chapter 15 Oscillations

Simple harmonic motion (Section 15.1)

- 1. SHM: From initial x and v to A and ϕ
- 2. SHM: Projection of uniform circular motion
- 3. Mass-spring: The initial phase angle
- 4. Mass-spring: Projection of circular motion

Kinetic energy and potential energy in SHM (Section 15.3)

5. Total energy of a simple harmonic motion

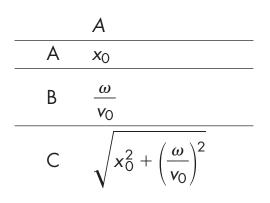
Simple pendulum and physical pendulum (Section 15.4)

- 6. Physical pendulum
- 7. Simple harmonic oscillation of a loop
- 8. Torsional pendulum

Consider a simple harmonic motion (SHM) along the x axis centered about \neg the origin. The displacement x and velocity v are given by the following (see Eq. (15.4) with δ replaced by ϕ):

$$x = A \cos (\omega t + \phi)$$
 and $v = dx/dt = -A\omega \sin(\omega t + \phi)$
At $t = 0$,
 $x = x_0$ and $v = v_0$.

Determine the amplitude A:

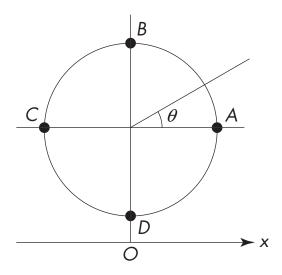


Hint: At t = 0 there are two equations: $x_0 = A \cos \phi$. (1) $v_0 = -\omega A \sin \phi$. (2)

Extra: Express ϕ in terms of x_0 and v_0 .

Explanation: This is the situation of two equations (1) and (2) with two unknowns: A and ϕ . Using $\cos^2 \phi + \sin^2 \phi = 1$, we may eliminate ϕ . More specifically, $(A \cos \phi)^2 + (A \sin \phi)^2 = x_0^2 + (v_0/\omega)^2 = A^2$. Solving for A leads to Answer = C.

Explanation—extra: Taking the ratio of Eq. (2) and (1) leads to the elimination of A: tan $\phi = \sin \phi / \cos \phi = -(v_0/\omega)/x_0 = -v_0/(\omega x_0)$.

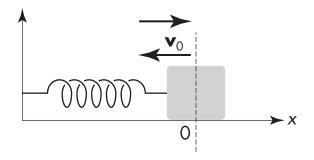


Consider a simple harmonic motion (SHM) $x = A \cos \theta$ as a projection of a uniform circular motion with $\theta = \omega t + \phi$. If at t = 0, x = 0 and $v = v_0 > 0$, determine ϕ :

	Point on the circle	ϕ
A	A	0
В	В	90°
С	С	180°
D	D	270°

Hint: Consider both of the initial conditions x = 0 and $v_0 > 0$.

Explanation: Because x = 0 when t = 0, we may choose either *B* or *D*. Notice that at *B* the velocity is along the negative *x* direction. But at *D* the velocity is along the positive *x* direction. So *D* is the correct choice—that is, at t = 0, $\theta = \phi = 270^{\circ}$. Answer = D.



Consider a mass-spring system in which the mass oscillates according to simple harmonic motion: $x = A \cos(\omega t + \phi)$. At t = 0 the mass is at the equilibrium position moving to the left. Determine the phase angle ϕ :

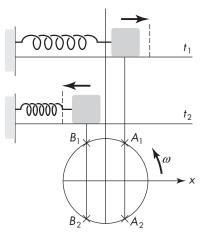
	ϕ
A	0
В	$\pi/2$
С	π
D	3π/2

Hint: $v = dx/dt = -\omega A \sin(\omega t + \phi)$.

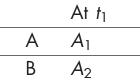
Extra: Find an expression for the amplitude A of the periodic motion in terms of the maximum speed v_0 and the angular velocity ω .

Explanation: From the given information at t = 0, $x = 0 = A \cos \phi$, and $v = -|v_0| = -\omega A \sin \phi$. Because $\cos \phi = 0$, we have $\phi = \pi/2$ or $3\pi/2$. From the velocity equation, $|v_0| = \omega A \sin \phi$. This implies that $\sin \phi$ must be positive. In other words, $\phi = \pi/2$ is the correct choice. Answer = B.

Explanation—extra: The velocity equation gives $A = |v_0|/(\omega \sin \phi) = |v_0|/\omega$.



Consider the mass-spring system shown here at two different time t_1 and t_2 , where the mass oscillates according to simple harmonic motion: $x = A \cos(\omega t + \phi)$. The motion is modeled as the projection of the circular motion shown at the bottom. Locate the point on the circle that corresponds to the time t_1 :



Hint: Consider both the position and the velocity.

Extra: Which point on the circle corresponds to moment B?

Explanation: At the time t_1 , as far the location of the mass is concerned, both A_1 and A_2 are possible. Because the velocity at moment A is positive, it limits the point A_2 to be the correct choice. Answer = B.

Explanation—extra: At the time t_2 , the velocity of the mass is negative. By inspection, B_1 is the correct choice. Consider a mass-spring system in which the oscillation is described by $x = A \cos \omega t$. The kinetic energy is $K = m(dx/dt)^2/2$. The potential energy is $U = kx^2/2$. The maxima are $K_{max} = m(\omega A)^2/2$ and $U_{max} = kA^2/2$. Which choice here gives the total energy of oscillation?

A
$$E = K_{max} = U_{max} = m(\omega A)^2/2$$

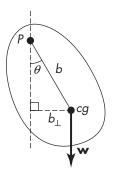
B $E = K_{max} + U_{max} = m(\omega A)^2$
C $E = K_{max} + U_{max} = kA^2$

Extra: At which point during the oscillation do you expect the mass-spring system to have the most energy?

- When the spring is relaxed (at x = 0).
- When the spring is fully stretched (at $|x| = x_{max}$).

Explanation: The total energy E = K + U of the mass-spring system is a conserved quantity. *E* remains at the same value throughout the oscillations. When the mass passes the point x = 0, its potential energy is 0 and its kinetic energy is at its maximum. At the maximum stretch, its potential energy is at its maximum and its kinetic energy is 0. Answer = A.

Explanation—extra: Because *E* stays the same throughout the oscillations, the total energy of the mass–spring system at x = 0 is the same as the total energy at $|x| = x_{max}$.



Consider a physical pendulum of mass *m* where *P* is the pivot point and *b* is the distance between *P* and the center of gravity. In a small θ approximation, $b_{\perp} = b \sin \theta \approx b\theta$, and the equation of motion is given by

$$\tau = l\alpha = ld^2\theta/dt^2 = -mgb \sin \theta \approx -(mgb)\theta$$
 (1)

Determine the period T of this physical pendulum:

$$\begin{array}{c|ccc} A & B & C & D \\ \hline T & \sqrt{\frac{l}{\kappa}} & 2\pi\sqrt{\frac{l}{mgb}} & \sqrt{\frac{\kappa}{l}} & 2\pi\sqrt{\frac{mgb}{l}} \end{array}$$

Hint: For simple harmonic motion,

 $d^2s/dt^2 = -\omega^2 s$ (2) with $\omega = 2\pi/T$.

Extra: Find T of a simple pendulum that has a mass m and a length L.

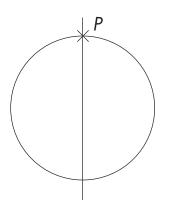
Explanation: Comparing the equations of motion (1) and (2) with $\theta = s$ implies that $\omega^2 = mgb/l$. This leads to

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{mgb}}$$
. Answer = B.

Explanation—extra: For a simple pendulum, $I = mL^2$ and b = L. So

$$T=2\pi\sqrt{\frac{l}{g}}.$$

132 PhysiQuiz 6. Physical Pendulum

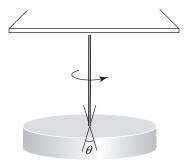


The period of a physical pendulum is $T = 2\pi \sqrt{\frac{l}{mgb}}$, where *m* is the mass, *l* is the moment of inertia about the pivot point, and *b* is the distance between the pivot point and the center of gravity. Consider a circular loop oriented vertically where the pivot point *P* is at the top of the loop (see the sketch). Find *b* and *l* for a loop with radius *r* and mass *m*:

Hint: Use the parallel axis theorem: $I = I_{cm} + MD^2$. **Extra:** Find the period T of the oscillation of the loop.

Explanation: b is the distance between P and the center, so b = r. $I = I_{cm} + MD^2 = mr^2 + mr^2 = 2mr^2$. Answer = B. **Explanation—extra:** $T = 2\pi \sqrt{\frac{1}{mgb}} = 2\pi \sqrt{\frac{2mr^2}{mgr}} = 2\pi \sqrt{\frac{2r}{g}}$.

7. Simple Harmonic Oscillation of a Loop PhysiQuiz 133



A circular disk is suspended by a wire attached at the top of some fixed support. When the disk is twisted through some small angle θ , the twisted wire exerts a restoring torque on the body that satisfies $\tau = l\alpha = ld^2\theta/dt^2 = -\kappa\theta$, where κ is referred to as the *torsion constant* of the wire. Find the period of the oscillation:

$$\begin{array}{c|ccc} A & B & C & D \\ \hline T & \sqrt{\frac{l}{\kappa}} & 2\pi\sqrt{\frac{l}{\kappa}} & \sqrt{\frac{\kappa}{l}} & 2\pi\sqrt{\frac{\kappa}{l}} \end{array}$$

Hint: For simple harmonic motion, $d^2s/dt^2 = -\omega^2 s$, with $\omega = 2\pi/T$.

Explanation: The present equation of motion implies that $\omega^2 = \kappa/l$, and in turn, $2\pi \sqrt{\frac{l}{\kappa}}$. Answer = B.