On Metriplectic Dynamics: Joining Hamiltonian and Dissipative Dynamics

Philip J. Morrison
Department of Physics and Institute for Fusion Studies The University of Texas at Austin
morrison@physics.utexas.edu
http://www.ph.utexas.edu/~morrison/
CHATS2023 Marseille, France
May 31, 2023

Collaborators: G. Flierl, M. Furukawa, C. Bressan, O. Maj, M. Kraus, E. Sonnendrücker, ...

Geometry of metriplectic 4-brackets: M. Updike

Dynamics - Theories - Models

Goal:

Predict the future or explain the past \Rightarrow

$$
\dot{z}=V(z), \quad z \in \mathcal{Z}, \text { Phase Space }
$$

A dynamical system. Maps, ODEs, PDEs, etc.

Whence vector field V ?

- Fundamental parent theory (microscopic, N interacting gravitating or charged particles, BBGKY hierarchy, Vlasov-Maxwell system, ...). Identify small parameters, rigorous asymptotics \rightarrow Reduced Computable Model V.
- Phenomena based modeling using known properties, constraints, etc. used to intuit \rightarrow
Reduced Computable Model $V . \leftarrow$ structure can be useful.

Types of Vector Fields, V

Natural Split:

$$
V(z)=V_{H}+V_{D}
$$

- Hamiltonian vector fields, V_{H} : conservative, properties, etc.
- Dissipative vector fields, V_{D} : not conservative, relaxation, etc.

General Hamiltonian Form:

$$
V_{H}=J \frac{\partial H}{\partial z} \quad \text { or } \quad V_{H}=\mathcal{J} \frac{\delta H}{\delta \psi}
$$

where $J(z)$ is Poisson tensor/operator and H is the Hamiltonian. Basic product decomposition.

General Dissipation:

$$
V_{D}=? \ldots \quad \rightarrow \quad V_{D}=G \frac{\partial F}{\partial z}
$$

Why investigate? General properties of theory. Useful for computation.

Overview

I. Review Hamiltonian systems via noncanonical Poisson brackets
II. Review previous bracket formalisms for dissipation
III. Encompassing metriplectic 4-bracket theory

I. Noncanonical Hamiltonian Dynamics

Hamilton's Canonical Equations

Phase Space with Canonical Coordinates: (q, p)
Hamiltonian function: $H(q, p) \leftarrow$ the energy
Equations of Motion:

$$
\dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}, \quad \dot{q}^{i}=\frac{\partial H}{\partial p_{i}}, \quad i=1,2, \ldots N
$$

Phase Space Coordinate Rewrite:

$$
z=(q, p), \quad \alpha, \beta=1,2, \ldots 2 N
$$

$$
\dot{z}^{\alpha}=J_{c}^{\alpha \beta} \frac{\partial H}{\partial z^{\beta}}=\left\{z^{\alpha}, H\right\}_{c}, \quad\left(J_{c}^{\alpha \beta}\right)=\left(\begin{array}{cc}
0_{N} & I_{N} \\
-I_{N} & 0_{N}
\end{array}\right)
$$

$J_{c}:=\underline{\text { Poisson tensor, Hamiltonian bi-vector, cosymplectic form }}$

Noncanonical Hamiltonian Structure

Sophus Lie (1890) \longrightarrow PJM (1980) \longrightarrow Poisson Manifolds etc.

Noncanonical Coordinates:

$$
\dot{z}^{\alpha}=\left\{z^{\alpha}, H\right\}=J^{\alpha \beta}(z) \frac{\partial H}{\partial z^{\beta}}
$$

Noncanonical Poisson Bracket:

$$
\{A, B\}=\frac{\partial A}{\partial z^{\alpha}} J^{\alpha \beta}(z) \frac{\partial B}{\partial z^{\beta}}
$$

Poisson Bracket Properties:
antisymmetry $\longrightarrow\{A, B\}=-\{B, A\}$
Jacobi identity $\longrightarrow\{A,\{B, C\}\}+\{B,\{C, A\}\}+\{C,\{A, B\}\}=0$
Leibniz $\quad \longrightarrow \quad\{A C, B\}=A\{C, B\}+\{C, B\} A$
G. Darboux: $\operatorname{det} J \neq 0 \Longrightarrow J \rightarrow J_{c}$ Canonical Coordinates

Sophus Lie: $\operatorname{det} J=0 \Longrightarrow$ Canonical Coordinates plus Casimirs (Lie's distinguished functions!)

Flow on Poisson Manifold

Definition. A Poisson manifold \mathcal{Z} is differentiable manifold with bracket

$$
\{,\}: C^{\infty}(\mathcal{Z}) \times C^{\infty}(\mathcal{Z}) \rightarrow C^{\infty}(\mathcal{Z})
$$

st $C^{\infty}(\mathcal{Z})$ with $\{$,$\} is a Lie algebra realization, i.e., is$
i) bilinear,
ii) antisymmetric,
iii) Jacobi, and
iv) Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields, JdH.

Because of degeneracy, \exists functions C st $\{A, C\}=0$ for all $A \in C^{\infty}(\mathcal{Z})$. Called Casimir invariants (Lie's distinguished functions!).

Poisson Manifold (phase space) \mathcal{Z} Cartoon

Degeneracy in $J \Rightarrow$ Casimirs:

$$
\{A, C\}=0 \quad \forall A: \mathcal{Z} \rightarrow \mathbb{R}
$$

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Lie-Poisson Brackets

Lie-Poisson brackets are special kind of noncanonical Poisson bracket that are associated with any Lie algebra, say \mathfrak{g}.

Natural phase space \mathfrak{g}^{*}. For $f, g \in C^{\infty}\left(\mathfrak{g}^{*}\right)$ and $z \in \mathfrak{g}^{*}$.

Lie-Poisson bracket has the form

$$
\begin{aligned}
\{f, g\} & =\langle z,[\nabla f, \nabla g]\rangle \\
& =\frac{\partial f}{\partial z^{i}} c^{i j}{ }_{k} z_{k} \frac{\partial g}{\partial z^{j}}, \quad \quad i, j, k=1,2, \ldots, \operatorname{dim} \mathfrak{g}
\end{aligned}
$$

Pairing $<,>: \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow \mathbb{R}, z^{i}$ coordinates for \mathfrak{g}^{*}, and $c^{i j}{ }_{k}$ structure constants of \mathfrak{g}. Note $J^{i j}=c^{i j}{ }_{k} z_{k}$.

Classical Field Theory for Classical Purposes

Dynamics of matter described by

- Fluid models
- Euler's equations, Navier-Stokes, ...
- Magnetofluid models
- MHD, XMHD (Hall, electron mass physics), 2-fluid, ...
- Kinetic theories
- Vlasov-Maxwell, Landau-Lenard-Balescu, gyrokinetics, ...
- Fluid-Kinetic hybrids
- MHD + hot particle kinetics, gyrokinetics, ...

Applications:

atmospheres, oceans, fluidics, natural and laboratory plasmas

Hamiltonian and Dissipative structures are organizing principles

Free Rigid Body

Angular momenta $\left(L^{1}, L^{2}, L^{3}\right)$, Lie-Poisson bracket with Lie algebra $\mathfrak{s o}(3), c_{k}^{i j}=-\epsilon_{i j k}$.

Hamiltonian:

$$
H=\frac{\left(L^{1}\right)^{2}}{2 I_{1}}+\frac{\left(L^{2}\right)^{2}}{2 I_{2}}+\frac{\left(L^{3}\right)^{2}}{2 I_{3}}
$$

principal moments of inertia, I_{i}
Casimir

$$
C=\left(L^{1}\right)^{2}+\left(L^{3}\right)^{2}+\left(L^{3}\right)^{2},
$$

Euler's equations:

$$
\dot{L}^{i}=\left\{L^{i}, H\right\}
$$

Noncanonical MHD (pjm \& Greene 1980)

Equations of Motion:

$$
\begin{aligned}
\text { Force } & \rho \frac{\partial \boldsymbol{v}}{\partial t} & =-\rho \boldsymbol{v} \cdot \nabla \boldsymbol{v}-\nabla p+\frac{1}{c} \boldsymbol{J} \times \boldsymbol{B} \\
\text { Density } & \frac{\partial \rho}{\partial t} & =-\nabla \cdot(\rho \boldsymbol{v}) \\
\text { Entropy } & \frac{\partial s}{\partial t} & =-\boldsymbol{v} \cdot \nabla s \\
\text { Onm's Law } & \boldsymbol{E} & +\boldsymbol{v} \times \boldsymbol{B}=\eta \boldsymbol{J}=\eta \nabla \times \boldsymbol{B} \approx 0 \\
\text { Magnetic Field } & \frac{\partial \boldsymbol{B}}{\partial t} & =-\nabla \times \boldsymbol{E}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})
\end{aligned}
$$

Energy:

$$
H=\int_{D} d^{3} x\left(\frac{1}{2} \rho|\boldsymbol{v}|^{2}+\rho U(\rho, s)+\frac{1}{2}|\boldsymbol{B}|^{2}\right)
$$

Thermodynamics:

$$
\begin{equation*}
p=\rho^{2} \frac{\partial U}{\partial \rho} \quad T=\frac{\partial U}{\partial s} \quad \text { or } \quad p=\kappa \rho^{\gamma} \tag{or}
\end{equation*}
$$

Noncanonical Bracket:

$$
\begin{aligned}
&\{F, G\}=-\int_{D} d^{3} x({\left[\frac{\delta F}{\delta \rho} \nabla \frac{\delta G}{\delta \boldsymbol{v}}-\frac{\delta G}{\delta \rho} \nabla \frac{\delta F}{\delta \boldsymbol{v}}\right]+\left[\frac{\delta F}{\delta \boldsymbol{v}} \cdot\left(\frac{\nabla \times \boldsymbol{v}}{\rho} \times \frac{\delta F}{\delta \boldsymbol{v}}\right)\right] } \\
&+\frac{\nabla s}{\rho} \cdot\left[\frac{\delta F}{\delta \boldsymbol{v}} \cdot \nabla \frac{\delta G}{\delta s}-\frac{\delta G}{\delta \boldsymbol{v}} \cdot \nabla \frac{\delta F}{\delta s}\right] \\
&+\boldsymbol{B} \cdot {\left[\frac{1}{\rho} \frac{\delta F}{\delta \boldsymbol{v}} \cdot \nabla \frac{\delta G}{\delta \boldsymbol{B}}-\frac{1}{\rho} \frac{\delta G}{\delta \boldsymbol{v}} \cdot \nabla \frac{\delta F}{\delta \boldsymbol{B}}\right] } \\
&\left.+\boldsymbol{B} \cdot\left[\nabla\left(\frac{1}{\rho} \frac{\delta F}{\delta \boldsymbol{v}}\right) \cdot \frac{\delta G}{\delta \boldsymbol{B}}-\nabla\left(\frac{1}{\rho} \frac{\delta G}{\delta \boldsymbol{v}}\right) \cdot \frac{\delta F}{\delta \boldsymbol{B}}\right]\right)
\end{aligned}
$$

Dynamics:
$\frac{\partial \rho}{\partial t}=\{\rho, H\}, \quad \frac{\partial s}{\partial t}=\{s, H\}, \quad \frac{\partial \boldsymbol{v}}{\partial t}=\{\boldsymbol{v}, H\}, \quad$ and $\quad \frac{\partial \boldsymbol{B}}{\partial t}=\{\boldsymbol{B}, H\}$.
Densities:

$$
\boldsymbol{M}:=\rho \boldsymbol{v} \quad \sigma:=\rho s \quad \text { Lie }- \text { Poisson form }
$$

Casimir Invariants:

Recall $\mathcal{J} \delta H / \delta \psi$, Casimirs determined by \mathcal{J} for any H.

Casimir Invariants:

$$
\{F, C\}^{M H D}=0 \quad \forall \text { functionals } F \text {. }
$$

Casimirs Invariant entropies:

$$
C_{S}=\int d^{3} x \rho f(s), \quad \mathrm{f} \text { arbitrary }
$$

Casimirs Invariant helicities:

$$
C_{B}=\int d^{3} x \boldsymbol{B} \cdot \boldsymbol{A}, \quad C_{V}=\int d^{3} x \boldsymbol{B} \cdot \boldsymbol{v}
$$

Helicities have topological content, linking etc.

Maxwell-Vlasov Equations

Maxwell's Equations:

$$
\begin{gathered}
\frac{\partial \boldsymbol{B}}{\partial t}=-c \nabla \times \boldsymbol{E} \\
\nabla \cdot \boldsymbol{B}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial \boldsymbol{E}}{\partial t}=c \nabla \times \boldsymbol{B}-4 \pi \boldsymbol{J}_{e} \\
\nabla \cdot \boldsymbol{E}=4 \pi \rho_{e}
\end{gathered}
$$

Coupling to Vlasov

$$
\begin{gathered}
\frac{\partial f_{s}}{\partial t}=-\boldsymbol{v} \cdot \nabla f_{s}-\frac{e_{s}}{m_{s}}\left(\boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right) \cdot \frac{\partial f_{s}}{\partial \boldsymbol{v}} \\
\rho_{e}(\boldsymbol{x}, t)=\sum_{s} e_{s} \int f_{s}(\boldsymbol{x}, \boldsymbol{v}, t) d^{3} v, \quad \boldsymbol{J}_{e}(\boldsymbol{x}, t)=\sum_{s} e_{s} \int \boldsymbol{v} f_{s}(\boldsymbol{x}, \boldsymbol{v}, t) d^{3} v
\end{gathered}
$$

$f_{s}(\boldsymbol{x}, \boldsymbol{v}, t)$ is a phase space density for particles of species s with charge and mass, e_{s}, m_{s}.

$$
\psi=\left(\boldsymbol{E}(\boldsymbol{x}, t), \boldsymbol{B}(\boldsymbol{x}, t), f_{s}(\boldsymbol{x}, \boldsymbol{v}, t)\right)
$$

Maxwell-VIasov Hamiltonian Structure

Hamiltonian:

$$
H=\sum_{s} \frac{m_{s}}{2} \int|\boldsymbol{v}|^{2} f_{s} d^{3} x d^{3} v+\frac{1}{8 \pi} \int\left(|\boldsymbol{E}|^{2}+|\boldsymbol{B}|^{2}\right) d^{3} x
$$

Bracket:

$$
\begin{aligned}
\{F, G\}= & \sum_{s} \int\left(\frac{1}{m_{s}} f_{s}\left(\nabla F_{f_{s}} \cdot \partial \boldsymbol{v} G_{f_{s}}-\nabla G_{f_{s}} \cdot \partial \boldsymbol{v} F_{f_{s}}\right)\right. \\
& +\frac{e_{s}}{m_{s}^{2} c} f_{s} \boldsymbol{B} \cdot\left(\partial \boldsymbol{v} F_{f_{s}} \times \partial \boldsymbol{v} G_{f_{s}}\right) \\
+ & \left.\frac{4 \pi e_{s}}{m_{s}} f_{s}\left(G_{\boldsymbol{E}} \cdot \partial \boldsymbol{v} F_{f_{s}}-F_{\boldsymbol{E}} \cdot \partial \boldsymbol{v} G_{f_{s}}\right)\right) d^{3} x d^{3} v \\
+ & 4 \pi c \int\left(F_{\boldsymbol{E}} \cdot \nabla \times G_{\boldsymbol{B}}-G_{\boldsymbol{E}} \cdot \nabla \times F_{\boldsymbol{B}}\right) d^{3} x
\end{aligned}
$$

where $\partial v:=\partial / \partial v, F_{f_{s}}$ means functional derivative of F with respect to f_{s} etc.

Maxwell-VIasov Structure (cont)

Equations of Motion:

$$
\frac{\partial f_{s}}{\partial t}=\left\{f_{s}, H\right\}, \quad \frac{\partial \boldsymbol{E}}{\partial t}=\{\boldsymbol{E}, H\}, \quad \frac{\partial \boldsymbol{B}}{\partial t}=\{\boldsymbol{B}, H\} .
$$

Casimirs invariants:

$$
\begin{aligned}
\mathcal{C}_{s}^{f}\left[f_{s}\right] & =\int \mathcal{C}_{s}\left(f_{s}\right) d^{3} x d^{3} v \\
\mathcal{C}^{E}\left[\boldsymbol{E}, f_{s}\right] & =\int h^{\boldsymbol{E}}(x)\left(\nabla \cdot \boldsymbol{E}-4 \pi \sum_{s} e_{s} \int f_{s} d^{3} v\right) d^{3} x, \\
\mathcal{C}^{B}[\boldsymbol{B}] & =\int h^{\boldsymbol{B}}(x) \nabla \cdot \boldsymbol{B} d^{3} x,
\end{aligned}
$$

where $\mathcal{C}_{s}, h^{\boldsymbol{E}}$ and $h^{\boldsymbol{B}}$ are arbitrary functions of their arguments. These satisfy the degeneracy conditions

$$
\{F, C\}=0 \quad \forall F .
$$

Summary

Poisson brackets defined by J, dynamics $\partial \psi / \partial t=\{\psi, H\}$:

$$
\begin{array}{cll}
J_{R B} & \rightarrow & \text { Casimirs } \\
\mathcal{J}_{M H D} & \rightarrow & \text { Casimirs } \\
\mathcal{J}_{M-V} & \rightarrow & \text { Casimirs }
\end{array}
$$

Good theories in their ideal limit $(\nu, \eta, \cdots \rightarrow 0)$ conserve energies, H, and have Poisson brackets. Bad theories do bad things: unaccounted energy, unphysical instabilities, etc.

Dissipation? Casimirs are candidates for entropies!

II. Dissipation Formalisms

Codifying Dissipation - Some History

Is there a framework for dissipation akin to the Hamiltonian formulation for nondissipative systems?

Rayleigh (1873): $\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{\nu}}\right)-\left(\frac{\partial \mathcal{L}}{\partial q_{\nu}}\right)+\left(\frac{\partial \mathcal{F}}{\partial \dot{q}_{\nu}}\right)=0$
Linear dissipation e.g. of sound waves. Theory of Sound.
Cahn-Hilliard (1958): $\frac{\partial n}{\partial t}=\nabla^{2} \frac{\delta F}{\delta n}=\nabla^{2}\left(n^{3}-n-\nabla^{2} n\right)$
Phase separation, nonlinear diffusive dissipation, binary fluid ..
Other Gradient Flows: $\frac{\partial \psi}{\partial t}=\mathcal{G} \frac{\delta F}{\delta \psi}$
Otto, Ricci Flows, Poincarè conjecture on S^{3}, Perlman (2002) \ldots

Bracket Dissipation $1980 \rightarrow$

- Symmetric bilinear brackets (pjm 1982)
- Degenerate Antisymmetric Bracket (Kaufman and pjm 1982)
- Metriplectic Dynamics (pjm 1984,1986)
- Double Brackets (Vallis, Carnevale; Brockett, Bloch ... 1990)
- Generic (Grmela, Oettinger 1997) \equiv Metriplectic Dynamics!

Brackets for Dissipation

Two ingredients: Bilinear Bracket + Generator

$$
\dot{z}=\{z, H\}+(z, F)
$$

where

$$
(,): C^{\infty}(\mathcal{Z}) \times C^{\infty}(\mathcal{Z}) \rightarrow C^{\infty}(\mathcal{Z})
$$

What is F and what are the algebraic properties of (,)?

K-M Brackets 1982

Done for plasma quasilinear theory.

Dynamics:

$$
\dot{z}=[z, H]_{S}
$$

Properties:

- bilinear
- antisymmetric
- entropy production

$$
\dot{S}=[S, H]_{S} \geq 0 \quad \Rightarrow \quad z \mapsto z_{e q}
$$

Double Bracket 1989

Good Idea:
Vallis, Carnevale, and Young, Shepherd $(1989,1990)$

$$
\frac{d \mathcal{F}}{d t}=\{\mathcal{F}, H\}+((\mathcal{F}, H))=((\mathcal{F}, \mathcal{F})) \geq 0
$$

where

$$
((F, G))=\int d^{3} x \frac{\delta F}{\delta \chi} \mathcal{J}^{2} \frac{\delta G}{\delta \chi}
$$

Lyapunov function, \mathcal{F}, yields asymptotic stability to rearranged equilibrium.

- Maximizing energy at fixed Casimir: Works fine sometimes, but limited to circular vortex states

Simulated Annealing

Use various bracket dynamics to effect extremization.

Many relaxation methods exist: gradient descent, etc.

Simulated annealing: an artificial dynamics that solves a variational principle with constraints for equilibria states.

Coordinates:

$$
\dot{z}^{i}=\left(\left(z^{i}, H\right)\right)=J^{i k} g_{k l} J^{j l} \frac{\partial H}{\partial z^{j}}
$$

symmetric, definite, and kernel of J.

$$
\dot{C}=0 \quad \text { with } \quad \dot{H} \leq 0
$$

Simulated Annealing with Generalized (Noncanonical) Dirac Brackets

Dirac Bracket:

$$
\{F, G\}_{D}=\{F, G\}+\frac{\left\{F, C_{1}\right\}\left\{C_{2}, G\right\}}{\left\{C_{1}, C_{2}\right\}}-\frac{\left\{F, C_{2}\right\}\left\{C_{1}, G\right\}}{\left\{C_{1}, C_{2}\right\}}
$$

Preserves any two incipient constraints C_{1} and C_{2}.
New Idea:

Do simulated Annealing with Generalized Dirac Bracket

$$
((F, G))_{D}=\int d \mathbf{x} d \mathbf{x}^{\prime}\{F, \zeta(\mathbf{x})\}_{D} \mathcal{G}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left\{\zeta\left(\mathrm{x}^{\prime}\right), G\right\}_{D}
$$

Preserves any Casimirs of $\{F, G\}$ and Dirac constraints $C_{1,2}$
For successful implementation with contour dynamics see PJM (with Flierl) Phys. Plasmas 12058102 (2005).

Double Bracket SA for Reduced MHD

M. Furukawa, T. Watanabe, pjm, and K. Ichiguchi, Calculation of Large-Aspect-Ratio Tokamak and Toroidally-Averaged Stellarator Equilibria of High-Beta Reduced Magnetohydrodynamics via Simulated Annealing, Phys. Plasmas 25, 082506 (2018).

High-beta reduced MHD (Strauss, 1977) given by

$$
\begin{aligned}
& \frac{\partial U}{\partial t}=[U, \varphi]+[\psi, J]-\epsilon \frac{\partial J}{\partial \zeta}+[P, h] \\
& \frac{\partial \psi}{\partial t}=[\psi, \varphi]-\epsilon \frac{\partial \varphi}{\partial \zeta} \\
& \frac{\partial P}{\partial t}=[P, \varphi]
\end{aligned}
$$

Extremization

$$
\mathcal{F}=H+\sum_{i} C_{i}+\lambda^{i} P_{i}, \rightarrow \text { equilibria, maybe with flow }
$$

Cs Casimirs and Ps dynamical invariants.

Sample Double Bracket SA equilibria

Nested Tori are level sets of $\psi ; q$ gives pitch of helical \boldsymbol{B}-lines.

Double Bracket SA for Stability

M. Furukawa and P. J. Morrison, Stability analysis via simulated annealing and accelerated relaxation, Phys. Plasmas, 2022.

Since SA searches for an energy extremum, it can also be used for stability analysis when initiated from a state where a perturbation is added to an equilibrium. Three steps:

1) choose any equilibrium of unknown stability
2) perturb the equilibrium with dynamically accessible (leaf) perturbation
3) perform double bracket SA

If it finds the equilibrium, then is is an energy extremum and must be stable

Sample Double Bracket SA unstable equilibria

FIG. 12: Poloidal rotation velocity v_{θ} profile.

(a) Radial profile of $\Re U_{-2,1}$.

(c) Radial profile of $\Re \varphi_{-2,1}$.

(e) Radial profile of $\Re \psi_{-2,1}$.

(g) Radial profile of $\Re J_{-2,1}$.

(b) Radial profile of $\Im U_{-2,1}$.

(d) Radial profile of $\Im \varphi_{-2,1}$.

(f) Radial profile of $\Im \psi_{-2,1}$.

(h) Radial profile of $\Im J_{-2,1}$.

Metriplectic Dynamics 1984, 1986

A dynamical model of thermodynamics that 'captures':.

- First Law: conservation of energy
- Second Law: entropy production

Metriplectic Dynamics - Entropy, Degeneracies, and 1st and 2nd Laws

- Casimirs of noncanonical PB $\{$,$\} are 'candidate' entropies.$ Election of particular $S \in\{$ Casimirs $\} \Rightarrow$ thermal equilibrium (relaxed) state.
- Generator: $F=H+S$
- 1st Law: identify energy with Hamiltonian, H, then

$$
\dot{H}=\{H, F\}+(H, F)=0+(H, H)+(H, S)=0
$$

Foliate \mathcal{Z} by level sets of H, with $(H, A)=0 \forall A \in C^{\infty}(\mathcal{Z})$.

- 2nd Law: entropy production

$$
\dot{S}=\{S, F\}+(S, F)=(S, S) \geq 0
$$

Lyapunov relaxation to the equilibrium state. Dynamics solves the equilibrium variational principle: $\delta F=\delta(H+S)=0$.

Geometical Definition

A metriplectic system consists of a smooth manifold \mathcal{Z}, two smooth vector bundle maps $J, G: T^{*} \mathcal{Z} \rightarrow T \mathcal{Z}$ covering the identity, and two functions $H, S \in C^{\infty}(\mathcal{Z})$, the Hamiltonian and the entropy of the system, such that
(i) $\quad\{f, g\}:=\langle\mathbf{d} f, J(\mathbf{d} g)\rangle$ is a Poisson bracket; $J^{*}=-J$;
(ii) $\quad(f, g):=\langle\mathbf{d} f, G(\mathbf{d} g)\rangle$ is a positive semidefinite symmetric bracket, i.e., (,) is \mathbb{R}-bilinear and symmetric, so $G^{*}=G$, and (f, f) ≥ 0 for every $F \in C^{\infty}(\mathcal{Z})$;
(iii) $\{S, f\}=0$ and $(H, f)=0$ for all $f \in C^{\infty}(\mathcal{Z})$ $\Longleftrightarrow J(\mathbf{d} S)=G(\mathbf{d} H)=0$.

Two examples of pjm 1984

Vlasov with Collisions

$$
\left.\frac{\partial f}{\partial t}=-v \cdot \nabla f-a \cdot \nabla_{v} f+\frac{\partial f}{\partial t}\right)_{c}
$$

where

$$
\text { Collision term } \left.\rightarrow \frac{\partial f}{\partial t}\right)_{c}
$$

could be, Landau, Lenard Balescu, etc.

Conserves, mass, momentum, energy,

$$
\frac{d H}{d t}=\frac{d}{d t} \int \frac{1}{2} m v^{2} f+\text { interaction }=0
$$

and makes entropy

$$
\frac{d S}{d t}=-\frac{d}{d t} \int f \ln (f) \geq 0
$$

Landau Collision Operator

Metriplectic bracket:

$$
\begin{gathered}
(A, B)=\int d z \int d z^{\prime}\left[\frac{\partial}{\partial v_{i}} \frac{\delta A}{\delta f(z)}-\frac{\partial}{\partial v_{i}^{\prime}} \frac{\delta A}{\delta f\left(z^{\prime}\right)}\right] T_{i j}\left(z, z^{\prime}\right) \\
\times\left[\frac{\partial}{\partial v_{j}} \frac{\delta B}{\delta f(z)}-\frac{\partial}{\partial v_{j}^{\prime}} \frac{\delta B}{\delta f\left(z^{\prime}\right)}\right] \\
T_{i j}\left(z, z^{\prime}\right)=w_{i j}\left(z, z^{\prime}\right) f(z) f\left(z^{\prime}\right) / 2
\end{gathered}
$$

Conservation and Lyapunov:
$w_{i j}\left(z, z^{\prime}\right)=w_{j i}\left(z, z^{\prime}\right) \quad w_{i j}\left(z, z^{\prime}\right)=w_{i j}\left(z^{\prime}, z\right) \quad g_{i} w_{i j}=0$ with $g_{i}=v_{i}-v_{i}^{\prime}$
Landau kernel:

$$
w_{i j}^{(L)}=\left(\delta_{i j}-g_{i} g_{j} / g^{2}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) / g
$$

Entropy:

$$
S[f]=\int d z f \ln (f)
$$

Ideal fluid with viscous heating and thermal conductivity.

$$
\begin{align*}
& \frac{\partial v_{i}}{\partial t}=\left\{v_{i}, \not \subset\right\} \tag{18}\\
& \frac{\partial \rho}{\partial t}=\{\rho, \not A\} \tag{19}\\
& \frac{\partial s}{\partial t}=\{s, \not \subset\} \tag{20}
\end{align*}
$$

where the GPB, \{,\}, is given by

$$
\begin{align*}
& \{F, G\}=-\int\left(\frac{\delta F}{\delta \rho} \vec{\nabla} \cdot \frac{\delta G}{\delta \vec{v}}+\frac{\delta F}{\delta \vec{v}} \cdot \vec{\nabla} \frac{\delta G}{\delta \rho}+\right. \\
& \left.\frac{\delta F}{\delta \vec{v}} \cdot\left[\frac{(\vec{\nabla} \times \vec{v})}{\rho} \times \frac{\delta G}{\delta \vec{v}}\right]+\frac{\vec{\nabla} s}{\rho} \cdot\left[\frac{\delta F}{\delta s} \frac{\delta G}{\delta \vec{v}}-\frac{\delta F}{\delta \vec{v}} \frac{\delta G}{\delta s}\right]\right) d^{3} x \tag{21}
\end{align*}
$$

Upon inserting the quantities shown on the right hand side of Eqs. (18)-(20), into Eq. (21) and performing the indicated operations one obtains, as noted, the invicid adiabatic limit of Eqs. (10)-(12).

The Casimirs for the bracket given by Eq. (21) are the total mass $M=\int \rho d^{3} x$ and a generalized entropy functional $\mathcal{S}_{f}=\int \rho f(s) d^{3} x$, where f is an arbitrary function of s. The latter quantity is added to the energy [Eq. (17)] to produce the generalized free energy of Eq. (4): $q=\psi+\mathcal{S}_{\mathrm{f}}$.

In order to obtain the dissipative terms, we introduce the following symmetric bracket:

$$
\begin{align*}
(F, G) & =\frac{1}{\lambda} \int\left\{\frac{1}{\rho} \frac{\delta F}{\delta v_{i}} \frac{\partial}{\partial x_{k}}\left[\frac{\sigma_{i k}}{\rho} \frac{\delta G}{\delta s}\right]+\frac{1}{\rho} \frac{\delta G}{\delta v_{i}} \frac{\partial}{\partial x_{k}}\left[\frac{\sigma_{i k}}{\rho} \frac{\delta F}{\delta s}\right]\right. \\
& +\frac{\sigma_{i k}}{T} \frac{\partial v_{i}}{\partial x_{k}}\left[\frac{1}{\rho^{2}} \frac{\delta F}{\delta s} \frac{\delta G}{\delta s}\right]+T^{2} k \frac{\partial}{\partial x_{k}}\left[\frac{1}{\rho T} \frac{\delta F}{\delta s}\right] \frac{\partial}{\partial x_{k}}\left[\frac{1}{\rho T} \frac{\delta G}{\delta s}\right] \\
& \left.+T \Lambda_{i k n n} \frac{\partial}{\partial x_{m}}\left[\frac{1}{\rho} \frac{\delta F}{\delta v_{n}}\right] \frac{\partial}{\partial x_{k}}\left[\frac{1}{\rho} \frac{\delta G}{\delta v_{i}}\right]\right\} \mathrm{d}^{3} \mathrm{x}, \tag{23}
\end{align*}
$$

Metriplectic Simulated Annealing

Extremizes an entropy (Casimir) at fixed energy (Hamiltonian)
C. Bressen Ph.D. Thesis TUM, Garching 2022

Two cases: 2D Euler and Grad Shafranov MHD equilibria.

Figure 6.7: Relaxed state for the test case euler-ilgr. The same as in Figure 6.2, but for the collision-like operator.

Figure 6.29: Relaxed state for the gs-imgc test case. The same as in Figure 6.23, but for the collision-like operator and the case of the Czarny domain discussed in Section A.4.2. With respect to Figure 6.27 (b) for the diffusion-like operator, we see from (b) that the agreement between the relaxed state and the prediction of the variational principle is better.

III. Metriplectic 4-Brackets for Dissipation

The Metriplectic 4-Bracket

A blend of ideas: Two important functions H and S, symmetries, curvature idea, multilinear brackets all in pjm 1984, 1986. Manifolds with both Poisson tensor J and compatible metric, g.

4-bracket on 0-forms (functions):

$$
(\cdot, \cdot ; \cdot, \cdot): \wedge^{0}(\mathcal{Z}) \times \wedge^{0}(\mathcal{Z}) \times \wedge^{0}(\mathcal{Z}) \times \wedge^{0}(\mathcal{Z}) \rightarrow \wedge^{0}(\mathcal{Z})
$$

For functions f, k, g, and n

$$
(f, k ; g, n):=R(\boldsymbol{d} f, \boldsymbol{d} k, \boldsymbol{d} g, \boldsymbol{d} n),
$$

In a coordinate patch the metriplectic 4-bracket has the form:

$$
(f, k ; g, n)=R^{i j k l}(z) \frac{\partial f}{\partial z^{i}} \frac{\partial k}{\partial z^{j}} \frac{\partial g}{\partial z^{k}} \frac{\partial n}{\partial z^{l}} .
$$

Metriplectic 4-Bracket Properties

(i) linearity in all arguments, e.g,

$$
(f+h, k ; g, n)=(h, k ; g, n)+(h, k ; g, n)
$$

(ii) algebraic identities/symmetries

$$
\begin{aligned}
& (f, k ; g, n)=-(k, f ; g, n) \\
& (f, k ; g, n)=-(f, k ; n, g) \\
& (f, k ; g, n)=(g, n ; f, k) \\
& (f, k ; g, n)+(f, g ; n, k)+(f, n ; k, g)=0 \quad \leftarrow \text { not needed }
\end{aligned}
$$

(iii) derivation in all arguments, e.g.,

$$
(f h, k ; g, n)=f(h, k ; g, n)+(f, k ; g, n) h
$$

which is manifest when written in coordinates. Here, as usual, fh denotes pointwise multiplication. Symmetries of algebraic curvature. Although $R^{l}{ }_{i j k}$ or $R_{l i j k}$ but not $R^{l i j k}$. Metriplectic Minimum.

Reduction to Metriplectic 2-Bracket

Symmetric 2-bracket:

$$
\begin{equation*}
(f, g)_{H}=(f, H ; g, H)=(g, f)_{H} \tag{1}
\end{equation*}
$$

Dissipative dynamics:

$$
\begin{equation*}
\dot{z}=(z, S)_{H} \tag{2}
\end{equation*}
$$

Energy conservation:

$$
\begin{equation*}
(f, H)_{H}=(H, f)_{H}=0 \quad \forall f \tag{3}
\end{equation*}
$$

Entropy dynamics:

$$
\dot{S}=(S, S)_{H}=(S, H ; S, H) \geq 0
$$

Metriplectic 4-brackets \rightarrow metriplectic 2-brackets of 1984, 1986!

Reduction to $\mathrm{K}-\mathrm{M}$

Kaufman \& pjm, Phys. Lett. A 88, 405 (1982).
K-M dynamics:

$$
\dot{z}^{i}=\left[z^{i}, H\right]_{S},
$$

K-M bracket emerges from any metriplectic 4-bracket:

$$
[f, g]_{S}:=(f, g ; S, H)
$$

Thus,

$$
[f, g]_{S}=-[g, f]_{S}
$$

and

$$
\dot{H}=[H, H]_{S}=(H, H ; S, H)=0,
$$

and

$$
\dot{S}=[S, H]_{S}=(S, H ; S, H) \geq 0
$$

Reduction to Double Brackets

Interchanging the role of H with a Casimir S :

$$
(f, g)_{S}=(f, S ; g, S)
$$

Can show with assumptions (Kozul construction)

$$
(C, g)_{S}=(C, S ; g, S)=0
$$

for any Casimir C. Therefore $\dot{C}=0$.

Easy Construction: K-N Product

Given σ and μ, two symmetric bivector fields operating on 1forms $\boldsymbol{d} f, \boldsymbol{d} k$ and $\boldsymbol{d} g, \boldsymbol{d} n$, the Kulkarni-Nomizu (K-N) product is

$$
\begin{aligned}
\sigma ® \mu(\boldsymbol{d} f, \boldsymbol{d} k, \boldsymbol{d} g, \boldsymbol{d} n) & =\sigma(\boldsymbol{d} f, \boldsymbol{d} g) \mu(\boldsymbol{d} k, \boldsymbol{d} n) \\
& -\sigma(\boldsymbol{d} f, \boldsymbol{d} n) \mu(\boldsymbol{d} k, \boldsymbol{d} g) \\
& +\mu(\boldsymbol{d} f, \boldsymbol{d} g) \sigma(\boldsymbol{d} k, \boldsymbol{d} n) \\
& -\mu(\boldsymbol{d} f, \boldsymbol{d} n) \sigma(\boldsymbol{d} k, \boldsymbol{d} g)
\end{aligned}
$$

Metriplectic 4-bracket:

$$
(f, k ; g, n)=\sigma \boxtimes \mu(\boldsymbol{d} f, \boldsymbol{d} k, \boldsymbol{d} g, \boldsymbol{d} n)
$$

In coordinates:

$$
R^{i j k l}=\sigma^{i k} \mu^{j l}-\sigma^{i l} \mu^{j k}+\mu^{i k} \sigma^{j l}-\mu^{i l} \sigma^{j k}
$$

K-N Product \rightarrow Landau Collision Operator

Metriplectic 4-bracket on functionals:

$$
\begin{aligned}
(F, K ; G, N)= & \iint d^{6} z d^{6} z^{\prime} \mathcal{G}\left(z, z^{\prime}\right) \\
& \times(\Sigma \otimes M)\left(F_{f}, K_{f}, G_{f}, N_{f}\right)\left(z, z^{\prime}\right) \\
= & \int d^{6} z \int^{6} z^{\prime} \mathcal{G}\left(z, z^{\prime}\right) \\
\times & (\delta \otimes \delta)_{i j k l} P\left[F_{f}\right]_{i} P\left[K_{f}\right]_{j} P\left[G_{f}\right]_{k} P\left[N_{f}\right]_{l},
\end{aligned}
$$

where

$$
F_{f}:=\frac{\delta F}{\delta f} \quad \text { and } \quad P[w]_{i}=\frac{\partial w(z)}{\partial v_{i}}-\frac{\partial w\left(z^{\prime}\right)}{\partial v_{i}^{\prime}}
$$

$(f, H ; g, H)=(f, g)_{H}$ becomes metriplectic 2-bracket (pjm 1984).
$(f, H ; S, H)=$ Landau collision operator!

