "length" is invariant, it will be the same in all systems:  d2σ = 0 for the events
transformed to any other system, and they will thus also appear to move at ds'/dt'=c.  For all
equivalent uniformly moving systems, which have the metric above, a speed of c will be invariant.
(This argument is carefully phrased to avoid "the speed of light", although "the speed of light in
vacuum" would suffice.  If light is observed in a medium, which is difficult to avoid, the medium
introduces a preferred reference frame and the speed is no longer strictly invariant.)

It remains only to obtain the transformation law between uniformly moving coordinate systems
which will preserve the metric.  Let the origins coincide at t=0 and the origin of one system (0,ct)
move with velocity v in the other along x.  If one looks for the simplest (covariant) transform which
could accomplish this

  Λ 
α
µ  = 

 



 

A 0 0 B

0 1 0 0
0 0 1 0
C 0 0 D

    g'µν   =  Λ
α
µ   Λ 

β
ν  gαβ

g'µν    =  

 



 

Β2 − Α 2 0 0 BD - AC

0 -1 0 0
0 0 -1 0

BD - AC 0 0 D2 - C2

where one must be careful if one does the tensor contraction as matrix multiplication;  transposes must
sometimes be used to obtain the proper index matching.  The requirements are thus

AC = BD Β2 − Α2  = -1  D2 - C2 = 1

(0,ct)  →  (- Bct,0,0,Dct)   ⇒  B/D = v/c ≡β, where the signs come from using covariant
displacements to employ the transform law above, but one is not concerned about the sign of v.  Note
that co and contravariant vectors differ, but only in sign of the spatial part.)  The unique solution to
these four equations in four unknowns is

 

 



 

γ 0 0 βγ

0 1 0 0
0 0 1 0

βγ 0 0 γ

  =  Λαµ

            

 



 

γ 0 0 -βγ

0 1 0 0
0 0 1 0

-βγ 0 0 γ

  =  Λαµ
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γ  ≡  1

√1-β2

which give the rules for transforming tensors between uniformly moving systems.
(Note that the metric is not positive definite here.  The notion of physical vectors introduced in

Section III cannot be employed to disguise a difference between co and contravariant.  An attempt to
do so introduces √(-1), the origin of the ubiquitous i's which permeate non-tensor treatments of special
relativity.   It is ironic that the attempt to "hide" the metric by introducing "physical" vectors should
result in  the rather unphysical  appearance of imaginary dimensions.)

Because the metric does not depend upon position, we have the useful generalization, already

employed above, that not only is the displacement, dxµ, a  contravariant vector, as it always must be,

but the coordinates or vector position of a point,  xµ, is also  a vector, which is not true
in general and constitutes a major conceptual subtlety in tensor calculus.  This is a great simplification
for special relativity, and it means that the law above for transformation of contravariant vectors is
also the law for coordinate transformations.

Finally, note that  gµν = gµν, which can be confirmed by direct calculation.  (As noted earlier,
the two must be matrix inverses of one another.)

All the usual relativistic effects follow in a straightforward manner from these equations.  An

event at  xo, cto occurs at   γ (xo- βcto ), γ(cto -  βxo) in the moving system.  The origin of the initial
coordinates appears to be moving at -v in the new system, whereas the origin in the new system
appears to be moving at v in the initial system.  Events at the point   xo but separated by ∆to  occur at

different points and different times, the time difference being γ ∆to, the well-known time dilation.  A
stationary bar with ends 0,cto and L,ct1 appears at

−βγcto , γ cto and γ (L-βct1 ),γ(ct1- βL)

Expressed in terms of a new t',  t' =γ to    and  t' = γ(t1- βL/c)

−βct' ,  ct' and (L/γ)  -βct', ct'

which implies that the ends appear separated by  a distance   L/γ, the contraction of length, if they are
observed (measured) simultaneously in the new system.  The velocity addition formula follows simply
by applying two successive transformations:

   

 



 

(1+ββ')γγ' 0 0 -(β+β')γγ'

0 1 0 0
0 0 1 0

-(β+β')γγ' 0 0 (1+ββ')γγ'

   =    

 



 

γ" 0 0 -β"γ"

0 1 0 0
0 0 1 0

-β"γ" 0 0 γ"

β" ≡ 
β+β'

1+ββ'
γ" = (1 + ββ')γγ' = γ"(β")

but note that the addition of two velocities in different directions gives much more complicated results;
the transformations do not even commute.

If the physical laws are expressed in terms of relativistic vectors and tensors, they will
transform properly with coordinate system and have the same form in any system, as desired.  The
analog of velocity is

vµ ≡  dxµ/dτ         dσ = cdτ
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vµ =  (γ vi,γc) pµ = mvµ  =( pi, E/c)

These relations for the four-velocity follow directly if  xi =vit,  d2xi = v2d2t

d2τ = d2t  - d2xi /c2  = (1-β2)d2t= d2t /γ2

This is a well-formed vector which reduces to the usual velocity  for v << c; it is the only useful
relativistic expression for velocity, and thus momentum.  The fourth component of the momentum
vector is identified as E because it becomes   mc2  + (1/2)mv2    =  K.E. + constant in the usual limit.

Because of the tensor transformation law, if  p1µ =p2µ   in one system,  p'1µ =p'2µ  in any other,
and only momentum defined in this way will be conserved in all systems if it  is conserved any
system.  Because the conserved momentum is that given by these expression, the relativistic equations

are often described as giving a mass increase  γm, because  pi = γmvi.   The generalization of energy

is  E = γ mc2.  (Since only the rest mass ever appears, we shall omit  mo and keep all factors of γ
explicit.)

The equations of mechanics are

fµ ≡  
dpµ

dτ  
 = γ 

dpµ
dt   =  γ(Fi,P/c) Fi=dpi/dt  (Newtonian  force) P = 

dE
dt  

aµ ≡  
dvµ

dτ  
  =  γ 

dvµ
dt

Example:  'Uniform Acceleration'
To illustrate the use of these equations, consider a particle subjected to a constant force, e.g. an

electron in a constant electric field, starting from rest.  The spatial part of Newton's law, canceling γ's,

is simply    
dpi
dt   = Fi  =  

d(γmvi)
dt   .  For motion in one dimension, αo≡ F

mc, and 
d  
dt  

 



 

β

√1-β2
 = α o.

This may be integrated directly to give  β(t) =  
αot

√1 + α o
2t2

 , which has the necessary v=at behavior

at small t and β ~ 1 at large t, and  γ(t) = √1 + αo
2t2 .  This is a solution for the motion in a fixed

reference frame in which the particle was originally at rest.  From the view of the particle, things are
more complicated, for the particle does not define an inertial frame.  At best, one can consider a
succession of inertial frames in which the particle is instantaneously at rest.  From the solution,

vµ = γ(v,0,0,c) and aµ = γc(αo,0,0, 
dγ
dt   ) = γc(αo,0,0, βαo), the (contravariant) vector transform to

the particle 'rest' frame (at v) gives v'µ = (0,0,0,c), as it should, and a'µ = c(α o,0,0,0).  The
constant force in the laboratory frame implies a constant acceleration in the instantaneous rest frame;

the power, 
dE
dt   , is always zero in that frame because F.v = 0 there.
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Another very useful  four-vector is the  wave vector  kµ = (ki,- ω/c), such that   kµxµ  is an

invariant, k ⋅r  - ωt, the phase of a wave.  (The formal argument is just the reverse:  The phase of a

wave must be an invariant--all observers can identify a peak.  Since kµxµ is the phase, kµxµ must be

an invariant, and hence kµ must transform as a [covariant] vector.)  Transforming this as a four-vector
easily gives the Doppler shift of frequency and the change in wavelength in a new system, accurate for
all values of v.

Maxwell's equations and the equations of electromagnetism are comparatively straightforward
in four-vector form.  The current vector is

jµ ≡ (ji,ρc)
∂jµ

∂xµ
  =  div j + ∂ρ/∂t = 0,

the natural form of a conservation law. [Compare discussion above for case here where √|g|=1 and
therefore there are no contributions from g to the derivatives.  For a constant metric, covariant
differentiation reduces to partial differentiation in the sense that ∂/∂xi simply adds a well-formed
covariant index.]   This the unique well-formed tensor equation which guarantees that if charge is
conserved in one reference frame, it is conserved in all.  Charge conservation means that charge is an

invariant, e.g. all observers agree on e for the electron, but note that jµ transforms as a vector and that
different observers measure different currents and charge densities.

The potentials also make a natural four-vector,

Aµ ≡ (Ai,Ø/c) Aµ ≡ (-Ai,Ø/c)

The argument is straightforward:  A tensorial differential operator (an invariant) is easily formed as

-gµν  
∂

∂xµ
  

∂
∂xν

   which is familiar as the operator of the wave equation, ∇ 2 - 
∂2

c2∂t2
 .  The usual

equations for the potentials (in the Lorentz gauge) can therefore be expressed as

 


 
gµν   

∂
∂xµ

  
∂

∂xν
  Aµ = µojµ

∂Aµ

∂xµ
  = 0

with the choice of Aµ above, and these are proper tensor equations if Aµ is a four-vector.
Furthermore,

Tµν  = 
∂Aµ
∂xν

   -   
∂Aν
∂xµ

is, by the arguments above, also a good tensor, whose components are in fact
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   µ\ν

 

 




 


0 Βz −Βy Εx/c

-Βz 0 Βx Εy/c

Βy −Βx 0 Εz/c

−Εx/c −Εy/c −Εz/c 0

 =  Tµν

       µ\ν

            

 




 


0 Βz −Βy −Εx/c

-Βz 0 Βx −Εy/c

Βy −Βx 0 −Εz/c

Εx/c Εy/c Εz/c 0

   =  Tµν

∂Tµν 

∂xν
  =  µo jµ

expresses the two Maxwell's equations with sources, Gauss and Ampere's Laws, directly.  Since the
fields are constructed from the potentials using the usual equations, the other two Maxwell's equations
are automatically satisfied, but they can also be expressed as

 εαβγδ  
∂Tβγ 
∂xδ

  = 0

noting that the simple permutation symbols are tensors when ||g||=1 (absolute value of the determinant
of the metric tensor), a simple generalization of the arguments of Section II.  One can construct two
interesting invariants from the fields as

Tµν  Tνµ = |B|2 - |E/c|2    and     εαβγδ Tαβ Tγδ = 2 E.B

These have important physical consequences, implying that if the field is purely electric in one frame,
there will be a dominant electric field in all frames, and vise versa.  Conversely, if there are both
electric and magnetic fields in some frame, it is possible to find a frame in which one vanishes.  An
important consequence of the second invariant is that if the fields are transverse in one frame
(perpendicular to one another), they will be so in all frames.

The Lorentz force expressions may also be constructed:

ƒν  = Tµν  jµ = -Tνµ  jµ and fν = qTµν vµ = -qTνµ vµ

The covariant force density ƒν, appropriate to a continuous system with a current-density, charge-

density four-vector jµ, is to be distinguished from the four-vector force fν, which acts on a particle of
charge q.  These expressions are explicitly formed as invariant (tensor) expressions and may be
directly computed to verify that they give the familiar results of electromagnetism (for the contravariant
form):

ƒµ = ( ρEi + j x B, j .E/c) fµ =  qγ(Ei + v x B, v.E/c)

The four-vector force fµ,  which appears here has the same factor of γ multiplying the familiar terms as
did the corresponding four-vector in the tensor form of Newton's law.
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These constructions of the tensor equivalents of mechanics and electromagnetism may appear
to lack rigor, but that is not the case.  If an equation is written as a proper equation among tensors,
tensor calculus guarantees that it will remain true in all coordinate systems.  Therefore an equation of
the proper form which is correct in one coordinate system will be universal.  You may find more
detailed arguments helpful in understanding relativistic effects, but they are not necessary.  For

example, to prove that jµ is a four-vector, it is not necessary to examine current densities and charge
densities in one coordinate system and determine their complex transformations as velocities and
volumes transform between systems.  It suffices to declare that charge conservation is a physical law.

Only  
∂jµ

∂xµ
  = 0 with jµ = (ji,ρc) being a genuine four-vector is a proper tensor equation which

provides the usual form of the charge conservation equation in a reference system.  Therefore jµ  must
be a four-vector.  (It is a symptom of the Lorentz invariance of electromagnetism that the equation of
charge conservation indeed has the familiar form in all inertial coordinate systems. However, the

tensor equations for mechanics involving fµ etc. include factors of γ and reduce to the familiar forms

only for low velocity, γ~ 1.)
The most important application of this argument is to the electromagnetic field, the tensor and

transformation character of which would otherwise require considerable, tedious argument.  The
argument above shows that the fields are thoroughly linked, being components of a single tensor.
Since E and B are conventionally vectors, one might have expected analogous four-vectors, but that
would create a conceptual difficulty in expressing a four-vector force coupling four-vector fields and
the four-vector velocity, a difficulty which is obviated by the tensor force expressions above.  The
field tensor transforms normally; for reference, the result is shown here:

 µ\ν

    

 



 

0 γ(Βz - βΕy/c) -γ(Βy + βΕz/c) Εx/c

-γ(Βz - βΕy/c) 0 Βx γ(-βΒz + Εy/c)

γ(Βy + βΕz/c) -Βx 0 γ(βΒy + Εz/c)

−Εx/c -γ(-βΒz + Εy/c) -γ(βΒy + Εz/c) 0

 =  Tµν

The familiar vxB contribution to the new E is present, but there are factors of γ and contributions to B
as well.

The tensor form of energy conservation may be obtained by similar arguments, or it can be
obtained as follows using methods analogous to those of the classical argument.  (Since momentum-
energy conservation already involves tensors, the four-vector analog is not particularly easy to
construct.)

ƒν  = Tµν  jµ = 
1

µo
  Tµν  

∂Tµα 

∂xα

      =  
1

2µo
  Tµν  

∂Tµα 

∂xα
 +  

1

2µo
 
 



 

∂(Tµν Tµα)

∂xα
 - Tµα   

∂Tµν  

∂xα
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Since    
∂Tµν 

∂xα
  +  

∂T α µ  

∂xν
  +  

∂T να  

∂xµ
  = 0 (if the indices are distinct, this is one of Maxwell's

equations  εαβγδ  
∂Tβγ 
∂xδ

  = 0, otherwise is it true by the antisymmetry of T),

ƒν =    
1

2µo
  Tµν  

∂Tµα 

∂xα
 +  

1

2µo
 
 



 

∂(Tµν Tµα)

∂xα
 + Tµ α  

 



 

∂Tαµ  

∂xν
 + 

∂Tνα  

∂xµ
 

=    1

2µo
  Tµν  

∂Tµα 

∂xα
 +  

1

2µo
 
 



 

∂(Tµν Tµα)

∂xα
 +  

1
2 

∂(Tµα  Tαµ )

∂xν
 +Tµα  

∂Tνα  

∂xµ
 

=    1

2µo
  Tµν  

∂Tµα 

∂xα
 +  

1

2µo
 
 



 

∂(Tµν Tµα)

∂xα
 +  

1
2 

∂(Tµα  Tαµ )

∂xν
 + 

∂(Tµα  Tνα )

∂xµ
 - Tνα

∂Tµα  

∂xµ

By changing dummy indices and using the antisymmetry of T, the first and last terms cancel, and the
second and fourth terms are identical, leaving

ƒν =   
1

µo
 
 



 

∂(Tµν Tµα)

∂xα
 -  

1
4 

∂(Tµα  Tµα )

∂xν
   = 

∂G
µ
ν

∂xµ

G
µ
ν

 =   
1

µo
 
 



 



Tαν  Tαµ  - 
1
4 (Tαβ  Tαβ ) δ

µ
ν

for the relativistic stress tensor.  It can be converted to other forms, for example:

Gµν =   
1

µo
 
 



 



gαβ  Tβν Tαµ  - 
1
4 (Tαβ  Tαβ) gµν

which is clearly symmetric, but the elements remain complicated functions of the fields.  This
completes the fundamental formulation of mechanics and electrodynamics in relativistic form.

VI.  Covariant Differentiation
Differentiation of tensors is not simple.  The partial derivatives of an invariant form a good

(covariant) vector, and certain antisymmetric forms have been shown above to be tensors, but
generally speaking, the partial derivatives of vectors (and perforce tensors) introduce derivatives of the
transform law and metric.  Only for constant gij , e.g. Cartesian coordinates and special relativity, but
not even cylindrical or spherical coordinates, do partial derivatives produce tensors.  The formulation
of derivatives (i.e. finding definitions for derivatives of  a tensor --- absolute and covariant
differentiation) which do behave properly is subtle.  Several approaches are possible; the one here is
'geometric' rather than formal and strives to provide a basis for and understanding of the complications
which arise.  Nevertheless, not all steps can be well motivated, and certain choices will become clear
only in retrospect.

Since only derivatives of invariants have tensor character, we begin by considering a simple,
fundamental object, the tangent to a curve qi(u):
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pi ≡ 
dqi
du (1)

This is a well-formed contravariant vector, from which an invariant  w = gijpipj may be constructed.
Its derivative must likewise be an invariant

dw
du = 2 gijpi 

dpj
du  +  

∂gij
∂qk

  pipjpk (2)

which can be written in this simple, symmetric form because of the definition of pi above.  A
fundamental (and rather obvious) theorem of tensor calculus, sometimes called the quotient rule,
implies that if  AiBi = Ø (an invariant) and Bi is an arbitrary contravariant vector, then Ai must be a
covariant vector.  One can thus factor out a term pi from this expression and conclude that the
remainder is a good covariant vector.  However, i is a dummy index; any of the three p factors in the
final product could be extracted.  In fact, a particular combination is particularly useful: the sum of the
two symmetric forms in ij, minus the form using k:

fi  = gij 
dpj
du  + [jk,i] pjpk [ij,k] ≡ 

1
2
  


 
 

∂gjk
∂qi

  + 
∂gi k

∂qj
  - 

∂gi j
∂qk

  (3)

where the bracket defines a famous object, the Christoffel symbol of the first kind.  It is clear that this

fi is not the only covariant vector involving 
dpj
du, but the special symmetry of the Christoffel symbol

makes it an advantageous choice.  There is an obvious corresponding contravariant vector

fi  =  
dpi
du   + { }ijk pjpk { }ijk ≡ gil  [jk,l] (4)

which employs the Christoffel symbol of the second kind.  These objects are not tensors, their
transformation law remaining to be inferred from the known transformation character of the other
terms in the equation, but raised and lowered indices are used to indicate the indices with which they
are to be summed in the usual convention.

This leads one to define a derivative, the absolute derivative, of pi as the contravariant vector

δpi

δu
  =   

dpi
du   + { }ijk pjpk (5)

The significance of the Christoffel symbols may be understood as follows:  If u is chosen to be length

s, then a 'straight line'  would have a constant tangent  
δpi

δs
   = 0 as an invariant property.  In Cartesian

coordinates, that is equivalent to 
dpi
ds  = 0, but this definition implies otherwise if the Christoffel

symbols are non-zero.  In fact, in 'curved' coordinates, even ones as simple as cylindrical or spherical

systems,   
dpi
ds  ≠ 0 for a straight line, and a constant tangent vector has varying r,θ components along

the line in general.  The Christoffel symbols embody this curvature and introduce it into the equations,

guaranteeing that only  the proper  
dpi
ds  will produce 

δpi

δs
   = 0.  (Very similar equations and calculations

to those here appear in the rigorous generalization of a straight line, which is a geodesic, a curve of
variationally stationary length or simply the 'shortest distance' if the metric is positive definite.)

As mentioned above, the transformation laws for Christoffel symbols may be adduced from the
tensorial form of the terms in (3) and (4).  Specifically from (4),
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f'i  =  
d2qi

d2u
   + { }ijk ' 

 
dqj
du  

dqk
du

  = 
∂qi

∂xj  


 
 

d2xj

d2u
 + { }j

lm  
dxl
du  

dxm
du   (6)

 
∂qi

∂xj   


 
 

d2xj

d2u
  =  

∂qi

∂xj  
d
du 

 


 
 

∂xj

∂ql 
dql
du  =  

∂qi

∂xj 
∂xj

∂ql  
d2ql

d2u
 + 

∂qi

∂xj  
∂2xj

∂ql∂qp  
dql
du  

dqp
du

=  
d2qi

d2u
 + 

∂qi

∂xt  
∂2xt

∂qj∂qk  
dqj
du  

dqk
du

The second derivatives of qi match, leaving

{ }ijk ' 
 
dqj
du  

dqk
du

  =  
∂qi

∂xt  
∂2xt

∂qj∂qk  
dqj
du  

dqk
du   +  

∂qi

∂xt  { }t
lm

∂xl

∂qj  
∂xm

∂qk    
dqj
du  

dqk
du

{ }ijk '  =   
∂qi

∂xn  
∂2xn

∂qj∂qk   + { }n
lm

∂xl

∂qj  
∂xm

∂qk    
∂qi

∂xn (7)

This implies that the Christoffel symbols transform like tensors, but with an additional term, which
involves the second derivatives of the coordinate transformations.  They therefore remain zero for all
linear transformations like rotation and the Lorentz group.  They are non-zero in cylindrical and
spherical coordinates, and the transformation law (7) from Cartesian can be as convenient for
calculation as the definition (4).  The same procedure may be applied to (3) to give

[ij,k] '  = glm 
∂xl

∂qi  
∂2xm

∂qj∂qk  + [lm,n] 
∂xl

∂qi  
∂xm

∂qj   
∂xn

∂qk  (8)

An absolute derivative was defined for the contravariant vector pi ≡ 
dqi
du, but the calculation

depended on the special properties of p.  However, a straightforward generalization is possible, based
on the invariant  Ø = gijpiTj, for any vector field Tj defined along the curve qj(u):

dØ
du = gij  

dpi
du Tj + gij  pi 

dTj
du +  

∂gij
∂qk

  piTjpk

using (3),

      =  (fj - [ik,j] pipk)Tj  +  gij  pi 
dTj
du +  

∂gij
∂qk

  piTjpk

dØ
du  - fjTj =  gij  pi 

dTj
du  + [jk,i] piTjpk (9)

Since the quantity on the left in an invariant, so is the right, and factoring out pi implies that

 gij   
dTj
du  + [jk,i] Tjpk  = fi

a covariant vector.  The corresponding contravariant vector is the appropriate absolute derivative:

δTi

δu
  ≡   

dTi
du  + { }ijk  Tj  dqk

du
  (10)
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[The vector character of (10) may also be confirmed by direct transformation using (7) and the
procedure used to obtain (7).]

A similar procedure gives the form for the absolute derivative of a covariant vector Ri:  An
invariant may be formed with any Ti, and an additional derivative invariant likewise as

d(RiTi)
du   = 

dRi
du   Ti + Ri 

dTi
du  =   

dRi
du  Ti  + Ri 

 


 
 

δTi

δu
 - { }ijk  Tj dqk

du
  (11)

Choosing the arbitrary Ti such that   
δTi

δu
  =  0 means that the coefficient of Ti is a vector:

  
δRi
δu

  ≡   
dRi
du   - { }jik  Rj 

dqk
du

  (12)

By forming an invariant with a collection of arbitrary vectors, each of which has zero absolute
derivative, the absolute derivative of any tensor, defined by analogy with the form below, is easily
shown to have the same tensor character as the tensor itself:

  
δT

ij
k

δu
  =   

dT
ij
k

du   + { }iln T
lj
k  

dqn
du

  + { }jln  T
il
k  

dqn
du

  - { }l
kn T

ij
l   

dqn
du

  (13)

(This one could be proved using Ø = T
ij
k AiBjCk.)

Mathematicians typically strive for the greatest generality, meaning minimal assumptions.  In
this case, the vectors and tensors need only be defined along the curve, e.g.  Ri(u).  However, we are
generally concerned with vector and tensor fields, meaning objects which are defined at all points in

space. In this case, one can use  
d
du   =  

dqk
du   

∂
∂qk , and since  

dqk
du   is now an arbitrary contravariant

vector factor in the absolute derivative, its coefficient must be a tensor and covariant in that index.  One
thereby defines the covariant derivative

Ti,j =   
dTi

dqj   + { }ijk  Tk (14)

Ti,j =   
dTi
dqj    - { }kij  Tk (15)

with the obvious generalization to tensors of higher rank.  (Other common notations are Ti;j and Ti|j.)
These results are susceptible to some helpful and intuitive interpretation.  In general, if the

derivative of a function is zero, the function is constant in some sense.  This idea may be pursued by
noting that  gij,k = 0.  [Verification is straightforward using the extension of (15) for two covariant
indices with the definitions (3) and (4) of the Christoffel symbols; it is a further illustration of the
advantage of choosing the particular symmetry for fi  in (3).]  The sense in which gij , having zero
covariant derivative, is constant is both special and significant.  Since gij  is a rather arbitrary symmetric
tensor, it certainly varies with position in general, and none of its partial derivatives with respect to qi
need be zero.  In fact, its covariant derivative, through the Christoffel symbols, has been implicitly
constructed to be zero.  The metric tensor defines the space; 'changes' in the metric tensor are changes
in the space itself.  The tensor derivatives show changes with respect to the space.  Almost by
definition, the space does not change with respect to itself, and gij should be a constant with respect to
the space defined by gij .
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The concept of 'constancy' may be developed by noting that  (11) may be written as

d(RiTi)
du   =  Ri  

δTi

δu
  +  

δRi
δu

  Ti (16)

Applying this to a single vector, if  
δTi

δu
  = 0, then the length of Ti remains constant along u.

Furthermore, the angle between two vectors may be defined in the usual sense as  RiTi =  |Ri||Ti|cos θ,

|Ti| = √TiTi .  If both vectors have zero absolute derivative along u, then their lengths and the angle

between them remain constant.  For this reason, if  
δTi

δu
  = 0, the vector Ti  is considered to be

propagated parallel to itself along u.  Parallelism is easily defined at a point in the usual sense that  RiTi

= ± |Ri||Ti|, but vectors at different points cannot generally be compared.  This offers a generalization
which preserves most of the usual properties.  [Unfortunately, uniqueness is not one of them; different
curves u between a pair of points (A, B) may lead to different Ti at B starting from a given Ti at A.]

An interpretation of Christoffel symbols can again be given from noting their role in a  
δTi

δu
  = 0

condition as that of driving   
dTi
du, causing Ti to change to compensate for the 'curvature' of the space.

VII.  Geodesics and Lagrangians
As noted above, the concepts of parallelism, straight line, and really all non-local (global)

comparisons require some specialization in general metric space. They cannot be carried over with all

their familiar properties.  A primitive (if 'correct') notion of straight line as  
δpi

δs
   = 0  (pi = 

dqi
ds ) was

introduced in the previous section in interpreting the meaning of absolute differentiation, but a more
general formulation is useful.  The fundamental formulation is based on a variational principle, and
such principles are also important for mechanics.

To review, if a definite integral I , whose value is expressed as a functional of functions of a
parameter u between fixed end points, is to have an extremum (maximum, minimum, or possibly an
inflection point),

δI  = δ 
 



 



 ⌡
⌠

u1

u2

 L(
dqi
du,qi(u),u) du  = 0 (1)

By the usual argument in calculus of variations, if the set of functions q
i
o(u) is a solution, then for a

small variation about that,  qi  = q
i
o + δqi, δI  must be second order in δqi, and the first order variation

is zero.  (This is simply a generalization of the fact that the first derivative of a function is zero at
extrema.)  If L is then regarded as a function of the functions listed above regarded as independent,

δI  = ∫
u1

u2
du  

 


 
 ∂ L  

∂q'i  
 
d(δqi)

du  +  
 ∂ L  
∂qi 

 δqi    = 0 where q'i  =
dqi
du (2)

and a sum over the index i is understood.  The first term may be integrated by parts, and if the end
points are prescribed so that  δqi(u1) = δqi(u2) = 0, the condition may be written as



INTRODUCTION TO THE ESSENTIALS OF TENSOR CALCULUS

22

 ∫
u1

u2
du  

 


 
 

d
du 

 


 
 ∂ L  

∂q'i  
 -  

 ∂ L  
∂qi 

  δqi  = 0 (3)

since the δqi  are arbitrary, the integral will be zero only if all its coefficients zero, which are the well-
known Euler-Lagrange equations for the variational problem.

 
d
du 

 


 
 ∂ L  

∂q'i  
 - 

 ∂L 
∂qi 

   =  0 (4)

The application to straight lines arises because a straight line is, among other things, the
shortest distance between two points, and this criterion can be formulated in any metric space.  A
geodesic is defined as a curve for which

δI  = δ 
 


 


 ⌡

⌠

u1

u2

 √ 


 
gij  

dqi
du 

dqj
du  du  = 0 (5)

and in cases like special relativity for which the metric is not positive definite and there are curves of
zero length, the integral may be a maximum.  In any case, the solutions  qi(u) are geodesics and the
best generalization of a "straight line" in a general metric space.  The Euler equations are thus

 
d
du  


 
∂√ w

∂q'i  
 - 

∂√ w
∂qi 

   = 0 =  
d
du 

 


 
1

√ w
 

∂ w  
∂q'i  

 - 
1

√ w
 
∂w 
∂qi 

   for w = gij  
dqi
du 

dqj
du

and if u is chosen to be the measure of distance ds2 =  gij  
dqi
du 

dqj
du du2, w = 1 and 

dw
ds = 0 leaving

 
d
ds  


 
∂ w  

∂q'i  
 - 

∂w 
∂qi 

   =  0 =  
d
ds  


 
2gij  

dqj
ds  - 

∂gjk
∂qi 

  
dqj
ds 

dqk
ds (6)

as the equation of the geodesic.  Computing the derivative through the qi dependence and rearranging
dummy indices produces

 2gij 
d2qj

ds2
  + 

∂gij
∂qk 

  
dqj
ds 

dqk
ds   +

∂gik
∂qj 

  
dqj
ds 

dqk
ds   - 

∂gjk
∂qi 

  
dqj
ds 

dqk
ds   = 0 (7)

which, through no accident, can be written

gij 
d2qj

ds2
  + [jk,i] 

dqj
ds 

dqk
ds   = 0   or    

d2qi

ds2
  +{ }ijk dqj

ds 
dqk
ds   = 0 (8)

which are the standard forms for these equations.
Variational principles are also used to form the Lagrangian and related equations of motion.

The familiar results may be extended to construct relativistically proper forms, but somewhat
indirectly.  The normal construction of L = T-V with ∫dt has no clear tensor equivalent.  Instead, we

must try to find an invariant L such that  ∫Ldu generates the correct equations of motion.  For example,
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L = mc √gαβ  
dxα
du  

dxβ
du (9)

is manifestly invariant and also independent of position (only derivatives enter) and thus a possible
starting point as the Lagrangian for a free particle.  The Euler equations are

mc 
d 
du 

 




 


 gαβ  

dxβ
du

 √gαβ  
dxα
du  

dxβ
du

   = 0 (10)

If u is now chosen to be the invariant parameter τ, the radical becomes the invariant constant c, and the
equations reduce to the standard equation of motion for a free particle:

m 
d2xα

dτ2
  = 0 = 

dpα

dτ
  (11)

With this start, the Lagrangian for a particle in an electromagnetic field could be

L = mc √gαβ  
dxα
du  

dxβ
du     + q gαβ 

dxα
du  Aβ (12)

which is again an invariant and linear in q, vµ, and Aβ; one can argue the second term as the only
plausible one.  The equations of motion thereby implied are

 
d  
du 

 




 


mc gαβ  

dxβ
du

 √gαβ  
dxα
du  

dxβ
du

 + q gαβ  Aβ   -  q gµβ 
dxµ
du  

∂Aβ

∂xα
 = 0 (13)

and with the same choice of u as τ and extraction of the τ dependence of Aβ through the xµ,

gαβ m 
d2xβ

dτ2
  = q 

dxµ

dτ
 
 



 



gµβ 
∂Aβ

∂xα
 - gαβ  

∂A β

∂xµ
  = q 

dxµ

dτ
 
 



 

∂Aµ

∂xα
 - 

∂A α
∂xµ

 

         = q 
dxµ

dτ
  Tµα = fα (14)

the same equation as obtained previously, thus confirming the choice of L above.
The procedures of classical mechanics may be continued to construct a Hamiltonian from the

conjugate momenta
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Pα = 
∂L

∂ 


 
dxα

du

  =  
mc gαβ  

dxβ
du

 √gαβ  
dxα
du  

dxβ
du

 + q gαβ Aβ     i.e., Pµ = mvµ + q Aµ (15)

(The partials of L are always taken with respect to a contravariant quantity and generate a covariant
index in consistent analogy with the usual tensor derivatives with respect to coordinates, the dqi being
contravariant, although no real tensor character can be ascribed to the partial derivatives associated with
the derivation of the Euler-Lagrange equations.)

The Hamiltonian is then

H = 
1
2 ( )Pα vα  - L where   mvµ = Pµ - q Aµ (16)

is to be used to eliminate vµ in favor of Pµ.  Straightforward algebra produces the Hamiltonian as

H = 
gαβ
2m   ( Pα - q Aα) ( Pβ - q Aβ) - 

mc2

2 (17)

and the Hamiltonian equations of motion:

dxα
dτ

  = 
∂H

∂Pα
  =   

gαβ
m   ( Pβ - q Aβ) or

dxα

dτ
  =  

 Pα  - q Aα
m (18)

dPµ
dτ

  = -  
∂H

∂xµ
  =  

qgαβ
m   ( Pα - q Aα) 

∂Aβ

∂xµ
(19)

The first is the trivial 
dxα

dτ
  = vµ,  and the second, after elimination of P from (15) on both sides,

leaves the same equation of motion as that obtained above from the Lagrangian (14), because  
dAµ

dτ
expands into the remaining portion of the E-M coupling term.

________________________________________________________________________


