
Lehmann–Symanzik–Zimmermann (LSZ) Reduction Formula

Earlier in class (see my notes) I explained the two-point correlation functions and showed

how their poles are related to the physical masses of particles and the strengths of bare fields.

The LSZ reduction formula focuses on the n > 2 correlation functions

Fn(x1, . . . , xn) def
= 〈Ω|TΦ̂(x1) · · · Φ̂(xn) |Ω〉 (1)

— where the quantum fields Φ̂(x) are in the Heisenberg picture of quantum mechanics — and

relates the poles of their Fourier transforms

Fn(p1, . . . , pn) =

∫
d4x1 e

ip1x1 · · ·
∫
d4xn e

ipnxn × Fn(x1, . . . , xn), (2)

to the S–matrix elements between the physical asymptotic states. The poles happen when any

of the n momenta pi approaches the mass shell, p2i → M2
phys, and the most interesting pole is

the simultaneous pole when all n momenta go on-shell. Specifically, let

p01 → +E(p1) = +
√
p1 +M2, . . . , p0k → +E(pk) (3)

for some k < n, but

p0k+1 → −E(pk+1), . . . , p0n → −E(pn). (4)

In this limit, Lehmann–Symanzik–Zimmermann formula (published in 1955) gives us

Fn(p1, . . . , pn) −−−−→
on shell

n∏

i=1

i
√
Z

p2i −M2 + iǫ
× 〈out : −pk+1, . . . ,−pn| Ŝ |in : p1, . . . , pk〉 . (5)

The field-strength factors
√
Z in this formula stem from the Fn in eq. (1) being the correlation

of the bare fields. If we re-define it as the correlation function of the renormalized fields — or

equivalently, use the counterterm perturbation theory to calculate the correlation function, —

then we would have F renormalized
n = Z−n/2Fbare

n and consequently

F renormalized
n (p1, . . . , pn) −−−−→

on shell

n∏

i=1

i

p2i −M2 + iǫ
× 〈out : −pk+1, . . . ,−pn| Ŝ |in : p1, . . . , pk〉 .

(6)
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Perturbation Theory for the Correlation Functions

Before deriving the LSZ reduction formula, let me show how the poles at p2i → M2 arise

from formal resummation of the perturbation theory. For simplicity, let’s focus on the connected

correlation functions, which in perturbation theory obtain as

F conn
n (p1, . . . , pn) =

∑(
all connected diagrams

with n external vertices

)
. (7)

Topologically, a general diagram of this kind has an amputated core, plus any number of

external leg bubbles on any of the n external legs, thus

amputated

core

1PI

1PI

1PI

1PI

1PI

1PI

1PI

1PI

(8)

Each external leg bubble here is one-particle irreducible (1PI) — if we cut any propagator

internal to the bubble, it stays connected. As to the amputated core, if we cut any propagator

internal to the core, it may stay connected or break into two disconnected parts, but if it breaks

then each part must remain connected to at least two external legs.
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A general diagram (8) contributing to the connected n-point function may have:

• Any kind of amputated core with n external legs.

• Any number Ni = 0, 1, 2, . . . of leg bubbles in each of the n legs.

• And any such bubble may be any kind of 1PI subgraph with 2 external legs.

⋆ Most importantly, we may chose any amputated core we like and any leg bubbles we like

completely independently from each other.

Consequently, when we formally sum over all connected Feynman diagrams with n external

vertices, the sum factorizes into a product of a sum over the cores and a sum over the bubbles

in each leg,

F conn
n (p1, . . . , pn) =

∑(
connected

diagrams

)
=
∑(

amputated

cores

)
×

n∏

i=1

(
external

leg factors

)
. (9)

where each external leg factors includes the blue propagators and the leg bubbles, and should

be summed over all numbers of bubbles of any kinds. In general, for Ni bubbles we have Ni+1

blue propagators with fixed momentum pi, thus

(
external

leg factor

)

i

=

∞∑

Ni=0

(
i

p2i −m2
b + iǫ

)Ni+1

×
[∑(

single

bubbles

)]Ni

=
∞∑

Ni=0

(
i

p2i −m2
b + iǫ

)Ni+1

×
[
−iΣ(p2i )

]Ni

=
i

p2i −m2
b − Σ(p2) + iǫ

= F2(p
2),

(10)

exactly as in the two-point correlation function. Therefore,

F conn
n (p1, . . . , pn) =

n∏

i=1

F2(p
2
i )×

∑(
amputated

cores

)
. (11)
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This formula explains where the poles in the correlation functions come from: When any

of the momenta pi goes on-shell, p
2
i →M2

phys, the corresponding F2(p
2
i ) has a pole,

F2(p
2) =

iZ

p2i −M2 + iǫ
+ finite, (12)

which translates into the pole of the whole product (11). When all of the n momenta go on

shell at the same time, all n of the F2(p
2
i ) factors develop poles, thus

F conn
n (p1, . . . , pn) −→

n∏

i=1

iZ

p2i −M2 + iǫ
×
∑(

amputated

cores

)
. (13)

Note the combined residue of this n-fold pole,

Residue [F conn
n (p1, . . . , pn)]all p2

i
→M2 = (iZ)n ×

∑(
amputated

cores

)
. (14)

Thus far, we have explained the poles of the Lehmann–Symanzik–Zimmermann formula (5).

In a moment, we should compare the residues. But first let’s cluster-expand the LHS of the LSZ

formula into connected correlation functions while the S-matrix element on the RHS likewise

expands into connected and disconnected pieces. For example, for n = 4 we have

F4(p1, p2, p3, p4) = F conn
4 (p1, p2, p3, p4)

+ F2(p1, p2)×F2(p3, p4) + F2(p1, p3)× F2(p2, p4)

+ F2(p1, p4)×F2(p2, p3),

(15)

and at the same time

〈−p3,−p4| Ŝ |p1, p2〉 = (2π)4δ(4)(p1 + p2 + p3 + p4)× 〈−p3,−p4| iM̂ |p3, p4〉

+ 〈−p2| Ŝ |p1〉 × 〈−p4| Ŝ |p3〉 + 〈−p3| Ŝ |p1〉 × 〈−p4| Ŝ |p2〉

+ 〈−p4| Ŝ |p1〉 × 〈−p3| Ŝ |p2〉 .

(16)

In terms of the LSZ formula for n = 4, we get 4 terms — 1 connected and 3 disconnected —

on each side of the equation. The corresponding disconnected terms on the left-hand and the
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right hand sides match each other by the LSZ formula for n = 2, so the connected terms should

also match each other,

F conn
4 (p1, p2, p3, p4) −−−−→

on shell

4∏

i=1

(
i
√
Z

p2i −M2 + iǫ

)
× (2π)4δ(4)(pnet)× 〈−p3,−p4| iM̂ |p1, p2〉 ,

(17)

Likewise, for n > 4

F conn
n (p1, . . . , p4) −−−−→

on shell

n∏

i=1

(
i
√
Z

p2i −M2 + iǫ

)
× (2π)4δ(4)(pnet)

× 〈−pk+1, . . . ,−pn| iM̂ |p1, . . . , pk〉
(18)

for p01, . . . , p
0
k > 0 while p0k+1, . . . , p

0
n < 0.

Now let’s compare the residue of the combined pole here,

Residue [F conn
n (p1, . . . , pn)]on shell = (i

√
Z)n × (2π)4δ(4)(pnet)

× 〈−pk+1, . . . ,−pn| iM̂ |p1, . . . , pk〉 ,
(19)

to the residue (14) of the same connected correlation function which obtains from the Feynman

rules. Matching the two expressions, we see that the LSZ formula implies

(2π)4δ(4)(pnet)× 〈−pk+1, . . . ,−pn| iM̂ |p1, . . . , pk〉 = Zn/2 ×
∑(

amputated

cores

)
. (20)

And this is why we calculate the scattering amplitudes using only the amputated Feynman

diagrams!

The factor Zn/2 in eq. (20) follows from using the correlation functions for bare fields

and hence the bare perturbation theory for the amputated diagrams. In the counterterm

perturbation theory, this factor goes away and we are left with

(2π)4δ(4)(pnet)× iM(on shell p1, . . . , pn) =
∑(

amputated cores

with n external lines

)
. (21)
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Deriving the LSZ Reduction Formula

Now that we know what is the LSZ reduction formula good for, let’s prove it. Let’s start by

focusing on a single momentum, say p1, and look for the quantum origin of the poles when that

momentum goes on shell, p01 → ±E(p1). To simplify our notations, we keep the (x2, . . . , xn)

coordinates of the n-point correlation function in the coordinate basis, only the x1 gets Fourier

transformed to the momentum basis, thus

Fn(p1; x2, . . . , xn) =

∫
d4x1 e

−ip1x1 × Fn(x1, x2, . . . , xn). (22)

Let’s split the time integral here over t1 = x01 into 3 integration ranges: Range (i) from −∞ to

some very early but finite time T1; range (II) from T1 to some very late but finite time T2; and

range (III) from T2 to +∞. Thus,

Fn(p1; x2, . . . , xn) =

3∑

i=1

∫

range#i

dt1 e
−ix0

1p
0

1 ×
∫
d3x1 e

−ix1p1 × Fn(x1, x2, . . . , xn). (23)

Note that in the coordinate space, the Fn(x1, x2, . . . , xn) is an analytic function of the xµ1 .

Consequently, integrating the Fn×phase over a finite range#2 of time cannot possibly produce

a pole — all such integrals are analytic and finite. Instead, the poles at p01 = ±E(p1) must

come from integrating over the semi-infinite time ranges #1 and #3. So let’s take a closer look

at these time ranges.

For the first time range x01 < T1, the x1 point is earlier than all the other n − 1 points

x2, . . . , xn, hence

T
(
Φ̂(x1) · · ·Φ(xn)

)
= T

(
Φ̂(x2) · · ·Φ(xn)

)
× Φ̂(x1) (24)

and therefore

Fn(x1, x2, . . . , xn) = 〈Ω|T
(
Φ̂(x2) · · ·Φ(xn)

)
× Φ̂(x1) |Ω〉

=
∑

|Ψ〉

〈Ω|T
(
Φ̂(x2) · · ·Φ(xn)

)
|Ψ〉 × 〈Ψ| Φ̂(x1) |Ω〉 , (25)

where the sum is over all quantum states Ψ. Similar to what we did in an earlier class for

the two-point functions (see my notes, pages 9–11), we restrict the sum to the quantum states
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which can be created by the field Φ̂ from the vacuum |Ω〉, and then we label such states as |ψ, q〉
where qµ is the net momentum of the state while ψ denotes the rest of its quantum numbers,

discrete or continuous. Consequently,

∑

|Ψ〉

=
∑

ψ

∫
d3q

(2π)3
1

2E(q;ψ)
(26)

for

q0 = +E(q, ψ) = +
√

q2 +M2(ψ). (27)

Also, the x1 and the q dependence of the matrix element 〈ψ, q| Φ̂(x1) |Ω〉 obtain as simply

〈ψ, q| Φ̂(x1) |Ω〉 = e+iqx1 × 〈ψ| Φ̂ |Ω〉 . (28)

Plugging these formulae into eq. (25) and hence into the range#1 contribution to the

Fn(p1; x2, . . . , xn), we arrive at

(
range#1

contribution

)
=

T1∫

−∞

dt1

∫
d3x1 e

−ix1p1
∑

ψ

∫
d3q

(2π)3
1

2E(q;ψ)
〈Ω|T

(
Φ̂(x2) · · ·Φ(xn)

)
|ψ, q〉

× 〈ψ| Φ̂ |Ω〉 × e+iqx1.
(29)

Now let’s integrate over the x1 before integrating over q and summing over ψ. The only

x1-dependent factors here are the e+ip1x1 × e−iqx1, so the space integral

∫
d3x1 e

+ip1·x1 × e−iq·x1 = (2π)3δ(3)(q− p1) (30)

sets q = p1, and hence q0 = +E(q, ψ) = +E(p1, ψ). Consequently, the time integral over the

range#1 becomes

T1∫

−∞

dt1 e
−it1p

0

1×e+it1E(p) =

T1∫

−∞

dt1 e
t1(−ip

0

1+iE(p1)+ǫ) =
eT1(−ip

0

1+iE(p1)+ǫ)

−ip01 + E(p1) + ǫ
=

ie−iT1(p
0

1−E(p1))

p01 − E(p1) + iǫ
.

(31)
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Consequently, the big integral (29) reduces to

(
range#1

contribution

)
=
∑

ψ

1

2E(p1, ψ)
× ie−iT1(p

0

1−E(p1))

p01 − E(p1) + iǫ
×〈Ω|T

(
Φ̂(x2) · · ·Φ(xn)

)
|ψ,p〉×〈ψ| Φ̂ |Ω〉

(32)

Note that for discrete state ψ there is a pole at p0 = +E(p, ψ) = +
√
p2 +M(ψ)2. In particular,

the one-particle state of physical mass M contributes the pole

ie−iT1(p
0

1−E(p1))

2E(p1)(p01 − E(p1) + iǫ)
× 〈Ω|T

(
Φ̂(x2) · · ·Φ(xn)

)
|1 : p〉 ×

√
Z (33)

where the
√
Z factor comes from 〈1| Φ̂ |Ω〉 =

√
Z. Moreover, near the pole

ie−iT1(p
0

1−E(p1))

2E(p1)(p01 −E(p1) + iǫ)
=

i

(p01)
2 −E2(p1) + iǫ

+ finite =
i

p21 −M2
phys + iǫ

+ finite. (34)

so we may rewrite the pole in the usual relativistic form.

So here is the bottom line: for pµ1 going to the positive-energy mass shell, the correlation

function Fn(p1; x2, . . . , xn) has a pole i/(p21 −M2 + iǫ) with residue

residue =
√
Z × 〈Ω|T

(
Φ̂(x2) · · ·Φ(xn)

)
|1 : p1〉 . (35)

This pole comes from the first range of the time integration, −∞ < x01 < T1.

The third range of time integration, T2 < x01 < +∞, can be handled ina similar manner.

To save time, let me skip the gory details of the calculation and simply give you the bottom

line. This time, the pole is for p1 going to the negative-energy mass shell, p01 → −E(p1,M),

and its residue is

residue =
√
Z × 〈1 : (−p1)|T

(
Φ̂(x2) · · ·Φ(xn)

)
|Ω〉 . (36)

⋆ ⋆ ⋆
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Thus far, we have focused on the pole for a single momentum p1 going on shell. Now

consider the

Fn(p1, p2; x3, . . . xn) =

∫
d4x1 e

−ip1x1

∫
d4x2 e

−ip2x2 ×Fn(x1, x2, x3, . . . , xn) (37)

and take both momenta p1 and p2 on-shell at the same time, say p01 → +E(p1,M) and p02 →
+E(p2,M). Similar to what we had for a single momentum, this time we get a combined pole

i

p21 −M2 + iǫ
× i

p22 −M2 + iǫ
(38)

which emerges from the time integrals
∫
dt1 and

∫
dt2 over the asymptotic past range, t1, t2 →

−∞. For two fields Φ̂(x1) and Φ̂(x2) at the asymptotic past points, we have

〈Ω|TΦ̂(x1) · · · Φ̂(xn) |Ω〉 =
∑

Ψ

〈Ω|TΦ̂(x3) · · · Φ̂(xn) |Ψ〉 × 〈Ψ|TΦ̂(x1)Φ̂(x2) |Ω〉 , (39)

and the pole (38) comes from |Ψ〉 = |in(p1, p2)〉 — the asymptotic incoming state of two

particles. Strictly speaking, the two particles here do not have exactly definite momenta p1

and p2 but rather wave-packet states of small δp, so in the coordinate picture these two wave

packets have finite sizes. Consequently, in the asymptotic past when the two particles were

very far from each other, their respective wave packets do not overlap, and the particles do not

interact until they approach each other at later times. In this regime

〈in(q1, q2)|TΦ̂(x1)Φ̂(x2) |Ω〉 = 〈in(q1)| Φ̂(x1) |Ω〉 × 〈in(q2)| Φ̂(x2) |Ω〉 + (q1 ↔ q2)

= Z × wavepacket
q1

(x1)× wavepacket
q2

(x1) + (q1 ↔ q2)

≈ Z × eiq1x1 × eiq2x2 + (q1 ↔ q2)

(40)

and consequently

Fn(p1, p2; x3 . . . , xn) −−−−−−−−−→
p1,p2→mass shell

i
√
Z

p21 −M2 + iǫ
× i

√
Z

p22 −M2 + iǫ

× 〈Ω|TΦ̂(x3) · · · Φ̂(xn) |in(p1, p2)〉 .
(41)

Finally, let’s Fourier transform the remaining coordinates x3, . . . , xn to momenta p3, . . . , pn

and the take all these momenta to the negative-energy mass shell, each pi → −E(pi,M). This
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time, integrating each time variable t3, . . . , tn over the asymptotic future range, hence

〈Ω|TΦ̂(x3) · · · Φ̂(xn) |in(p1, p2)〉 =
∑

Ψ

〈Ω|TΦ̂(x3) · · · Φ̂(xn) |Ψ〉 × 〈Ψ|in(p1, p2)〉 (42)

where the pole

i

p23 −M2 + iǫ
× · · · × i

p2n −M2 + iǫ
(43)

comes from 〈Ψ| = 〈out(−p3, . . . ,−pn)| — the asymptotic outgoing state of n − 2 particles.

Treating this state just as we treated the incoming 2-particle state, we go through a bit of

algebra and eventually arrive at

Fn(p1, . . . , pn) −−−−−−−−−→
all pi→mass shell

=

n∏

i=1

(
i
√
Z

p2i −M2 + iǫ

)
×〈out(−p3, . . . ,−pn) | in(p1, p2)〉 . (44)

Throughout these notes we were working in the Heisenberg picture of the quantum me-

chanics, so the asymptotic incoming and outgoing states in eq. (44) are the Heisenberg-picture

states. Translating them into the interaction picture turns the Dirac bracket of the |in〉 and

〈out| states into the S-matrix element,

〈out(−p3, . . . ,−pn) | in(p1, p2)〉H = 〈out(−p3, . . . ,−pn)| Ŝ |in(p1, p2)〉I . (45)

Consequently, eq. (44) becomes the Lehmann–Symanzik–Zimmermann formula

Fn(p1, . . . , pn) −−−−−−−−−→
all pi→mass shell

=

n∏

i=1

(
i
√
Z

p2i −M2 + iǫ

)
×〈out(−p3, . . . ,−pn)| Ŝ |in(p1, p2)〉 . (5)

Quod erat demonstrandum.
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