chapter
 4
 Motion in Two and
 Three Dimensions

Projectile motion (Section 4.3)

1. Which target got hit first?

- Context of the textbook: Before Example 4.

2. Projectile range

- A problem comparable to Example 7, except here the initial values given are $v_{0 x}$ and $v_{0 y}$.

3. Gun and target
4. Gun and target on the moon

- Questions 4.3 and 4.4 are supplementary problems for projectial motion.

Motion along a circular arc: These two questions are conventional problems in other engineering physics textbooks beyond the uniform circular motion discussed in this section. They may be introduced after Example 9 of Section 4.5.
5. Deceleration of a train
6. Motion of a simple pendulum

Relative velocity and the addition of velocities.
These questions may be used before Example 10 in Section 4.6.
7. Definition of relative velocity

- A basic conceptual question.

8. Crossing a river

- A simplified version of Example 10.

Two projectiles are launched simultaneously and with the same launching speed from point O as shown $\boldsymbol{v}_{0^{\prime}}=\boldsymbol{v}_{0}$. The first is launched at angle θ and hits target A in time t_{A}. The second is launched at a greater angle $\theta^{\prime}>\theta$ and hits target B in time t_{B}. Compare the flight times for the two projectiles:

A	B	C
$t_{B}>t_{A}$	$t_{B}=t_{A}$	$t_{B}<t_{A}$

Explanation: Consider the projected motion along the vertical direction. The flight time for the first case is given by $t_{\text {flight }}=2 t_{\text {rise }}=2 v_{0 y} / \mathrm{g}$. For the second case, the y component of the initial velocity $v_{0 y}=v_{0} \sin \theta$ is replaced by $v^{\prime} 0_{y}=v^{\prime} 0 \sin \theta^{\prime}$, where $\theta^{\prime}>\theta$ and $v_{0}=v^{\prime} 0$ are given. Therefore $v^{\prime}{ }^{\prime} y>v_{0 y}$, which means that the flight of the second case takes longer. Answer $=\mathrm{A}$.

Given $v_{0 x}=20 \mathrm{~m} / \mathrm{s}$ and $v_{0 y}=10 \mathrm{~m} / \mathrm{s}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Find R. Choose one of the following:

$$
\begin{array}{ll}
\text { A } & 2 v_{0}^{2} / g=2\left(20^{2}+10^{2}\right) / 10=100 \mathrm{~m} \\
\hline \text { B } & v_{0 x} v_{0 y} / g=20 \times 10 / 10=20 \mathrm{~m} \\
\hline \text { C } & 2 v_{0 x} v_{0 y} / g=2 \times 20 \times 10 / 10=40 \mathrm{~m}
\end{array}
$$

Hint: The rising time $t_{\text {rise }}=v_{0 y} / g, v_{0}{ }^{2}=v_{0 x}{ }^{2}+v_{0 y}{ }^{2}=500 \mathrm{~m}^{2}$. Extra: Keep vo fixed and vary θ to find the maximum value of R.

Explanation: $R=v_{0 x}\left(2 t_{\text {rise }}\right)=2 v_{0 x} v_{0 y} / g$. Answer $=C$ Explanation-extra: $R=2 v_{0}{ }^{2} \sin \theta \cos \theta / g=v_{0}{ }^{2} \sin 2 \theta / g$. So the maximum value of R when $v_{0}{ }^{2}$ is fixed is $R=v_{0}{ }^{2} / g=50 \mathrm{~m}$.

Consider a gun at O aiming at a target located at point A. The gun fires at time $t=0$, and at the same time the target begins to fall from rest. Let $v_{O_{x}}=$ $10 \mathrm{~m} / \mathrm{s}$ and $v_{\mathrm{Oy}}=20 \mathrm{~m} / \mathrm{s}$. Also, let $O B=20 \mathrm{~m}$ and $A B=40 \mathrm{~m}$. Find the height $B P$ as the bullet passes the vertical line $A B$:

	A	B	C
$B P($ in m$)$	15	20	30

Hint: In the x direction $t_{O P}=O B / v_{o x}=2 \mathrm{~s}$. To find $B P$, use $y=v_{0 y} t-g t^{2} / 2$ for the motion of the bullet along the y direction. Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Explanation: From point O to point P, the time that the bullet spends traveling vertically is the same as the time it spends traveling from O to P, $t_{B P}=t_{O P}=2 \mathrm{~s}$. Use the equation of motion in the vertical direction: $B P=$ $v_{O y} t_{B P}-g t_{B P}{ }^{2} / 2=(20)(2)-(10 / 2)(2)^{2}=20 \mathrm{~m}$. Answer $=B$.
An alternative method: $B P$ may also be determined by considering the fall of the target. $A P=(1 / 2) g t_{B P}{ }^{2}=(10 / 2)(2)^{2}=20 \mathrm{~m} . B P=A B-A P=$ $40-20=20 \mathrm{~m}$.

Consider the "gun and target" setup of the previous problem, where the initial velocity vector \mathbf{v}_{0}, the length of the base line $O B$, and the height $A B$ are kept fixed. Compare the height $B P$, when the experiment is carried out on Earth to the height $B P^{\prime}$, when the experiment is done on the Moon:

A	B	C
$B P^{\prime}<B P$	$B P^{\prime}=B P$	$B P^{\prime}>B P$

Explanation: Because $v_{0 x}$ and $O B$ are the same for the two cases, the time of flight $t=O B / v_{0 x}$ is also the same. During this time, on Earth the target falls by a distance $A P=(1 / 2) g t^{2}$. Because on the Moon the gravitational acceleration g^{\prime} is less than $g, A P^{\prime}<A P$. In turn, $B P^{\prime}>B P$. Answer $=C$.

A train is moving along a circular track of radius $r=100 \mathrm{~m}$. At point $A, v=$ $|\mathbf{v}|=10 \mathrm{~m} / \mathrm{s}$.
It is slowing down with a tangential deceleration of a magnitude $a_{\text {tangent }}=$ $\left|\mathbf{a}_{\text {tangent }}\right|=1 \mathrm{~m} / \mathrm{s}^{2}$.
Sketch $\mathbf{a}_{\text {total }}$ at A. Which quadrant should it be in?

	A	B	C	D
Quadrant	I	II	III	IV

Extra: Find the magnitude $\left|\mathbf{a}_{\text {totata }}\right|$.
Explanation: From the sketch at point $A, \mathbf{a}_{\text {total }}$ is in the third quadrant.
Answer = C.
Explanation-extra: At point A, centripetal acceleration $\mathbf{a}_{\boldsymbol{c}}=v^{2} / r=$ $10^{2} / 100=1 \mathrm{~m} / \mathrm{s}^{2}$. So a atotal $=$ $\sqrt{a_{c}^{2}+a_{\text {tangent }}^{2}}=\sqrt{1^{2}+1^{2}}=$ $\sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$, or $\approx 1.4 \mathrm{~m} / \mathrm{s}^{2}$.

A simple pendulum consists of a string of length r and a ball attached to its end. When the string makes an angle θ with the vertical and the tangential velocity of the ball is pointing toward the vertical line, determine the corresponding tangential acceleration:

	A	B	C	D
$a_{\text {tangent }}$	$\mathrm{g} \sin \theta$	$\mathrm{g} \cos \theta$	$-\mathrm{g} \sin \theta$	$-\mathrm{g} \cos \theta$

Hint: The angle θ is measured from the vertical line in a counterclockwise manner.

Extra: Compare θ with ϕ in the sketch.
Explanation: From the sketch, we see that the tangential acceleration is pointing toward the vertical line; thus it has a sign opposite to that of θ. Answer $=\mathrm{C}$.
Explanation-extra: Notice in the top sketch, the centrepetal vector $\mathbf{a}_{t}=\mathbf{g}_{r}$ where \mathbf{g}_{r} is shown in the second sketch. Since both vectors \mathbf{a} and \mathbf{g} are diagonals of two rectangles with same sides a_{t} and $g_{r}, \phi=\theta$. One can see this equality visually, if \mathbf{a}_{t} is drawn to scale.

PhysiQuiz

Car A travels at a speed of 30 mph to the right (positive x direction) and car B travels at 10 mph to the left. Consider the velocity $\boldsymbol{v}_{A B}=\boldsymbol{v}_{A B} \boldsymbol{i}$ to be the velocity of car A observed by the driver in car B (in other words, $\boldsymbol{v}_{A B}$ is the velocity of A relative to $B)$. Given the x axis orientation as shown, find $v_{A B}$ and $v_{B A}$.
Choose one (in mph):

	A	B	C	D
$v_{A B}$	20	20	40	40
$v_{B A}$	20	-20	40	-40

Explanation: Notice that the driver of car B sees that car A is moving toward him or her-that is, along the positive x direction with a speed greater than $v_{A}=30 \mathrm{mph}$. The algebra involved is given here:
$v_{A B}=v_{A}-v_{B}=30-(-10)=40 \mathrm{mph}$.
$v_{B A}=v_{B}-v_{A}=-v_{A B}=-40 \mathrm{mph}$. Answer $=D$.

The diagram here shows a boat attempting to cross a river. Assume that the boat's speed relative to the water $\mathrm{v}_{\mathrm{bw}}=10 \mathrm{~m} / \mathrm{s}$ and that the current (the water's speed relative to the Earth) $\mathrm{v}_{\text {we }}=5 \mathrm{~m} / \mathrm{s}$.
Find θ such that the boat crosses the river at a right angle to the bank:

	A	B	C
θ	30°	45°	60°

Extra: What is v_{be}, the boat's speed relative to the Earth?

Explanation: Because $\sin \theta=\mathrm{v}_{\mathrm{we}} / \mathrm{v}_{\mathrm{bw}}=5 / 10=0.5, \theta=30^{\circ}$.
Explanation-extra: $\mathrm{v}_{\mathrm{be}}=\mathrm{v}_{\mathrm{bw}} \cos 30^{\circ} \approx 8.7 \mathrm{~m} / \mathrm{s}$.

