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Dynamics — Theories — Models

Goal:
Predict the future or explain the past =

z=V(z2), z € Z, Phase Space
A dynamical system. Maps, ODEs, PDEs, etc.

Whence vector field V7

e Fundamental parent theory (microscopic, N interacting grav-
itating or charged particles, BBGKY hierarchy, VIasov-Maxwell
system, ...). Identify small parameters, rigorous asymptotics —
Reduced Computable Model V.

e Phenomena based modeling using known properties, constraints,
etc. used to intuit —
Reduced Computable Model V. <« structure can be useful.




Types of Vector Fields, V(z) (cont)

Only (?7) Natural Split:

V() =Vg+Vp
e Hamiltonian vector fields, Vg: conservative, properties, etc.

e Dissipative vector fields, Vp: not conservative of something,
relaxation/asymptotic stability, etc.

General Hamiltonian Form:

. . OH OH ,
finite dim - Vg =J— or Vg=J— < oo dim
0z X
where J(z) is Poisson tensor/operator and H is the Hamiltonian.

Basic product decomposition.

General Dissipation:

oF
VD =7... — VD =G —
0z

Why investigate? General properties of theory. Build in ther-
modynamic consistency. Useful for computation.



Metriplectic Dynamics
(Metric U Symplectic Flows)

e Natural split of vector fields

e Enforces thermodynamic consistency: H = 0 the 1st Law and
S > 0 the 2nd Law.

e Encompassing 4-bracket theory: ‘“curvature” as dissipation

Ideas of Casimirs are candidates for entropy, multibracket, cur-
vature, etc. in PJM, Bracket formulation for irreversible classical
fields, Phys. Lett. A 100, 423—427 (1984).



Poisson Brackets — Flows on Poisson Manifolds

Definition. A Poisson manifold Z has bracket
{,}:C®(Z)xC(Z) > C(2)
st C*°(Z) with {, } is a Lie algebra realization, i.e., is

bilinear,

antisymmetric,

Jacobi, and

Leibniz, i.e., acts as a derivation = vector field.

Geometrically C®(2) = A9 (2)
{f,9} = J(df ANdg) = (df, dg) = J(df,dg) .

Flows are integral curves of noncanonical Hamiltonian vector
fields, JdH, i.e., z= JOH/0z.

Because of degeneracy, 3 functions C st {A,C} = 0 for all A €
C*>°(Z). Casimir invariants (Lie's distinguished functions!).



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J = Casimirs:

{A,C} =0 VA:Z—-R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

C = Cons'k




Metriplectic 4-Bracket: (f,k;g,n)



Why a 4-Bracket

e [ wo slots for two fundamental functions: Hamiltonian, H, and
Entropy (Casimir), S.

e Leaves two slots for bilinear bracket: one for observable one
for generator

e Provides natural reductions to other bilinear brackets.

e [ he three slot brackets of pjm 1984 were not trilinear.



The Metriplectic 4-Bracket

4-bracket on O-forms (functions):
(-, ) A9(2) x AO(2) x AP(2) x AP(2) = AO(2)
For functions f,k,g,n € A9(2)
(f,k;g,n) := R(df,dk,dg,dn),

In a coordinate patch the metriplectic 4-bracket has the form:

df ok dg on

528 92 Dk AL < quadravector?
< y4 < <

(f,k;g,n) = RV (2)

e A blend of ideas: Two important functions H and S, symme-
tries, curvature idea, multilinear brackets all in pjm 1984, 1986.
e Manifolds with both Poisson tensor J and compatible metric,
g Oor connection.



Metriplectic 4-Bracket Properties

(i) linearity in all arguments, e.g,

(f +h, ki g,n) = (h,k;g,n) + (h,k;g,n)

(ii) algebraic identities/symmetries

(fikig,m) = —(k, fig,m)
(fikig,m) = —(f,kin,g)
(fikig,m) = (g,n; f,k)
(f,kig,m) + (f,g;n,k)+ (f,n;k,g) =0 + not needed

(iii) derivation in all arguments, e.qg.,

(fh,k; g,n) = f(h,k;g,n) + (f, k; g,n)h

which is manifest when written in coordinates. Here, as usual, fh
denotes pointwise multiplication. Symmetries of algebraic curvature.

Although R';., or Ry, but not R"F. Metriplectic Minimum.



Reduction to Metriplectic 2-Bracket
(PJM 1984, 1986)

Symmetric 2-bracket:

(f,9)u=(fH,9,H) = (9, /)n

Dissipative dynamics:

z=(z,9)yg=(2,H;S, H)

Energy conservation:

(fH)pg=MH, ) u=0  Vf.

Entropy dynamics:

S =(S,8)g = (S, H;S,H) >0

Metriplectic 4-brackets — metriplectic 2-brackets of 1984, 1986!



Metriplectic 4-Bracket: Encompassing
Definition of Dissipation

e Lots of geometry on Poisson manifolds with metric or connec-
tion. Emerges naturally.

e Entropy production and positive contravariant sectional curva-
ture. For o,n € A1(2), entropy production by

S =K(o,n) = (S,H;S,H),

where the second equality follows if o =dS and n = dH.



Binary Brackets for Dissipation circa 1980 —

e Symmetric Bilinear Brackets (pjm 1980 —. . . unpublished, 1984
reduced MHD)

e Antisymmetric Bracket (possibly degenerate) (Kaufman and
pjm 1982)

e Metriplectic Dynamics (pjm 1984,1984, 1986, ...Kaufman
1984 no degeneracy)

e GENERIC (Grmela 1984, with Oettinger 1997, ...) Binary
but not Symmetric and not Bilinear & Metriplectic Dynamics!

e Double Brackets (Vallis, Carnevale, Young, Shepherd; Brock-
ett, Bloch ... 1989)



4-Bracket Reduction to K-M Brackets
(Kaufman and Morrison 1982)

Done for plasma quasilinear theory.

Dynamics:

z=|z,Hl¢ = (2,H;S,H)

Bracket Properties:

[fi9ls = (f,9: S, H)

e bilinear
e antisymmetric, possibly degenerate
e energy conservation and entropy production

H=[H,Hlg=0 and S=[S H]g>0 = 2z 2y



4-Bracket Reduction to Double Brackets
(Vallis, Carnevale; Brockett, Bloch ... 1989)

Interchanging the role of H with a Casimir S-

(f,9)s = (f,5,9,5)

Can show with assumptions (Koszul construction)

(Cag)S — (C,S,g,S) =0
for any Casimir C. Therefore C = 0.

Beautiful geometry re Fernandes-Koszul connection!



4-Bracket Reduction GENERIC
(Grmela 1984, with Ottinger 1997)

e Bracket not bilinear and not symmetric

GENERIC Vector Field in terms of dissipation function =(z, z«):
0=(z, zx)

P =Y = .
0zxi  |,,=85/02
Special Case:

e EXists a bracket and procedure for linearizing and symmetrizing
=

GENERIC (1997) = Metriplectic (1984,1986)!




General Constructions

e For any Riemannian manifold d metriplectic 4-bracket. This
means there is a wide class of them, but the bracket tensor does

not need to come from Riemann tensor only satisfy the bracket
properties.



Construction via Kulkarni-Nomizu Product

Given o and u, two symmetric rank-2 tensor fields operating on
1-forms df,dk and dg,dn, the K-N product is

oc®u(df,dk,dg,dn) = o(df,dg)pu(dk,dn)
— o(df,dn) p(dk,dg)
+ w(df,dg)o(dk,dn)
— p(df,dn) o(dk,dg) .
Metriplectic 4-bracket:

(f,kig,n) = o @ p(df,dk,dg,dn).

In coordinates:

Rkl — ik il _ il ik 4 ikl il gk



Lie-Algebra Based Metriplectic 4-Brackets

kl .

x
. o0f 0k Og On
_ — ] kl rs

(fikign) = cae s g s s oo

Lacks symmetry, but 3 procedure to remove torsion (cyclic Bianchi
identity) for any symmetric ‘metric’ g"s.

e For structure constants ¢

o For gi$, = ", c* the Cartan-Killing metric, torsion vanishes

automatically



Final Comments

e See PJM & M. Updike, arXiv:2306.06787v1 [math-ph] 11 Jun
2023 for many examples, finite and infinite.

e Useful for thermodynamically consistent model building.

e Given that double brackets and metriplectic brackets have been
used for computation of equilibria, metriplectic 4-bracket can be
a new tool.

e New kind of structure to preserve.
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