The Inclusive Metriplectic Form of Nonequilibirum Thermodynamics

Philip J. Morrison

Department of Physics and Institute for Fusion Studies
The University of Texas at Austin
morrison@physics.utexas.edu
http://www.ph.utexas.edu/~morrison/
WORKING ACROSS SCALES IN COMPLEX SYSTEMS April 13, 2023

Overview: Theory of theories/models.

Dynamics - Theories - Models

Goal:

Predict the future or explain the past \Rightarrow

$$
\dot{z}=V(z), \quad z \in \mathcal{Z}, \text { Phase Space }
$$

A dynamical system. ODEs, PDEs, etc.

Whence V ?

- Fundamental parent theory (microscopic, N interacting gravitating or charged particles, BBGKY hierarchy, Vlasov-Maxwell system, ...). Identify small parameters, rigorous asymptotics \rightarrow Reduced Computable Model V.
- Phenomena based modeling using known properties, constraints, etc. used to intuit \rightarrow
Reduced Computable Model V.

Types of Vector Fields, V

Natural Split:

$$
V(z)=V_{H}+V_{D}
$$

- Hamiltonian vector fields, V_{H} : conservative, properties, etc.
- Dissipative vector fields, V_{D} : not conservative, relaxation, etc.

General Forms:

$$
V_{H}=J \cdot \nabla H \quad \text { and } \quad V_{D}=G \cdot \nabla F,
$$

where $J(z)$ is Poisson tensor/operator, H Hamiltonian, $G(z)$ metric tensor/operator, F 'free energy' generator/Lyapunov function. Hamiltonian flows + gradient flows.

Noncanonical Hamiltonian Vector Fields V_{H} Poisson Bracket Dynamics

Sophus Lie (1890) \longrightarrow pjm (1980) \longrightarrow Poisson Manifolds etc.
Noncanonical Coordinates:

$$
\dot{z}^{a}=\left\{z^{a}, H\right\}=J^{a b}(z) \frac{\partial H}{\partial z^{b}}, \quad a, b=1,2, \ldots M
$$

Noncanonical Poisson Bracket:

$$
\{A, B\}=\frac{\partial A}{\partial z^{a}} J^{a b}(z) \frac{\partial B}{\partial z^{b}}, \quad\{,\}: C^{\infty}(\mathcal{Z}) \times C^{\infty}(\mathcal{Z}) \rightarrow C^{\infty}(\mathcal{Z})
$$

Poisson Bracket Properties:
antisymmetry $\longrightarrow\{A, B\}=-\{B, A\}$
Jacobi identity $\longrightarrow\{A,\{B, C\}\}+\{B,\{C, A\}\}+\{C,\{A, B\}\}=0$
Leibniz $\quad \longrightarrow \quad\{A C, B\}=A\{C, B\}+\{C, B\} A$
G. Darboux: $\operatorname{det} J \neq 0 \Longrightarrow J \rightarrow J_{c}$ Canonical Coords $z=(q, p)$

Sophus Lie: $\operatorname{det} J=0 \Longrightarrow$ Canonical Coordinates plus Casimirs (Lie's distinguished functions!)

Poisson (phase space) Manifold \mathcal{Z} Cartoon

Degeneracy in $J \Rightarrow$ Casimirs:

$$
\{A, C\}=0 \quad \forall A: \mathcal{Z} \rightarrow \mathbb{R}
$$

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Examples of Dissipative Vector Fields V_{D} Symmetric Bracket Dynamics

Two Types:

- Gradient flows of metriplectic dynamics (pjm 1984, ...).

Builds in basic thermodynamics and computational tool.

- Double bracket dynamics Vallis et al. 1989.

Computational tool.

Mixed Flows:

$$
\dot{z}=V_{H}+V_{D}=J \cdot \nabla H+G \cdot \nabla F=\{z, H\}+(z, F)
$$

where $(A, B)=(B, A)$ is a symmetric bracket on functions.

Metriplectic Dynamics - Entropy, Degeneracies, and 1st and 2nd Laws

- Casimirs of noncanonical $\mathrm{PB}\{$,$\} are 'candidate' entropies.$ Election of particular $S \in\{$ Casimirs $\} \Rightarrow$ thermal equilibrium (relaxed) state.
- Generator: $F=H+S$
- 1st Law: identify energy with Hamiltonian, H, then

$$
\dot{H}=\{H, F\}+(H, F)=0+(H, H)+(H, S)=0
$$

Foliate \mathcal{Z} by level sets of H, with $(H, A)=0 \forall A \in C^{\infty}(\mathcal{Z})$.

- 2nd Law: entropy production

$$
\dot{S}=\{S, F\}+(S, F)=(S, S) \geq 0
$$

Lyapunov relaxation to the equilibrium state. Dynamics solves the equilibrium variational principle: $\delta F=\delta(H+S)=0$.

Double Bracket Dynamics

Square of Poisson tensor is positive definite:

$$
\dot{z}=V_{D}=J G J \cdot \nabla H=(z, H)_{D B}
$$

Dissipates H but conserves all Casimirs because

$$
(C, A)_{D B}=0 \quad \forall A .
$$

Examples

Vlasov-Landau Kinetic Theory

System:

$$
\frac{\partial f}{\partial t}+\boldsymbol{v} \cdot \nabla f+\frac{e}{m} \boldsymbol{E} \cdot \frac{\partial f}{\partial \boldsymbol{v}}=C_{L a n d a u}[f], \quad \nabla \cdot \boldsymbol{E}=4 \pi e \int d^{3} v f
$$

$f(\boldsymbol{x}, \boldsymbol{v}, t)$ phase space density, \boldsymbol{E} electric field, $C_{\text {Landau }}(f)$ is a complicated nonlinear Fokker-Planck operator.

Hamiltonian:

$$
H[f]=\frac{1}{2} \int d^{3} x d^{3} v m v^{2} f+\frac{1}{4 \pi} \int d^{3} x|\boldsymbol{E}|^{2}
$$

Dynamics (pjm 1980,1984):

$$
\frac{\partial f}{\partial t}=\{f, F\}+(f, F)=\mathcal{J} \frac{\delta H}{\delta f}+\mathcal{G} \frac{\delta S}{\delta f}
$$

Casimir:

$$
S[f]=c \int d^{3} x d^{3} v f \ln f
$$

Thermodynamic Equilibrium:

$$
\dot{S} \geq 0 \Rightarrow \delta F=\delta H+\delta S=0 \quad \Rightarrow \quad \text { Maxwellian Distribution }
$$

Lotka-Volterra - Preditor-Prey

Lotka-Volterra system:

$$
\frac{d x}{d t}=\mu x(1-y) \quad \text { and } \quad \frac{d y}{d t}=y(1-x)
$$

$x=\#$ prey (rabbits) and $y=\#$ number of predators (foxes).

Noncanonical PB: (Nutku 1990, Shadwick et al. 1999)

$$
\{A, B\}=x y\left(\frac{\partial A}{\partial x} \frac{\partial B}{\partial y}-\frac{\partial B}{\partial x} \frac{\partial A}{\partial y}\right)
$$

Hamiltonian:

$$
H=x-\ln x+\mu y-\mu \ln y
$$

Canonization:

$$
q=\ln x \quad \text { and } \quad p=\ln y
$$

Fig. 8. Integration of the Lotka-Volterra problem using a standard second-order PC method and a C-PC algorithm, each with 8×10^{5} time steps of size 0.02 . A point is plotted every 200 time steps. The solid line represents the energy surface containing the initial condition. The points obtained from C-PC all lie on this curve. The dramatic effect of the 1.2% energy gain by the standard algorithm is clearly visible.

Consequence:
Any area in (q, p) space is conserved. Liouville theorem is needed for statistical mechanics.

Metriplectic:

Add entropy degree of freedom to create relaxation to extinction of rabbits, while conserving H

SIR Model of Epidemiology

Reduced SIR model:

$$
\dot{S}=-\beta I S, \quad \dot{I}=\beta I S-\gamma I, \quad \dot{R}=\gamma I .
$$

Three populations: S for the number of susceptible, I for the number of infected, and R for the number recovered (immune) individuals. $R_{0}=\beta / \gamma$ is reproduction rate, the expected number of new infections from a single infection for susceptible subjects.

Hamiltonian system?

Total number of people:

$$
H=I+S+R \quad \rightarrow \quad \dot{H}=0
$$

SIR is Hamiltonian

Hamiltonian $\dot{z}=J \cdot \nabla H$:

$$
\left[\begin{array}{c}
\dot{S} \\
\dot{I} \\
\dot{R}
\end{array}\right]=\left[\begin{array}{ccc}
0 & V_{3} & -V_{2} \\
-V_{3} & 0 & V_{1} \\
V_{2} & -V_{1} & 0
\end{array}\right]\left[\begin{array}{l}
\partial H / \partial S \\
\partial H / \partial I \\
\partial H / \partial R
\end{array}\right]
$$

Jacobi:

$$
\boldsymbol{V} \cdot \nabla \times \boldsymbol{V}=0
$$

Poisson Tensor:

$$
J=\left[\begin{array}{ccc}
0 & -\beta I S & 0 \\
\beta I S & 0 & -\gamma I \\
0 & \gamma I & 0
\end{array}\right]
$$

Casimir $\{A, C\}=0 \forall A$:

$$
C=\gamma \ln (S)+\beta R
$$

Metriplectic SIR for Optimal Outcome

Find symmetric bracket st

$$
\dot{H}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} I=0
$$

What is G ?

$$
G=c\left(\nabla H \otimes \nabla H-|\nabla H|^{2} I\right)=c\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]
$$

Design dissipation to decrease infection at fixed populationn!

Conclusion

- Structure is important, i.e., the split: $V=V_{H}+V_{D}$.
- There exist generalizations, e.g., driven/control extensions.

