Oscillations

Simple harmonic motion (Section 15.1)

1. SHM: From initial x and v to A and ϕ
2. SHM: Projection of uniform circular motion
3. Mass-spring: The initial phase angle
4. Mass-spring: Projection of circular motion

Kinetic energy and potential energy in SHM (Section 15.3)
5. Total energy of a simple harmonic motion

Simple pendulum and physical pendulum (Section 15.4)
6. Physical pendulum
7. Simple harmonic oscillation of a loop
8. Torsional pendulum

Consider a simple harmonic motion (SHM) along the x axis centered about the origin. The displacement x and velocity v are given by the following (see Eq. (15.4) with δ replaced by ϕ):
$x=A \cos (\omega t+\phi)$ and $v=d x / d t=-A \omega \sin (\omega t+\phi)$.
At $t=0$,
$x=x_{0}$ and $v=v_{0}$.
Determine the amplitude A :

A	
A x_{0}	
B $\frac{\omega}{v_{0}}$	
C $\sqrt{x_{0}^{2}+\left(\frac{\omega}{v_{0}}\right)^{2}}$	

Hint: At $t=0$ there are two equations:
$x_{0}=A \cos \phi$.
$v_{0}=-\omega A \sin \phi . \quad$ (2)
Extra: Express ϕ in terms of x_{0} and v_{0}.
Explanation: This is the situation of two equations (1) and (2) with two unknowns: A and ϕ. Using $\cos ^{2} \phi+\sin ^{2} \phi=1$, we may eliminate ϕ. More specifically, $(A \cos \phi)^{\mathbf{2}}+(A \sin \phi)^{\mathbf{2}}=x_{0}{ }^{2}+\left(v_{0} / \omega\right)^{\mathbf{2}}=A^{\mathbf{2}}$. Solving for A leads to Answer $=C$.
Explanation-extra: Taking the ratio of Eq. (2) and (1) leads to the elimination of $A: \tan \phi=\sin \phi / \cos \phi=-\left(v_{0} / \omega\right) / x_{0}=-v_{0} /\left(\omega x_{0}\right)$.

Consider a simple harmonic motion $(S H M) x=A \cos \theta$ as a projection of a uniform circular motion with $\theta=\omega t+\phi$. If at $t=0, x=0$ and $v=v_{0}>0$, determine ϕ :

	Point on the circle	ϕ
A	A	0
B	B	90°
C	C	180°
D	D	270°

Hint: Consider both of the initial conditions $x=0$ and $v_{0}>0$.
Explanation: Because $x=0$ when $t=0$, we may choose either B or D. Notice that at B the velocity is along the negative x direction. But at D the velocity is along the positive x direction. So D is the correct choice-that is, at $t=0, \theta=\phi=270^{\circ}$. Answer $=\mathrm{D}$.

Consider a mass-spring system in which the mass oscillates according to simple harmonic motion: $x=A \cos (\omega t+\phi)$. At $t=0$ the mass is at the equilibrium position moving to the left. Determine the phase angle ϕ :

	ϕ
A	0
B	$\pi / 2$
C	π
D	$3 \pi / 2$

Hint: $v=d x / d t=-\omega A \sin (\omega t+\phi)$.
Extra: Find an expression for the amplitude A of the periodic motion in terms of the maximum speed v_{0} and the angular velocity ω.

Explanation: From the given information at $t=0, x=0=A \cos \phi$, and $v=-\left|v_{0}\right|=-\omega A \sin \phi$. Because $\cos \phi=0$, we have $\phi=\pi / 2$ or $3 \pi / 2$. From the velocity equation, $\left|v_{0}\right|=\omega A \sin \phi$. This implies that $\sin \phi$ must be positive. In other words, $\phi=\pi / 2$ is the correct choice. Answer $=\mathrm{B}$.
Explanation-extra: The velocity equation gives $A=\left|v_{0}\right| /(\omega \sin \phi)=$ $\left|v_{0}\right| / \omega$.

Consider the mass-spring system shown here at two different time t_{1} and t_{2}, where the mass oscillates according to simple harmonic motion: $x=$ $A \cos (\omega t+\phi)$. The motion is modeled as the projection of the circular motion shown at the bottom. Locate the point on the circle that corresponds to the time t_{1} :

	At t_{1}
A	A_{1}
B	A_{2}

Hint: Consider both the position and the velocity.
Extra: Which point on the circle corresponds to moment B ?
Explanation: At the time t_{1}, as far the location of the mass is concerned, both A_{1} and A_{2} are possible. Because the velocity at moment A is positive, it limits the point A_{2} to be the correct choice. Answer $=B$.
Explanation-extra: At the time t_{2}, the velocity of the mass is negative. By inspection, B_{1} is the correct choice.

Consider a mass-spring system in which the oscillation is described by $x=A \cos \omega t$. The kinetic energy is $K=m(d x / d t)^{2} / 2$. The potential energy is $U=k x^{2} / 2$. The maxima are $K_{\text {max }}=m(\omega A)^{2} / 2$ and $U_{\text {max }}=k A^{2} / 2$. Which choice here gives the total energy of oscillation?

$$
\begin{array}{ll}
\text { A } & E=K_{\max }=U_{\max }=m(\omega A)^{2} / 2 \\
\hline \text { B } & E=K_{\max }+U_{\max }=m(\omega A)^{2} \\
\hline \text { C } & E=K_{\max }+U_{\max }=k A^{2}
\end{array}
$$

Extra: At which point during the oscillation do you expect the mass-spring system to have the most energy?

- When the spring is relaxed (at $x=0$).
- When the spring is fully stretched (at $|x|=x_{\text {max }}$).

Explanation: The total energy $E=K+U$ of the mass-spring system is a conserved quantity. E remains at the same value throughout the oscillations. When the mass passes the point $x=0$, its potential energy is 0 and its kinetic energy is at its maximum. At the maximum stretch, its potential energy is at its maximum and its kinetic energy is 0 . Answer $=\mathrm{A}$.
Explanation-extra: Because E stays the same throughout the oscillations, the total energy of the mass-spring system at $x=0$ is the same as the total energy at $|x|=x_{\text {max }}$.

Consider a physical pendulum of mass m where P is the pivot point and b is the distance between P and the center of gravity. In a small θ approximation, $b_{\perp}=b \sin \theta \approx b \theta$, and the equation of motion is given by
$\tau=l \alpha=l d^{2} \theta / d t^{2}=-m g b \sin \theta \approx-(m g b) \theta$
Determine the period T of this physical pendulum:

A	B	C	D
T	$\sqrt{\frac{l}{\kappa}}$	$2 \pi \sqrt{\frac{1}{m g b}}$	$\sqrt{\frac{\kappa}{l}}$
$2 \pi \sqrt{\frac{m g b}{l}}$			

Hint: For simple harmonic motion,
$d^{2} s / d t^{2}=-\omega^{2} s$
with $\omega=2 \pi / T$.
Extra: Find T of a simple pendulum that has a mass m and a length L.
Explanation: Comparing the equations of motion (1) and (2) with $\theta=s$ implies that $\omega^{2}=\mathrm{mgb} / \mathrm{I}$. This leads to
$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{1}{m g b}}$. Answer $=\mathrm{B}$.
Explanation-extra: For a simple pendulum, $I=m L^{2}$ and $b=L$. So $T=2 \pi \sqrt{\frac{L}{g}}$.
6. Physical Pendulum

The period of a physical pendulum is $T=2 \pi \sqrt{\frac{1}{m g b}}$, where m is the mass, I is the moment of inertia about the pivot point, and b is the distance between the pivot point and the center of gravity. Consider a circular loop oriented vertically where the pivot point P is at the top of the loop (see the sketch). Find b and I for a loop with radius r and mass m :

	A	B	C	D
b	r	r	$2 r$	$2 r$
l	$m r^{2}$	$2 m r^{2}$	$m r^{2}$	$2 m r^{2}$

Hint: Use the parallel axis theorem: $I=I_{\mathbf{c m}}+M D^{\mathbf{2}}$.
Extra: Find the period T of the oscillation of the loop.

Explanation: b is the distance between P and the center, so $b=r$. $I=I_{c m}+M D^{2}=m r^{2}+m r^{2}=2 m r^{2}$. Answer $=B$.
Explanation-extra: $T=2 \pi \sqrt{\frac{1}{m g b}}=2 \pi \sqrt{\frac{2 m r^{2}}{m g r}}=2 \pi \sqrt{\frac{2 r}{g}}$.

A circular disk is suspended by a wire attached at the top of some fixed support. When the disk is twisted through some small angle θ, the twisted wire exerts a restoring torque on the body that satisfies $\tau=l \alpha=l d^{2} \theta / d t^{\mathbf{2}}=$ $-\kappa \theta$, where κ is referred to as the torsion constant of the wire. Find the period of the oscillation:

A	B	C	D	
T	$\sqrt{\frac{l}{\kappa}}$	$2 \pi \sqrt{\frac{l}{\kappa}}$	$\sqrt{\frac{\kappa}{l}}$	$2 \pi \sqrt{\frac{\kappa}{l}}$

Hint: For simple harmonic motion, $d^{2} s / d t^{2}=-\omega^{2} s$, with $\omega=2 \pi / T$.
Explanation: The present equation of motion implies that $\omega^{2}=\kappa / l$, and in turn, $2 \pi \sqrt{\frac{1}{\kappa}}$. Answer $=B$.

