Vectors

Vector addition and component vectors. (Section 3.3)
Questions 1 and 2 may be used after Example 2 of Section 3.3, before the discussion of vectors in three dimensions.

1. Vector addition

- The solution of this problem uses \mathbf{i} and \mathbf{j} notation, which may serve as a precursor to Fig. 3.17 in Section 3.3.

2. A trip

- This problem involves addition of three vectors in two dimensions.

Vector multiplication: dot product. (Section 3.4, part 1)
Problems 3-5 are to be used after Example 5 in Section 3.4.
3. The length of $\mathbf{A}+\mathbf{B}$
4. Law of cosine of a triangle
5. Determine the vector \mathbf{R} OA using the dot product.

Vector multiplication: (Section 3.4, part 2)
Cross product. Problems 6 and 7 come after Example 6 in Section 3.4.
6. Area of a triangle
7. Law of sine of a triangle
8. Volume of a parallelepiped

- This exercise involves the combined operations of one dot product and one cross product.

Given: $\mathbf{A}=\mathbf{i}, \mathbf{B}=\mathbf{i}+\mathbf{j}, \mathbf{C}=\mathbf{i}$. Define: $\mathbf{D}=\mathbf{A}+\mathbf{B}+\mathbf{C}$. Determine the magnitude of \mathbf{D} and the angle θ_{D} that \mathbf{D} makes with the x axis:

	1	2	3	4
\mathbf{D}	2	$2 \sqrt{2}$	2	$2 \sqrt{2}$
θ_{D}	45°	45°	$>45^{\circ}$	$>45^{\circ}$

Hint: $D_{x}=A_{x}+B_{x}+C_{x}, D_{y}=A_{y}+B_{y}+C_{y}$.

Explanation: Separately adding the x and y components of \mathbf{A}, \mathbf{B}, and \mathbf{C} yields $\mathbf{D}=2 \mathbf{i}+2 \mathbf{i}$. So $\mathbf{D}=\sqrt{2^{2}+2^{2}}=2 \sqrt{2} . \tan \theta_{D}=D_{y} / D_{x}=2 / 2=1$, or $\theta=45^{\circ}$. Answer $=B$.

Consider a trip that goes from O to C by first going from O to A, then from A to B, and finally from B to C, as described by the vector diagram. The resultant displacement vector is $\mathbf{R}=\mathbf{O A}+\mathbf{A B}+\mathbf{B C}$, where the vector $\mathbf{B C}$ is parallel to the x axis.
The x component of the vector \mathbf{R} is given by which of the following?

\[

\]

Explanation: From inspection of the Cartesian components of \mathbf{A}, \mathbf{B}, and \mathbf{C} as shown in the vector diagram, the x components of \mathbf{A} and $\mathbf{O A}$ is positive, and that of $\mathbf{A B}$ and $\mathbf{B C}$ are negative. Answer $=A$.

In the figure shown, $\mathbf{C}=\mathbf{A}+\mathbf{B}$. Using the definition of the scalar product of two vectors, find the square of the length of \mathbf{C}. Let the angle between \mathbf{A} and B be α, where $\alpha=\theta_{\mathbf{B}}-\theta_{\mathbf{A}}$. Here are your choices:

A	$\mathrm{C}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos \theta_{A}$
B	$\mathrm{C}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos \theta_{\mathrm{B}}$
C	$\mathrm{C}^{2}=\mathrm{OA}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos \alpha$
D	$\mathrm{C}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \alpha$

Explanation: For any \mathbf{V}, using the relationship $\mathbf{V}^{2}=\mathbf{V} \cdot \mathbf{V},|\mathbf{C}|^{2}=|\mathbf{A}+\mathbf{B}|^{2}=|\mathbf{A}|^{2}+|\mathbf{B}|^{2}+2 \mathrm{AB} \cos \alpha$. Answer $=\mathrm{D}$.

Consider the triangular setup that satisfies the vector relation $\mathbf{a}=\mathbf{b}+\mathbf{c}$. Denote the magnitudes of three sides by \mathbf{a}, \mathbf{b}, and \mathbf{c}. Using the relation for any vector $\mathbf{V}, \mathbf{V}^{2}=\mathbf{V} \cdot \mathbf{V}$, choose the correct expression for \mathbf{c}^{2} :

$$
\begin{array}{ll}
\text { A } & a^{2}+b^{2}+2 a b \\
\hline B & a^{2}+b^{2}-2 a b \\
\hline C & a^{2}+b^{2}+2 a b \cos \gamma \\
\hline D & a^{2}+b^{2}-2 a b \cos \gamma
\end{array}
$$

Explanation: From the vector relation given, $\mathbf{c}=\mathbf{a}-\mathbf{b}$. The dot product $\mathbf{c} \cdot \mathbf{c}=(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=\mathbf{a} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b}-\mathbf{2 a} \cdot \mathbf{b}=a^{2}+b^{2}-2 a b \cos \gamma$. Answer = D.

Consider the unit cube (each side is one unit) shown here. Using the coordinate system shown with the origin at O, the point A, which is at the center of the top surface, has coordinates $(1 / 2,1 / 2,1)$. Using the dot product method, find R_{OA}, the distance between points O and A.
Extra: Find the angle ϕ formed between \mathbf{R}_{OA} and the z axis.

Explanation: $\mathbf{R}_{\mathrm{OA}}=\frac{1}{2}(\mathbf{i}+\mathbf{i})+\mathbf{k}$. Using the relation for any vector \mathbf{V},
$\mathbf{V}^{2}=\mathbf{V} \cdot \mathbf{V}, \mathrm{R}^{2} \mathrm{OA}=\frac{1}{4}+\frac{1}{4}+1=\frac{3}{2}$. So $\mathrm{R}_{\mathrm{OA}}=\sqrt{\frac{3}{2}}$.
Explanation-extra: From the diagram, $\cos \phi=\frac{1}{R_{O A}}=\sqrt{\frac{2}{3}}$, or $\phi \approx 35^{\circ}$.
5. Determine the Vector ROA using the Dot Product PhysiQuiz

Consider the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}, with $\mathbf{a}=\mathbf{b}+\mathbf{c}$. They form a closed triangle. Use the cross product to determine the area of this triangle:

Hint: The area of a triangle is given by half of its base times its height.

Explanation: From the hint,
area $=\frac{1}{2} b h=\frac{1}{2} b a \sin \gamma=\frac{1}{2}|\mathbf{a} \times \mathbf{b}|$. Answer $=D$.
Notice that this area can be expressed using any of the pairs:
area $=\frac{1}{2}|\mathbf{a} \times \mathbf{b}|=\frac{1}{2}|\mathbf{b} \times \mathbf{c}|=\frac{1}{2}|\mathbf{c} \times \mathbf{a}|$.

Given $\mathbf{b}+\mathbf{c}=\mathbf{a}$, where the three vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} form a closed triangle as shown in the figure. Choose the correct relation:

A	$\mathrm{a} \sin \alpha$
B	a
	$\sin \alpha \quad \sin \gamma$
	$\mathrm{ac}=\sin \gamma$

Hint: From the previous problem, the area of the triangle is given by $\frac{1}{2}|\mathbf{a} \times \mathbf{b}|=\frac{1}{2}|\mathbf{b} \times \mathbf{c}|$.

Explanation: From the hint, $\frac{1}{2} \mathrm{ab} \sin \gamma=\frac{1}{2} \mathrm{bc} \sin \alpha$
Canceling the factors of $\frac{1}{2}$ and b on both sides of Eq. (1) and a rearrangement of terms leads to Answer B. From symmetry, we see that the area may also be written in as $\frac{1}{2}$ ac $\sin \beta$, which together with Eq. (1) leads to $\frac{\mathrm{a}}{\sin \alpha}=\frac{\mathrm{c}}{\sin \gamma}=\frac{\mathrm{b}}{\sin \beta}$. This set of relationships is referred to as the law of sines of a triangle.

Consider a parallelepiped formed by three vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}. The general expression for its volume is given by which of the following?

$$
\begin{array}{ll}
A & a b c \\
\hline B & \frac{1}{2} a b c \\
\hline C & \frac{1}{2}|\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}| \\
\hline D & |\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}|
\end{array}
$$

Hint: The area A of the base (the parallelogram formed by vectors \mathbf{b} and \mathbf{c}) may be obtained using the cross product relation $\mathbf{b} \times \mathbf{c}=A \mathbf{n}$, where \mathbf{n} is a unit vector perpendicular to the area (see the figure).
Explanation: The volume of the parallelepiped is given by $V=h A=\mathbf{a} \cos \alpha A=\mathbf{a} \cdot \mathbf{n} A=|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}|$, where $h=\mathbf{a} \cos \alpha$ was used.

