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Abstract

The inclusion of spatial smoothing in finite-dimensional particle-based Hamiltonian reduc-
tions of the Vlasov equation are considered. In the context of the Vlasov-Poisson equation
(and other mean-field Lie-Poisson systems), smoothing amounts to a convolutive regular-
ization of the Hamiltonian. This regularization may be interpreted as a change of the inner
product structure used to identify the dual space in the Lie-Poisson Hamiltonian formula-
tion. In particular, the shape function used for spatial smoothing may be identified as the
kernel function of a reproducing kernel Hilbert space whose inner product is used to define
the Lie-Poisson Hamiltonian structure. It is likewise possible to introduce smoothing in the
Vlasov-Maxwell system, but in this case the Poisson bracket must be modified rather than
the Hamiltonian. The smoothing applied to the Vlasov-Maxwell system is incorporated by
inserting smoothing in the map from canonical to kinematic coordinates. In the filtered
system, the Lorentz force law and the current, the two terms coupling the Vlasov equation
with Maxwell’s equations, are spatially smoothed.
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1 Introduction

When studying the dynamics of infinite-dimensional Hamiltonian systems, it is frequently
advantageous to find flows which are described by a finite amount of information. This is
the idea behind a finite-dimensional Hamiltonian reduction. A particular kind of Hamil-
tonian reduction relevant to the study of fluids and plasmas is a particle-based reduction
which reduces the model to a system of ordinary differential equations for the particle char-
acteristics. The earliest kind of particle-based reduction of an infinite-dimensional Hamil-
tonian system (although not recognized as such when first introduced) is the point-vortex
method for two-dimensional incompressible flows; see [12] and references therein for a brief
historical account. The Hamiltonian structure of the two-dimensional vorticity equation
is discussed in [17, 20], and one may show that its treatment via point-vorticies may be
understood as a finite-dimensional Hamiltonian reduction. Moreover, many incompressible
two-dimensional fluid models, such as the Charney-Hasegawa-Mima equation [7, 24], are
likewise amenable to treatment with point-vortex methods. Particle-based Hamiltonian re-
ductions of the Vlasov equation are relevant in computational plasma physics because the
particle-in-cell (PIC) method [4, 9], when appropriately formulated, may in certain cases
be interpreted as a particle-based reduction of the continuous Hamiltonian structure [13].
Particle-based representations of the two-dimensional vorticity field or of the Vlasov phase-
space density make an Ansatz that these fields may be represented as a weighted sum of
Dirac delta functions. This paper considers the consequences of spatially smoothing this
representation via convolution with a smooth kernel function. While this paper is con-
cerned with the general concept of regularizing particle-based Hamiltonian reductions of
the Vlasov equation and related models, the motivation for doing so is primarily as a tool
for the analysis and design of smoothed PIC methods.

While the PIC method is convenient in that it discretizes the high-dimensional phase
space distribution function via a particle-based representation while treating the electro-
magnetic/electrostatic fields on a grid, therefore avoiding the challenges associated with
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attempting a grid-based discretization of a high-dimensional field and yielding a method
highly amenable to parallelization, this Monte-Carlo-type discretization of the phase space
distribution function suffers from substantial statistical noise. Many PIC methods there-
fore employ some form of smoothing. The smoothing is typically simply interpreted as
a regularization step when distributing the particle information to the grid to compute
the electrostatic potential from the charge density. A recent development in the design of
PIC methods are structure-preserving PIC methods which, in some manner, retain Hamil-
tonian or variational structure of the continuous problem, e.g. [8, 13, 23]. See [22] for a
review of structure-preserving methods in plasma physics. If spatial smoothing is applied
to a structure-preserving PIC method without considering its impact on the Hamiltonian
structure, it is likely that the method no longer be structure-preserving. This work seeks
to clarify structure-preserving methods of adding spatial smoothing to PIC methods.

Smoothed particle reductions of the Vlasov-Poisson system amount to introducing a
small-scale regularization of the Hamiltonian. The typical formulation of smoothed PIC
methods for the Vlasov-Poisson equation may be shown to correspond with an exact re-
duction not of the Vlasov-Poisson equation, but rather of a Hamiltonian system in which
the Hamiltonian has been regularized by convolving the phase-space distribution with a
smoothing kernel while the Poisson bracket remains the same. This regularized model
moreover may be equivalently written as a Lie-Poisson Hamiltonian system built from the
inner product of a reproducing kernel Hilbert space (RKHS) associated with the sym-
metric positive definite smoothing kernel. This strategy generalizes to a broad class of
mean-field Hamiltonian models [18] suggesting smoothed particle reductions for a broad
class of models of fluids and plasma.

The Hamiltonian structure of the Vlasov-Maxwell equation may likewise be spatially
smoothed such that its particle-based Hamiltonian reduction is regularized. However, the
approach is quite different to that which was used for the Vlasov-Poisson equation. Whereas
the Vlasov-Poisson equation adds smoothing by regularizing the Hamiltonian, the Vlasov-
Maxwell equation is regularized by adding smoothing to the Poisson bracket. This bracket
satisfies the Jacobi identity as it may be derived via a coordinate change from a bracket in
canonical form. The filtered Vlasov-Maxwell Hamiltonian structure may be used to derive
a PIC discretization based on the Geometric ElectroMagnetic PIC (GEMPIC) method [13]
which is an exact finite dimensional Hamiltonian reduction and that this PIC method is
identical to one which was formerly derived using a discretized action principle formulation
of the Vlasov-Maxwell system [6].

2 On particle-based Hamiltonian reductions

As this work discusses smoothed particle-based Hamiltonian reductions of certain Hamilto-
nian field theories from the physics of fluids and plasmas, it is helpful to first introduce the
properties of a Hamiltonian system, the definition of a Hamiltonian reduction, and then to
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provide a brief pedagogical illustration of the notion of a finite-dimensional particle-based
Hamiltonian reduction of two-dimensional incompressible fluids.

Hamiltonian systems are described by:

• a manifold M

• a Poisson bracket, {·, ·} : C∞(M)× C∞(M) → C∞(M)

• an energy functional, the Hamiltonian, H : C∞(M) → R.

The evolution for any F ∈ C∞(M) is given by

Ḟ = {F,H} . (1)

Given another Poisson manifold, (M, [·, ·]), a Hamiltonian reduction is prescribed by a map
Π : M → M such that

[F ◦ Π, G ◦ Π] = {F,G} ◦ Π . (2)

If dim(M) = ∞ and dim(M) < ∞, this is a finite-dimensional Hamiltonian reduction.
Two-dimensional incompressible fluids enjoy a Hamiltonian formulation [17, 20]. Let

Ω ⊂ R
2. A two-dimensional incompressible fluid may be described as follows:

∂tω + v · ∇ω = 0 , where ω = ∆φ = ∂2
xφ+ ∂2

yφ , and v = ∇⊥φ = (−∂yφ, ∂xφ) . (3)

This is Hamiltonian with

H[ω] = −
1

2

∫

Ω

ωφd2x = −
1

2

∫

Ω

ω∆−1ωd2x , and {F,G} =

∫

Ω

ω

[

δF

δω
,
δG

δω

]

d
2
x . (4)

This model admits an exact finite-dimensional Hamiltonian reduction via point-vorticies.
Suppose the vorticity field may be represented as

ω(x, y) =

Np
∑

a=1

Γaδ(xa − x)δ(ya − y) . (5)

Plugging in this Ansatz yields a Hamiltonian and Poisson bracket describing the evolution
of the centers of each point vortex:

[f, g] =

Np
∑

a=1

Γ−1
a

(

∂f

∂xa

∂g

∂ya
−

∂g

∂xa

∂f

∂ya

)

, (6)

and

H
(

{xα, yα}
Np

α=1

)

=
1

4π

Np
∑

α=1

Np
∑

β=1

β>α

ΓαΓβ log
(

(xα − xβ)
2 + (yα − yβ)

2
)

. (7)

This Hamiltonian arises from the Green’s function for the Laplacian in two dimensions
because one must solve ∆−1ω to compute the energy. A spatially smoothed particle-based
reduction would regularize ω prior to inverting the Laplacian.
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3 The Hamiltonian structure of the Vlasov-Poisson equation

The Vlasov-Poisson equation has a remarkably similar Hamiltonian structure to two-
dimensional vorticity. For this reason, this model also admits particle-based Hamiltonian
reductions. Its Lie-Poisson Hamiltonian structure, described in [19], is as follows:

{F,G} =

∫

f

[

δF

δf
,
δG

δf

]

dxdv ,

and H[f ] =
1

2

∫

|v|2f(x, v)dxdv +
1

2

∫

φ(x)f(x, v)dxdv , (8)

where −∆xφ(x) =
∫

f(x, v)dv, and the finite dimensional Poisson bracket is defined

[f, g] = ∇xf · ∇vg −∇xg · ∇vf . (9)

Being a Lie-Poisson system, one may write this more abstractly in terms of the Lie algebra
structure g. Let g

∗ be the dual space to g and denote the abstract duality pairing by
〈·, ·〉 : g∗ × g → R. Then assuming the phase space distribution function is a member of
the dual space, f ∈ g

∗, one may write

{F,G} =

〈

f,

[

δF

δf
,
δG

δf

]〉

and H[f ] = 〈f,V(z, f)〉 (10)

where V : R6 × g
∗ → g is a primative of the pointwise energy function, E : R6 × g

∗ → g,
such that

δH

δf
= E(z, f) . (11)

The Hamiltonian for the Vlasov equation is obtained by taking the moment of this primitive
energy function. A detailed description of the Lie algebra structure may be found in [16].
One generally takes g to be contained in some Hilbert space, e.g. g ⊂ L2, and identify
g
∗ ≃ g through the Riesz representation theorem replacing 〈·, ·〉 with (·, ·) : g× g → R, the

inner product structure on g. In the case of the Vlasov-Poisson system, the inner product
is taken to be the L2 inner product and the pointwise energy is given by

E(z, f) =
1

2
|v|2 −∆−1

x

∫

fdv . (12)

This work considers the consequences of letting the inner product structure be that asso-
ciated with some RKHS, H (a brief summary of the essential properties of RKHS will be
discussed subsequently). That is, take f ∈ H, and

{F,G} =

(

f,

[

δF

δf
,
δG

δf

])

H

and H[f ] = (f,V(z, f))H , (13)
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where the functional derivatives in this formulation are taken to mean

〈DF [f ], δf〉 =

(

δF

δf
, δf

)

H

. (14)

This is beneficial because one may take f ∈ H to be a sum of delta functions in the RKHS
which are precisely the reproducing kernel functions. Hence, this provides a convenient
framework for interpreting smoothed PIC methods in a Hamiltonian context.

4 Properties of the kernel smoothing operator

The smoothing of a distribution function via convolution with a kernel operator may be
thought of as a coordinate change provided the smoothing kernel possess appropriate prop-
erties. Consider the symmetric Fredholm operator L : L2 → R(L) defined by convolution
with a symmetric kernel function K(z|z′):

f̄ := Lf =

∫

K(z|z′)f(z′)dz′ = Kz ∗ f , (15)

where Kz = K(z|·). Then L−1 : R(L) → L2 exists and L† = L. Note, one cannot in
general write L−1 explicitly as it is the solution of an integral equation, but it frequently
takes the form of a pseudodifferential operator (e.g. if K is the Green’s function for that
operator). Being the range of a convolution operator, R(L) is a space of functions with the
regularity of K. Further, there is a simple criterion which guarantees that R(L) consist of
square integrable functions.

Proposition 1. Let k ∈ L1, and suppose the kernel function is isotropic: K(z|z′) =
k(z − z′). Then R(L) ⊂ L2.

Proof: This is a simple consequence of Young’s inequality:

‖f̄‖L2 = ‖k ∗ f‖L2 ≤ ‖k‖L1‖f‖L2 . (16)

It shall be assumed in general that k ∈ L1 and K(z|z′) = k(z − z′). Further, it is conve-
nient to let

∫

kdz = 1 since it will be necessary that the kernel function in some manner
approximate the delta function. It is not necessary to insist that the kernel be positive,
although this will frequently be the case.

Under appropriate conditions, one may equipH := R(L) with a Hilbert space structure.
To this end, assume that L−1 is positive definite. Define an inner product structure (·, ·)H :
H×H → R such that

(f, g)H = (f,L−1g)L2 . (17)
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Since, as shown above, H ⊂ L2, this is well defined. That this is an inner product follows
from the assumption that L−1 is positive definite. One should further demonstrate com-
pleteness of this Hilbert space. However, it is easier to differ this consideration until the
following section in which this inner product space is identified with the RKHS associated
with the smoothing kernel.

Example 1. To make this discussion concrete, consider the following example in one

spatial dimension. Suppose the smoothing kernel is a Laplace distribution:

K(x|x′) = k(x− x′) =
1

2α
exp

(

−
|x− x′|

α

)

, (18)

for α > 0. One may show that
∫

R
k(x)dx = 1. Letting Lf = k ∗ f , one may show

L−1 = 1−α2∂2
x. Hence, in this case, the Hilbert space is a modified H1 Sobolev space with

inner product

(f, g)H = (f, g)L2 + α2(∂xf, ∂xg)L2 . (19)

While it is possible to build the theory entirely in terms of the classical theory of integral
operators, one may leverage the theory of RKHS to show that any symmetric positive
definite smoothing kernel may be used. Given any symmetric positive definite kernel K,
the Moore-Aronszajn theorem [3] implies there exists an RKHS, denoted (H, (·, ·)H), for
which K is the reproducing kernel. That is, ∀f ∈ H, f(z) = (Kz, f)H where Kz = K(z|·).
In other words, Kz ∈ H acts as the delta function in the RKHS. What makes RKHS special
is that the delta function is a member of the Hilbert space itself; contrast this with L2 where
the Dirac delta function is not a member of the Hilbert space but rather a functional whose
domain is a strict subset of the Hilbert space. Stating the theory using the language of
RKHS simplifies the discussion and notation somewhat and, as will be seen, the fact that
convolution with the kernel function is the pointwise evaluation operator in the RKHS
provides a convenient interpretation of taking moments of the phase space distribution in
a filtered PIC method.

One may connect the RKHS perspective with the previous formulation in terms of
integral operators by specializing to kernels of the form K(z|z′) = k(z − z′). Recalling the
definition Lf = k ∗ f and defining

(f, g) := (f,L−1g)L2 , (20)

one finds that
(Kz, f) = (Kz ,L

−1f)L2 = LL−1f = f . (21)

By the uniqueness of the RKHS associated with a given kernel, it follows that (·, ·) ≡ (·, ·)H.
Hence, one need not be concerned with the precise form of L−1, or the inner product which
is weighted by inverse integral operator. It is enough to know that there does exist an
appropriate Hilbert space for any symmetric positive definite kernel one chooses.
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5 A filtered particle-based reduction of the Vlasov-Poisson

bracket

A Vlasov-Poisson PIC-method which uses spatial smoothing may be thought of as an
exact reduction of the continuous Poisson bracket in an appropriate Hilbert space. Define
f̄ where

f̄ = Lf = k ∗ f , where f ∈ L2 . (22)

The “bar” notation will be consistently used to denote distribution functions in the filtered
space, H. To begin, it is necessary to give several tools to facilitated functional calculus in
the RKHS.

Lemma 1. Let (H, (·, ·)H) be the RKHS associated with the symmetric positive definite

kernel K. Define the filtered particle representation of a distribution function by

f̄(z) =

Np
∑

a=1

waK(z|za) . (23)

Denote Z = (z1, z2, . . . , zNp). Then

(f̄ , g)H =

Np
∑

a=1

wag(za) . (24)

Further, the first variation of f̄ with respect to Z, Df̄(Z) ·δZ ∈ H, acts on g ∈ H according

to
(

Df̄ [Z] · δZ, g
)

H
= −

∑

a

wa∇zg(za) · δza . (25)

Proof: That

(f̄ , g)H =

Np
∑

a=1

wag(za) (26)

follows from the fact that the inner product is bilinear and Kza is the evaluation functional.
The weak derivative of Kza is obtained by integrating by parts:

|(Kza+δza −Kza −∇zKza · δza, g)H| = |(Kza+δza −Kza , g)H + (Kza ,∇zg · δza)H|

= |g(za + δza)− g(za) +∇zg(za) · δzα| = O(|δza|) ∀g ∈ H , (27)

where g is assumed to be differentiable. The result follows from the linearity of the deriva-
tive operator.

Comment 1. One can see that taking moments with respect to the phase space distribu-

tion using the RKHS inner product simply corresponds to pointwise evaluation. Moreover,

derivatives of this evaluation operator in an RKHS behave exactly as derivatives of the

Dirac delta function: (δ′(x− xa), g)L2 = −g′(xa).
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Given F̄ : H → R, the functional derivative DF̄ [f̄ ] : H → R is defined

‖F̄ [f̄ + δf̄ ]− F̄ [f̄ ]−DF̄ [f̄ ]δf̄‖H = ‖δf̄‖H , (28)

where δf̄ ∈ H is arbitrary and ‖ · ‖H is the Hilbert space norm. One may in turn identify
the functional derivative operator with an element of H using the Riesz representation
theorem:

DF̄ [f̄ ]δf̄ =

(

δHF̄

δf̄
, δf̄

)

H

. (29)

Hence, δHF̄ /δf̄ ∈ H.

Comment 2. The notation δHF̄ /δf̄ is used to refer to the identification of the functional

derivative using the H inner product whereas δF/δf will denote the more usual identifica-

tion with the L2 inner product.

The H functional derivative may be related to the standard L2 functional derivative as
follows. Let F̄ [f̄ ] = F [f ]. Then since f̄ = Lf , one finds

DF̄ [f̄ ]δf̄ =

(

δHF̄

δf̄
, δf̄

)

H

=

(

δHF̄

δf̄
,L−1δf̄

)

L2

=

(

δF

δf
, δf

)

L2

= DF [f ]δf . (30)

Hence, δHF̄ /δf̄ ∈ H, and it is related to the standard L2 functional derivative via

δHF̄

δf̄
= L

δF

δf̄
and

δHF̄

δf̄
=

δF

δf
. (31)

These results may be used to rewrite the Vlasov-Poisson bracket in terms of the RKHS
inner product structure. To begin, recall the standard formulation of the Vlasov-Poisson
bracket:

{F,G} =

∫

f

[

δF

δf
,
δG

δf

]

dz =

(

f,

[

δF

δf
,
δG

δf

])

L2

(32)

where [·, ·] is the finite dimensional canonical bracket. From this, one immediately obtains
the following result.

Proposition 2. Let f̄ = Lf . Then

{F,G} =

(

f,

[

δF

δf
,
δG

δf

])

L2

=

(

f̄ ,

[

δHF̄

δf̄
,
δHḠ

δf̄

])

H

=: {F̄ , Ḡ}H . (33)

As the two different representations are really only a change of variables, the Jacobi identity
is satisfied when the bracket is written with respect to the RKHS inner product structure.

Consider finite dimensional reductions of the Poisson bracket using a smoothed particle
representation.
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Lemma 2. Let f̄ be the filtered-PIC representation as defined in the previous lemma, and

let F̄ : H → R. Moreover, let F̄ [f̄ ] = Fp(Z). Then

∂Fp

∂za
= −wa∇z

δHF̄

δf̄

∣

∣

∣

∣

za

. (34)

Proof: By definition, one has

DF̄ [f̄ ]δf̄ =

(

δHF̄

δf̄
, δf̄

)

H

=
∑

a

∂Fp

∂za
· δza . (35)

The chain rule implies

(

δF̄

δf̄
, δf̄

)

H

=
∑

a

(

δF̄

δf̄
,Df̄ · δza

)

H

= −
∑

a

(

wa ∇z
δF̄

δf̄

∣

∣

∣

∣

za

· δza

)

. (36)

It follows that

∑

a

[

∂Fp

∂za
· δza

]

= −
∑

a

[

wa∇z
δF̄

δf̄

∣

∣

∣

∣

za

· δza

]

=⇒
∂Fp

∂za
= −wa∇z

δF̄

δf̄

∣

∣

∣

∣

za

. (37)

From this, one immediately has the following result.

Proposition 3. Let {F̄ , Ḡ}H be the Vlasov-Poisson bracket as expressed in H, and let

f̄ =
∑

a waKza(z). Then

{F̄ , Ḡ}H =

(

f̄ ,

[

δHF̄

δf̄
,
δHḠ

δf̄

])

H

=
∑

a

1

wa

[

∂Fp

∂Z
,
∂Gp

∂Z

]

(38)

where ∂Fp/∂Z =
(

∂Fp/∂z1, . . . , ∂Fp/∂zNp

)

.

The results in this section should not be surprising as it was previously known that
a representation of the distribution function in terms of delta functions yields an exact
reduction of the Vlasov-Poisson bracket. One has merely changed coordinates via a con-
volution integral operator. What is gained from this effort will be seen in the next section
which shows that filtered-PIC methods are exact reductions of a modified Vlasov-Poisson
equation.

6 A Hamiltonian filtered-PIC formulation for the Vlasov-

Poisson equation

This section considers a generic filtered-PIC method for the Vlasov-Poisson equation and
show that this may be thought of as an exact reduction of a suitably modified continuous
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Vlasov-Poisson system. For convenience, all physical constants have been set equal to
unity. Consider the particle discretization

{

ẋa = va

v̇a = ∇xaφ(xa) ,
∀a ∈ {1, . . . , Np} , (39)

where −∆xaφ(xa) =
∑

b6=awbKxa(xb) and Kxa is a smoothing kernel for the spatial portion
of the distribution function. Notice that the Poisson equation has not been discretized. One
may use a finite difference or finite element discretization to do so. It is more convenient
to leave the method employed in the Poisson solver unspecified as the precise method used
is not important for the purposes of this discussion.

The shape function for the distribution function employed by this particle method is

f̄(x, v) =
∑

a

waK(x|xa)δ(v − va) , (40)

and the RKHS is one in which the spatial dimensions of the L2 inner product have been
weighted by the inverse convolution operator, but not the velocity dimensions. This is done
because it is conventional to smooth in the spatial dimensions only, but there is nothing
to prevent smoothing over all of phase-space. It would be worth studying smoothing in
velocity space in a future work. That is,

(f̄ , ḡ)H =

∫

f̄L−1ḡdxdv (41)

where Lf =
∫

K(x|x′)δ(v− v′)f(x′, v′)dx′dv′. First, a Hamiltonian formulation for a regu-
larized Vlasov-Poisson system in the RKHS is derived, and then this model is subsequently
shown to reduce to the above filtered-PIC method.

The Hamiltonian for the continuous Vlasov-Poisson system is

H[f ] =
1

2

∫

(|v|2 + φ)fdxdv , where −∆xφ =

∫

fdv . (42)

It is convenient to rewrite the potential energy as follows:

1

2

∫

φfdz = −
1

2

∫

∆−1
x f(x, v′)f(x, v)dv′dxdv

= −
1

2

(
∫

fdv,∆−1
x

∫

fdv

)

L2
x

,
(43)

where L2
x is the spatial L2 inner product. One may abstractly write the Hamiltonian as

H[f ] = (K(z) +O(z)f, f)L2 , (44)
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where the pointwise kinetic energy is given by K(z) = 1
2
|v|2, and the potential energy is a

quadratic form with the self-adjoint operator O(z)f = 1

2
∆−1

x

∫

fdv. The pointwise energy
is E(z, f) = δH/δf = K(z)+∆−1

x

∫

fdv. Hence, one can see that the energy is obtained by
taking a moment of a pointwise energy primitive with respect to the distribution function.

If one were to make a proper change of coordinates f 7→ f̄ , one would find that the
potential energy becomes

−
1

2

(∫

fdv,∆−1
x

∫

fdv

)

L2
x

7→ −
1

2

(∫

L−1f̄dv,∆−1
x

∫

L−1f̄dv

)

L2
x

. (45)

However, to recover the above filtered-PIC method, one instead redefines the filtered po-
tential energy to be

−
1

2

(∫

L−1f̄dv,∆−1
x

∫

f̄dv

)

L2
x

= −
1

2

(

f̄ ,∆−1
x

∫

f̄dv

)

H

. (46)

Hence, the filtered Hamiltonian is defined to be

H̄F [f̄ ] =

(

1

2

[

|v|2 −∆−1
x

∫

f̄dv

]

, f̄

)

H

=
(

K(z) +O(z)f̄ , f̄
)

H

=
1

2

∫ (

|v|2 −∆−1
x

∫

f̄(x, v′)dv′
)

L−1f̄(x, v)dxdv .

(47)

Notice that, H̄F [f̄ ] 6= H[f ] despite the formal similarity of the two expressions:

H[f ] = (K(z) +O(z)f, f)L2 , and H̄F [f̄ ] =
(

K(z) +O(z)f̄ , f̄
)

H
. (48)

One has made the formal change of rewriting the Hamiltonian functional by changing the
inner product structure while keeping the pointwise energy function the same, but this is
not a simple coordinate change. Assuming the smoothing kernel is an approximation of
the Dirac delta, this modification is a regularization at small scales. Hence, Hamiltonian
structure of the modified Vlasov equation in the RKHS may be written

{F̄ , Ḡ}H =

(

f̄ ,

[

δHF̄

δf̄
,
δHḠ

δf̄

])

H

and H̄F [f̄ ] =
(

K(z) +O(z)f̄ , f̄
)

H
. (49)

The equations of motion are then obtained in the usual manner: i.e. for any functional F̄

of the filtered phase space distribution, f̄ , its evolution is given by ˙̄F = {F̄ , H̄F}H.
It is necessary that the Laplacian be self-adjoint with respect to the RKHS inner product

for the potential energy to behave analogously in the RKHS to how it does in the standard
L2 space. The following lemma provides conditions which guarantee this.

Lemma 3. The inverse Laplacian is self-adjoint with respect to this inner product if the

spatial smoothing kernel is isotropic and symmetric, i.e. if K(x, x′) = k(|x− x′|).
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Proof: If the kernel is isotropic one has

K(x, x′) = k(|x− x′|) =⇒ ∆−1
x k(|x− x′|) = ∆−1

x′ k(|x− x′|) . (50)

Now, consider f̄ , ḡ ∈ H, and let f̄ = Lf and ḡ = Lg. Then

(f̄ ,∆−1
x ḡ)H = (Lf,∆−1

x Lg)H = (f,∆−1
x Lg)L2

=

∫

f(x, v)∆−1
x k(|x− x′|)δ(v − v′)g(x′, v′)dxdvdx′dv′

=

∫

∆−1

x′ k(|x
′ − x|)δ(v′ − v)f(x, v)g(x′, v′)dxdvdx′dv′

= (∆−1
x Lf, g)L2 = (∆−1

x f̄ , ḡ)H .

(51)

As the kernel was already assumed to be symmetric and isotropic, this does not impose
any further restrictions on the choice of kernel. The following result immediately follows:

Proposition 4. Suppose the kernel function for the RKHS, H is isotropic. Then

δHH̄F

δf̄
=

1

2
|v|2 −∆−1

x

∫

f̄dv . (52)

Proof: This follows from the fact that δHF̄ /δf̄ = LδF/δf̄ , the previous lemma, and the
fact that

H̄F [f̄ ] =
1

2

∫ (

|v|2 −∆−1
x

∫

f̄(x, v′)dv′
)

L−1f̄(x, v)dxdv . (53)

From this, one obtains the equations of motion implied by the filtered Vlasov Hamiltonian
and Poisson bracket.

Proposition 5. The continuous filtered Vlasov Hamiltonian structure yields the equation

of motion

∂tf =

[

f,
1

2
|v|2 −∆−1

x

∫

Lfdv

]

, (54)

where f is the unfiltered distribution function.

Proof: For any functional F̄ of f̄ , one has

˙̄F = {F̄ , H̄}H =

(

f̄ ,

[

δHF̄

δf̄
,
1

2
|v|2 −∆−1

x

∫

f̄dv

])

H

=

(

f,

[

δF

δf
,
1

2
|v|2 −∆−1

x

∫

f̄dv

])

L2

=

(

δF

δf
,

[

f,
1

2
|v|2 −∆−1

x

∫

f̄dv

])

L2

= Ḟ .

(55)
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The result follows.
Hence, the Hamiltonian structure reformulated in the RKHS yields a Vlasov equation
in which the charge distribution has been spatially smoothed prior to solving Poisson’s
equation.

This continuous Hamiltonian structure yields an exact reduction which corresponds
with the generic filtered particle method when representing the distribution function as a
sum of spatially filtered particles.

Proposition 6. Let the filtered distribution function take the form f̄ =
∑

a wak(|xa −
x|)δ(v − va) where

∫

kdx = 1. Then the reduced particle Hamiltonian is given by

Hp(X,V ) =
1

2

Np
∑

a=1

wa|va|
2 −

1

2

Np
∑

a,b=1

a6=b

wawbV (|xa − xb|) , (56)

where the potential is given by V = ∆−1
x k.

Proof: That the kinetic energy becomes

1

2

(

f̄ , |v|2
)

H
=

1

2

Np
∑

a=1

wa|va|
2 (57)

is clear. On the other hand, the potential energy becomes

−
1

2

(

∆−1
x

∫

fdv, f

)

H

= −
1

2

(

∆−1
x

∫

fdv,L−1f

)

L2

= −
1

2

Np
∑

a,b=1

wawb∆
−1
x Kxa(x)|x=xb

(58)
since L−1f =

∑

a waδ(x − xa)δ(v − va). But V (xa − xb) = ∆−1
x Kxa(x)|x=xb

is a constant
when a = b. Hence, these do not contribute to the dynamics and their contributions to the
sum may safely be neglected.

As shown in the previous section, letting F̄ [f̄ ] = Fp(Z), the Poisson bracket simply
becomes

{F̄ , Ḡ}H =

(

f̄ ,

[

δHF̄

δf̄
,
δHḠ

δf̄

])

H

=
∑

a

1

wa

[

∂Fp

∂Z
,
∂Gp

∂Z

]

=: [Fp, Gp] . (59)

Hence, the equations of motion associated with this bracket and Hamiltonian are
{

ẋa = va

v̇a = ∇xaφ(xa) ,
∀a ∈ {1, . . . , Np} , (60)

where −∆xaφ(xa) =
∑

b6=a wbk(|xa − xb|). This is identical to the generic filtered particle
method presented at the beginning of this section.
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Example 2. Consider the following example in (x, v) ∈ R × R where the smoothing ker-

nel is the Laplace-type distribution function discussed in a previous example. The filtered

distribution function is then

f̄(x, v) =

Np
∑

a=1

wa

2α
exp

(

−
|x− xa|

α

)

δ(v − va) . (61)

it follows that

f(x, v) = (1− α2∂2
x)f̄(x, v) =

Np
∑

a=1

waδ(x− xa)δ(v − va). (62)

It may be shown that, at least in a distributional sense,

∂2
x

[

1

2
|x− xa|+

α

2
exp

(

−
|x− xa|

α

)]

=
1

2α
exp

(

−
|x− xa|

α

)

. (63)

Therefore, the particle Hamiltonian is given by

Hp(Z) =
1

2

Np
∑

a=1

wa









v2a +

Np
∑

b=1
b6=a

wb

[

|xa − xb|

2
+

α

2
exp

(

−
|xa − xb|

α

)]









. (64)

The evolution equation is given by

Ḟ (Z) =

Np
∑

a=1

1

wa

[

∂F

∂Z
,
∂Hp

∂Z

]

. (65)

Note, the potential energy function has a continuous sigmoidal shaped derivative:

∂Hp(Z)

∂za
=



va,

Np
∑

b=1

wb

(

1x≥0(xa − xb)−
1

2

)[

1− exp

(

−
|xa − xb|

α

)]



 (66)

where

1x≥0(x) =

{

0, x < 0

1, x > 1 .
(67)

The particles continue to influence each other’s trajectory even if they are infinitely far from

each other. Moreover, the force exerted by each particle approaches a constant value as the

separation between particles goes to infinity. This is due to the one-dimensional character

of this problem. Recall, the electric field due to an infinite sheet of charge remains constant

as you move farther from the charge sheet. Each particle is really like an infinite sheet

of charge in this one-dimensional setting. The effect of the smoothing kernel is that the

transition of the electric field from one side of the charge sheet to the other is now a smooth

sigmoidal function rather than a discontinuous jump.
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The prior example allows one to see how the method works when the inner product
structure associated with the RKHS is known as in the case when H = H1(R). However, a
Laplace-distribution-like smoothing kernel is hardly the most typical kernel function or the
most useful smoothing kernel to choose (its derivative is discontinuous at the origin and the
kernel has infinite support). General smoothing kernels may be used which yield RKHS
whose inner product structure might not be explicitly written, but nonetheless is known
to exist. Hence, this framework may be applied to discern the underlying Hamiltonian
structure associated with any smoothing kernel one might choose, e.g. B-spline kernel
functions.

7 Application to general mean-field Hamiltonian theories

The argument showing that smoothed particle discretizations of the Vlasov-Poisson equa-
tion are an exact reduction of a continuous Lie-Poisson system with a regularized Hamilto-
nian readily applies to other Hamiltonian theories which are generically called mean-field
theories [18]. Let Q ⊂ R

2d, where d ∈ Z
+, and denote the finite dimensional canonical

Poisson bracket by [·, ·] : C∞(Q)×C∞(Q) → R. The mean-field Hamiltonian field theories
take the form

{F,G} =

∫

ω

[

δF

δω
,
δG

δω

]

dz and H[ω] =

∫

h0(z)ω(z)dz +
1

2

∫

h1(z, z
′)ω(z)ω(z′)dzdz′ ,

(68)
where h0(z) is interpreted as the single particle energy and h1(z, z

′) is an interaction po-
tential. This Hamiltonian and Poisson bracket yields the following equations of motion:

∂tω +

[

h0 +

∫

h1(z, z
′)ω(z′)dz′, ω

]

= 0 . (69)

In addition to the Vlasov-Poisson equation, Darwin’s approximation [14], the two-dimensional
vorticity equation [17,20], and the Charney-Hasegawa-Mima equation [7,24] (which is struc-
turally equivalent to the quasigeostrophic potential vorticity equation) may all be written
as mean-field Hamiltonian systems. The conditions which allow these mean-field Hamil-
tonian models to admit a regularization which has a finite dimensional exact Hamiltonian
reduction based on smoothed particles will is briefly discussed below.

One may rewrite the above Hamiltonian model as follows

{F,G} =

(

ω,

[

δF

δω
,
δG

δω

])

L2

and H[ω] = (ω, h0 + V ω)L2 (70)

where the interaction operator is defined

V ω =

∫

h1(z, z
′)ω(z′)dz′ . (71)
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If Lω = k ∗ ω where k is the kernel function, then the filtered Hamiltonian is defined

HF [ω] = (ω, h0 + V Lω)L2 . (72)

As in the Vlasov-Poisson equation, one requires that V and L commute. If this is so, then
the above Hamiltonian structure yields the equations of motion

∂tω +

[

h0 +

∫

h1(z, z
′)Lω(z′)dz′, ω

]

= 0 . (73)

This is identical to the equations of motion in the unsmoothed case except that the convo-
lution operator is applied prior to computing the interaction potential. As in the case of
the Vlasov-Poisson equation, one may equivalently interpret the regularized Hamiltonian
model in terms of a RKHS, (H, (·, ·)H), associated with the kernel function, k. Letting
ω̄ = Lω, the regularized theory equivalently may be written

{F̄ , Ḡ}H =

(

ω̄,

[

δHF̄

δω̄
,
δHḠ

δω̄

])

H

and H̄F [ω̄] = (ω̄, h0 + V ω̄)H . (74)

The two formulations yield equivalent equations of motion.
By letting

ω̄(z) =
∑

a

wak(z − za) , or ω(z) =
∑

a

waδ(z − za) , (75)

one obtains a finite dimensional Hamiltonian system prescribing the evolution of the par-
ticle centers Z = (z1, . . . , zNp) with Hamiltonian

H[Z] =
∑

a

wah0(za) +
∑

a,b

wawb

∫

h1(za, z)k(z − zb)dz , (76)

and Poisson bracket

{Fp, Gp} =
∑

a

1

wa

[

∂Fp

∂Z
,
∂Gp

∂Z

]

. (77)

In the case of two-dimensional vorticity, Q = R
2, h0(x, y) = 0, and the interaction

potential is given by
V ω = ∆−1ω . (78)

Hence, a result very similar to Lemma 3 applies to show that any isotropic, symmetric,
positive definite kernel function might be used to obtain a smoothed point-vortex model.
The study of point vortex dynamics has a long history, but a smoothed theory of point
vortex dynamics analogous to a smoothed PIC method appears to be a novel method
suggested by this paper. Likewise, each of the mean-field Hamiltonian theories mentioned
at the start of this section also yield a smoothed particle discretization.
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8 A filtered Vlasov-Maxwell system and its Hamiltonian

structure

It is also possible to derive a filtered PIC discretization of the Vlasov-Maxwell system
which is an exact reduction of a continuous Hamiltonian system. The approach differs
from that taken for general mean-field theories because the Hamiltonian is not quadratic
in the distribution function. Whereas mean-field theories are filtered by modifying the
Hamiltonian, the Vlasov-Maxwell equation is filtered by modifying the Poisson bracket.
One shall see that this change amounts to a coordinate change.

The Vlasov-Maxwell equation was shown to be a Hamiltonian system [16, 17, 19], and
Hamiltonian structure-preserving PIC discretizations have been developed in the past
decade, e.g. [13, 23]. Likewise, when inserting smoothing, it is desirable to ascertain the
right way of doing so such that the salient geometric features of the model are retained. To
this end, it is desirable to retain a variational principle in canonical coordinates. Smoothed
structure-preserving PIC discretizations built directly from the variational principle are
known [6]. Rather than considering the variational principle directly, this work instead
considers to the Hamiltonian formulation in canonical coordinates.

The Poisson bracket of the Vlasov-Maxwell system may be written as follows [16,17,19]:

{F,G} =

∫

f

[

δF

δf
,
δG

δf

]

dxdv +

∫ (

δF

δE
·
∂f

∂v

δG

δf
−

δG

δE
·
∂f

∂v

δF

δf

)

dxdv

+

∫

fB ·

(

∂

∂v

δF

δf
×

∂

∂v

δG

δf

)

dxdv +

∫
(

δF

δE
· ∇ ×

δG

δB
−

δG

δE
· ∇ ×

δF

δB

)

dx ,

(79)

and its Hamiltonian is written

H[f,E,B] =
1

2

∫

|v|2f(x, v)dxdv +
1

2

∫

(|E|2 + |B|2)dx . (80)

As in the rest of this article, all constants have been set to unity.
The Vlasov-Maxwell equation may also be written in canonical coordinates such that it

is the direct sum of a Poisson bracket which generates the Vlasov equation and a Poisson
bracket which generates Maxwell’s equations:

{F,G} =

∫

fcan

[

δF

δfcan
,

δG

δfcan

]

dxdp−

∫ (

δF

δE
·
δG

δA
−

δG

δE
·
δF

δA

)

dx , (81)

where A is the vector potential, the canonical momentum is p = v+A, and the distribution
function in canonical coordinates related to the usual phase space distribution by

f(x, v) = fcan(x, v +A(x)) . (82)

The Hamiltonian in canonical coordinates is

H[fcan, A,E] =
1

2

∫

|p−A(x)|2fcan(x, p)dxdp +
1

2

∫

(|E|2 + |∇ ×A|2)dx . (83)
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In order to recover the noncanonical Vlasov-Maxwell bracket from the canonical bracket,
one makes the change of coordinates

F [fcan, A,E] = F̄ [f,B,E] , (84)

where B = ∇×A, which was shown to be a Hamiltonian reduction [16].
Smoothing of the Vlasov-Maxwell equation should only appear in the coupling terms

which give rise to the current in Maxwell’s equations, and the Lorentz force in the Vlasov
equation. It turns out that this may be accomplished by defining a smoothed canonical
phase space distribution as follows:

f̄can(x, v + LA(x)) = f(x, v) . (85)

That is, one simply applies smoothing to the vector potential appearing in the the transfor-
mation from canonical to noncanonical coordinates. As usual, one assumes L is a symmetric
positive definite kernel.

Several lemmas are provided below which facilitate the change of coordinates.

Lemma 4. Suppose

F̄ [f̄can, A,E] = F [f,B,E] , (86)

where f̄can(x, v + LA(x)) = f(x, v), and ∇×A = B. Then

δF̄

δf̄can
=

δF

δf
,

δF̄

δA
= ∇×

δF

δB
+ L

(

∂f

∂v

δF

δf

)

, and
δF̄

δE
=

δF

δE
. (87)

Proof: This is a consequence of the chain rule. To be explicit, one has that















δf

δf̄can

δf

δA

δf

δE
δB

δf̄can

δB

δA

δB

δE
δE

δf̄can

δE

δA

δE

δE















=





I ∂f
∂v

· L 0
0 ∇× 0
0 0 I



 . (88)

Hence, one finds

∫

δF̄

δf̄can
δf̄candxdp+

∫
(

δF̄

δA
· δA+

δF̄

δE
· δE

)

dx

=

∫

δF

δf
δf̄candxdp+

∫ [(

∇×
δF

δB
+ L

(

δF

δf

∂f

∂v

))

· δA+
δF

δE
· δE

]

dx . (89)

The result follows.
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Lemma 5. Suppose Lg = k ∗ g. Moreover, assume g, k are differentiable. Then

∂

∂x
(Lg) =

∂k

∂x
∗ g = k ∗

∂g

∂x
. (90)

With these lemmas, one may change coordinates in the Vlasov bracket.

Lemma 6. Let B = ∇×A, and g(x, v) = ḡcan(x, v +LA), and h(x, v) = h̄can(x, v +LA).
Then

[ḡcan, h̄can]xp = [g, h]xv + LB ·

(

∂g

∂v
×

∂h

∂v

)

, (91)

where [·, ·]xp and [·, ·]xv are respectively the canonical brackets with the coordinates (x, p)
and (x, v).

Proof: Using the fact that v = p− LA(x) and the previous lemma, one has that

∂ḡcan
∂x

=
∂g

∂x
− L

(

∂A

∂x

)

∂g

∂v
and

∂ḡcan
∂p

=
∂g

∂v
. (92)

Plugging this into the canonical bracket, one obtains the result.

Theorem 1. Suppose one lets

F̄ [f̄can, A,E] = F [f,B,E] , and Ḡ[f̄can, A,E] = G[f,B,E] , (93)

where f̄can(x, v+LA(x)) = f(x, v), and ∇×A = B. Then under this change of coordinates,

the canonical bracket,

{F̄ , Ḡ}can =

∫

f̄can

[

δF̄

δf̄can
,

δḠ

δf̄can

]

xp

dxdp− 4π

∫
(

δF̄

δE
·
δḠ

δA
−

δḠ

δE
·
δF̄

δA

)

dx , (94)

becomes

{F,G} =

∫

f

[

δF

δf
,
δG

δf

]

xv

dxdv +

∫
(

δF

δE
· L

(

∂f

∂v

δG

δf

)

−
δG

δE
· L

(

∂f

∂v

δF

δf

))

dxdv

+

∫

fLB ·

(

∂

∂v

δF

δf
×

∂

∂v

δG

δf

)

dxdv +

∫ (

δF

δE
· ∇ ×

δG

δB
−

δG

δE
· ∇ ×

δF

δB

)

dx .

(95)

Proof: This is an immediately consequence of the preceding lemmas.
This manner of inserting spatial smoothing into the Vlasov-Maxwell system preserves

the Hamiltonian structure. Because the canonical system was Hamiltonian, and one has
simply changed coordinates, the noncanonical system is also Hamiltonian. As desired,
the only changes made to the bracket are in the coupling terms between the particle and
electromagnetic subsystems.
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The derivatives of the Hamiltonian are simple to compute:

δH

δf
=

1

2
|v|2 ,

δH

δE
= E , and

δH

δB
= B . (96)

The equations of motion are obtained by noting that, for any functional of the fields,
F [f,B,E], one has Ḟ = {F,H}. If one assumes that the kernel smoother is the identity
operator in the velocity coordinate and only applies smoothing in space, one obtain the
filtered Vlasov-Maxwell equations:

∂tf = −v ·
∂f

∂x
− (LE + v × LB) ·

∂f

∂v

∂tE = ∇×B − L

∫

vfdv

∂tB = −∇× E .

(97)

It was necessary to assume the smoothing operator only applied smoothing in the spatial
coordinate in order to integrate by parts in velocity space when obtaining the above evolu-
tion equations from the Hamiltonian formulation. As desired, filtering only occurs in those
terms which couple the particle and field subsystems, namely the Lorentz force and the
current.

9 Filtered Vlasov-Maxwell: a second interpretation

There is a second manner by which one might obtain the filtered Vlasov-Maxwell Hamil-
tonian structure by directly mollifying the electromagnetic fields. To do so, one begins
with the usual Vlasov-Maxwell Poisson bracket given in equation (79), and then make the
change of coordinates

B 7→ LB and E 7→ L−1E . (98)

It seems strange to apply smoothing to B while applying anti-smoothing to E. However,
one finds that this change of coordinates recovers exactly the filtered Vlasov-Maxwell Pois-
son bracket given in equation (95). One does not apply this change of coordinates in the
Hamiltonian however so that it remains as in equation (80). Therefore, while the bracket
is obtained via a simple change of coordinates, the Hamiltonian is kept formally the same.
To build intuition for why it is appropriate to apply an anti-smoothing operator to the
electric field, consider Gauss’s law:

∇ ·E = ρ 7→ ∇ · L−1E = ρ or ∇ · E = Lρ . (99)

This anti-smoothing operation on the electric field yields a smoothed charge density in
Gauss’s law.
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10 A filtered GEMPIC discretization of the Vlasov-Maxwell

system

Using the filtered Vlasov-Maxwell system derived in the previous section, it is possible
to derive a structure-preserving PIC discretization of this system in which the charge and
current sources in Maxwell’s equations have been smoothed. For this purpose, the approach
taken in the Geometric Electromagnetic PIC (GEMPIC) method [13] is closely followed
since only a few pieces of the algorithm need to change to accommodate filtering. For
brevity, this method is called filtered-GEMPIC. Only enough detail is provided to show
how the filtered-GEMPIC method modifies the GEMPIC method in a few places.

As in GEMPIC, a finite element exterior calculus (FEEC) discretization [1,2,5] is used
for the fields because of their utility in preserving the Hamiltonian structure of electrody-
namics (specifically, this method conserves Gauss’s laws), and a particle-based discretiza-
tion is used in space. The properties of a FEEC discretization may be summarized by the
following commuting diagram of vector spaces

V 0 = H1 V 1 = H(curl) V 2 = H(div) V 3 = L2

V 0
h V 1

h V 2
h V 3

h ,

∇

Π0

∇×

Π1

∇·

Π2
Π3

∇ ∇× ∇·

(100)

where V ℓ are the infinite dimensional vector spaces for the continuous fields, and V ℓ
h are

finite element subspaces. The projection operators Πℓ : V ℓ → V ℓ
h have the properties

∇Π0φ = Π1∇φ, ∇×Π1E = Π2∇×E, and ∇·Π2B = Π3∇·B, i.e. the diagram commutes.
This feature of FEEC methods is essential for the structure-preserving discretization of
the electromagnetic subsystem of the Vlasov-Maxwell system. The commutativity ensures
that vector calculus relations ∇×∇ ≡ 0 and ∇·∇× ≡ 0 are exactly preserved in the finite
element subspaces.

The basis functions of V ℓ
h are denoted by {Λℓ

i}
Nℓ

i=1
where dim(V ℓ

h ) = Nℓ. The finite
element mass matrices are defined as follows:

(Mℓ)ij = (Λℓ
i ,Λ

ℓ
j)L2 . (101)

These matrices represent L2 inner products at the coefficient level. The coefficients of a
field in V ℓ

h are denoted with boldface, A = (A1, . . . ,ANℓ
), so that if Ah ∈ V ℓ

h , it may be
written

Ah(x) =

Nℓ
∑

i=1

AiΛ
ℓ
i(x) . (102)

Given a field in the finite element space, one recovers the coefficient vector using the degrees
of freedom operators which are denoted by σℓ. These are defined such that

σℓ
i (Λ

ℓ
j) = δij =⇒ σℓ

i (Ah) = Ai . (103)
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The precise form of these operators depends on the interpolating basis used. See [13] for
the details of their construction in the context of a B-spline FEEC method. Finally, the
matrices defining the discrete differential operators are defined as follows:

Gij = σ1
i (∇Λ0

j ) , Cij = σ2
i (∇× Λ1

j ) , and Dij = σ3
i (∇ · Λ2

j) . (104)

Finally, the particle position, velocity, and phase space coordinates are denoted by X =
(x1, . . . , xNp), V = (v1, . . . , vNp), and Z = (z1, . . . , zNp) respectively.

To discretize the model, one simply posits that the fields and distribution function
take a particular form which depends only on finite dimensional coefficient vectors. Take
Eh = Π1E ∈ V 1

h and Bh = Π2B ∈ V 2
h , and let the phase space distribution be

fh(x, v) =
∑

a

waδ(x− xa)δ(v − va) . (105)

The discretization proceeds by defining the finite dimensional functions F and G to be
functions of the coefficients of these finite dimensional representations:

F(X,V ,E,B) = F [fh, Eh, Bh] , (106)

and similarly for G. Plugging in these finite dimensional representations of the fields and
following the approach developed in [13], one finds the following finite dimensional Poisson
bracket:

{F,G} =
∑

a

1

wa

[

∂F

∂za
,
∂G

∂za

]

+
∑

a

1

wa

[

M
−1
1

∂G

∂E
· Λ̄1(xa)

∂F

∂va
−M

−1
1

∂F

∂E
· Λ̄1(xa)

∂G

∂va

]

+
∑

a

1

wa
B̄h(xa) ·

(

∂F

∂va
×

∂G

∂va

)

+
∂F

∂E
·M−1

1 C
T ∂G

∂B
−

∂G

∂E
·M−1

1 C
T ∂F

∂B
,

(107)
where the smoothed magnetic field is given by

B̄h(x) =

∫

Bh(x
′)k(x− x′)dx′ and Bh(x) =

N2
∑

i=1

BiΛ
2
i (x) , (108)

and the smoothed 1-form basis functions are given by

Λ̄1
i (x) =

∫

Λ1
i (x

′)k(x− x′)dx′ and Λ̄1(x) = (Λ̄1
1(x), . . . , Λ̄

1
N1

(x)) . (109)

The Hamiltonian is simply

H(X,V ,E,B) =
1

2

∑

a

wav
2
a + E

T
M1E+ B

T
M2B . (110)
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Using the fact that for any any observable, F(X,V ,E,B), its evolution is computed as
Ḟ = {F,H}, one obtains the equations of motion:

ẋa = va

v̇a =
1

wa

(

Ēh(xa) + va × B̄h(xa)
)

Ė = M
−1
1

(

C
T
M2B−

∑

a

Λ̄1(xa)va

)

Ḃ = −CE ,

(111)

where the filtered electric field is defined to be

Ēh(x) =

∫

Eh(x
′)k(x− x′)dx′ where Eh(x) =

N1
∑

i=1

EiΛ
1
i (x) , (112)

and the filtered magnetic field and 1-form shape functions were previously defined in equa-
tions (108) and (109) respectively.

If one eliminates the smoothing kernels, GEMPIC [13] is recovered. Moreover, the
method ends up being identical to that found in [6] which was obtained by inserting
smoothing into a discretized Vlasov-Maxwell variational principle. It should not be sur-
prising that the two approaches obtained the same PIC method as the variational principle
and the Hamiltonian formulation are intimately related. Therefore, while filtered Hamilto-
nian structure-preserving PIC methods for the Vlasov-Maxwell system already exist in the
literature, this paper elucidates the continuous Hamiltonian structure for which the PIC
methods are exact Hamiltonian reductions. This provides an analytical tool for studying
the impacts of smoothing on the model at the continuum level. Moreover, the results of this
section suggest that, among the various ways of adding smoothing to an electromagnetic
PIC method, the manner described in this section and in [6] should be the preferred ap-
proach if one wishes the smoothed electromagnetic PIC method to be structure-preserving.

11 Conclusion

This article provides a means of interpreting the Hamiltonian structure of smoothed Vlasov-
Poisson PIC methods as a Lie-Poisson system in which the duality structure is taken to
be the inner product of the RKHS associated with the smoothing kernel rather than the
usual L2 inner product. While the results are ultimately equivalent to the standard theory
based on the L2 inner product structure (because the smoothing convolution operation
is designed to be invertible), there is utility in presenting this alternative perspective in
which the distribution function is taken from a RKHS and expressed as a sum of kernel
functions. Moreover, a small modification of the Hamiltonian after changing coordinates
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into the filtered representation yields a regularized Hamiltonian model in which the phase
space distribution has been smoothed prior to solving Poisson’s equation. Any symmetric,
positive definite, isotropic filtering kernel which approximates the Dirac delta is compatible
with the theory built herein. The theory may prove beneficial in leveraging the theory
of RKHS, which has substantial utility in probability and statistics, for finding optimal
strategies for estimating moments of the phase space distribution. It is possible to interpret
filtering in a PIC method in terms of kernel density estimation [25], a subject which in
turn has profited from the theory of RKHS, e.g. for efficient density estimation in high
dimensions [10]. Moreover, kernel density estimation may be thought of as evaluation of
a sample mean in the RKHS associated with the smoothing kernel [11]. The framework
developed here, which provides a new interpretation of existing filtered PIC methods as
arising from a Lie-Poisson Hamiltonian structure built from the inner product structure
of a particular RKHS, might be beneficial in analyzing and designing structure-preserving
filtered PIC methods because it makes explicit an alternative interpretation of the model
in terms of a new RKHS inner product structure. In particular, the generality of this
perspective may aid in the design of data-driven approaches to selecting optimal kernel
functions. It was also shown that, generically, filtered PIC methods do not approximate
the Vlasov-Poisson equation, but a smoothed version of it. It may be helpful to apply the
Hamiltonian spectral theory previously developed for the Vlasov-Poisson system [21] to this
regularized system in order to better understand how the stability theory of this smoothed
system corresponds with the true system, and, by extension, how well one should expect
filtered PIC methods to approximate the continuous Vlasov-Poisson system. Additionally,
it was briefly shown how general mean-field Hamiltonian systems [18] are likewise amenable
to the treatment applied in detail to the Vlasov-Poisson equation in this paper. This
suggests the possibility of discretizations in the style of a smoothed PIC method for each
of these systems.

The Vlasov-Maxwell equation was shown to likewise admit a filtered version of its
Hamiltonian structure although, unlike the Vlasov-Poisson equation, it is the Poisson
bracket and not the Hamiltonian which is modified to facilitate this filtering. The con-
nection with RKHS is less meaningful here than in the case of mean-field Hamiltonian
models because one regularizes the electromagnetic fields with a smoothing kernel, not the
phase space distribution itself. Therefore, the interpretation of the phase space distribu-
tion as a pointwise evaluation operator in an appropriate RKHS was not helpful. It was
shown that the filtered Vlasov-Maxwell Hamiltonian structure may written in canonical
coordiantes thus verifying that this is a valid Hamiltonian system. This model was then
used to derive a filtered PIC discretization based on GEMPIC [13] which is a Hamiltonian
structure preserving discretization of the continuous model. This PIC discretization was
found to be identical to a previously found variational electromagnetic PIC method [6]
thus providing a new means of analyzing this computational model.

As a final note, the manner of incorporating smoothed particles into the Hamiltonian
structure of the Vlasov equation and related models presented herein suggests the possi-
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bility of incorporating smoothing kernels in particle models at a more fundamental level.
The exact dynamics of a system of N particles interacting through a force field is given by
the Liouville equations, which describe the 6N -dimensional particle distribution on phase
space, or the Klimontovich equation, which describes the evolution of the characteristics of
the particles. These two approaches describe the dynamics of a plasma in complete detail
via slightly different perspectives. The Vlasov equation is obtained as a truncation of the
BBGKY hierarchy, which is itself derived from the Liouville equation. The Hamiltonian
structure of Liouville’s equation is inherited by the BBGKY hierarchy, as demonstrated
in [15], which is then inherited by the Vlasov equation, see [16, 17, 19]. The Klimon-
tovich equation describes the evolution of particles as delta-measures, but the methods
described herein might be used to describe smoothed particle dynamics for the N -body
model in a Hamiltonian context. In this manner, an alternative BBGKY hierarchy based
on smoothed particles might be obtained which may yield a subtly different smoothed
Vlasov equation when truncated. The consequences of replacing delta-measure particles
with an delta-sequence family of smoothed particles in the Liouville equation and whether
this small-scale regularization substantially impacts subsidiary models, e.g. the BBGKY
hierarchy and Vlasov equation, is worth investigating in a future work.
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